Sharp inequalities via truncation
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Abstract

We show that Sobolev-Poincaré and Trudinger inequalities improve
to inequalities on Lorentz-type scales provided they are stable under

truncations.

1 Introduction

The classical Sobolev inequalities state that, for an open subset 2 C R”,
n > 2, and all u € Cy(Q),

< /Q (@) d:c) i Com ( /Q Vu(z)? dx) d 1)

where 1 < p < n and p* = %. If Q is connected and sufficiently nice,
say has smooth boundary, then one also has the analogous Sobolev-Poincaré
inequality

1

it ([ futo) " )" < i@ ( [ 19t dx)% )

for all v € C'(Q). In the borderline case p = n, n > 2, we have the
Trudinger |25| inequalities (also see [20] and [26]): there exists C; = Ci(n)
and Cy = Cy(n) such that

|u(z)| '
exp | =——=—F— dr < Cy |Q2 3
/Q (01 ||VU||Ln(Q) 2|9 @)
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for u € Cy(2), and when (2 is sufficiently nice with finite volume, there exist
Cy = C1(n,Q) and Cy = Ca(n) so that for u € C*(Q)

: u(z) —c| "
1nf/exp —_ dr < Oy [92]. 4
c€R Jo (Cl ||VU||Ln(Q) 2|9 @

By the density of smooth functions in the Sobolev spaces W, ?(Q), WP(Q)
these inequalities extend to these spaces. The usual proof for Sobolev in-
equalities for the zero boundary value case is to use integral presentation
formulas to estimate |u| in terms of a Riesz potential of |Vu|. Except for
the case p = 1, the inequalities can then be deduced from potential esti-
mates; for p = 1 one also applies truncation techniques. Another possibility
is to deduce (1) for p = 1 to the isoperimetric inequality and then conclude
with the case p > 1 essentially only applying the Hoélder inequality. The
Trudinger inequality (3) is based on good estimates on the constant in the
Sobolev inequality (1). For certain domains €2, the inequalities (2), (4) can
be reduced to (1) and (3) by extending the functions across the boundary.
In many situations this is not possible and one applies various chaining tech-
niques and relies on geometric assumptions on (2. One is then lead to weaker
inequalities where instead of, say, p*, in (2), one only obtains an exponent
g < p* and there might not be any reasonable inequalities below a fixed level
p. This phenomenon also shows up in the analysis on metric spaces where the
Sobolev-Poincaré-type inequalities often only hold for exponents p bounded
away from 1.

The above inequalities are known to be sharp in the sense that the left-
hand-sides cannot be improved on in the Orlicz scales [10] (see also [5]).
However, even sharper inequalities exist in other scales. The purpose of this
note is to point out that inequalities of the Sobolev-Poincaré-type always
improve themselves to Lorentz-type scales if they are stable under truncation.
Throughout the paper X will be a metric space with metric d and a Borel
measure /.

Theorem 1.1 Let Q C X be a domain with p(2) < oo.



i) Fiz p,q € (0,00). Suppose that the Sobolev-Poincaré inequality

1

ut ([ - ) 2 ([s0 i) ©

15 stable under truncations. Then

igﬂg/ooo P! [,u ({z € Q:|u(z) — | > t}) } gdt <C- Cg/ngp(y) du(y)
(6)

where the constant C' = C(p, q) depends only on p and q.

it) Fiz s € (1,00). Suppose that the inequality

_8_

: u(y) —c| \*
1nf/ﬂexp (m) du(y) < Cop(Q) (7)

ceR

is stable under truncations. Then there exists a constant C = C(s, Cy)
so that

. 00 t871 s S
0 log

W((@eSu(z)—a>1) “

The requirement that inequality (5) (resp. (7)) be stable under truncations
means that for every b € R 0 < ¢; < ty < 0o and ¢ € {—1,1} the pair v,ff,
Gtits = GX{t1<v<ts}, Where v = 1(u—b) and v;> = min{max{0,v—t;},to— 11},
also satisfies Inequality (5) ( (7) ):

e ([ \vff(y)—Cquu(y)f <o gfl,@(y)du(y))%. )

The concluded inequalities in Theorem 1.1 are known to hold in the Euclidean
setting when the boundary of €2 is sufficiently regular and 1 < p < n and
g = p* [18] and [19], [14], or s = n [2], [8] and [14]. The Sobolev inequality
version of i) is contained in [1|. Theorem 1.1 gives new information even
in Euclidean spaces because no additional assumptions on the geometry of
) are posed except for Inequality (5) or (7). Notice, however, that the

conclusion in ¢) is nontrivial only when ¢ > p. For sufficient condition for



these inequalities see Section 4. Furthermore Theorem 1.1 when combined
with results in [7] gives new inequalities on spaces that support a Poincaré
inequality (see Section 3).

The idea of using truncation in connection with Sobolev-type inequalities
can be traced back to the seminal paper [16] by Maz’ya. For further appli-
cations of this powerful technique see [1], [17], [7] and the references therein,
and [14].

2 Proof of Theorem 1.1

We will employ the following lemma whose proof is elementary.

Lemma 2.1 Let v be a finite measure on a set Y. If w > 0 is a v-measurable

function such that v({y € Y : w(y) = 0}) > ”(QY), then, for everyt > 0,

v{yeY  w(y) >t}) <2 irelﬂf{y({y eY |w(y) —c| >t/2}). (10)

We begin with the proof of the part i) of Theorem 1.1:
i) Choose b € R such that

(> 03) > 2 and g (fu <y > 282,

Here and also later we abbreviate the set {x € Q : f(x) > a} ( {z €
Q: f(z) <a}...) to{f >a} ({f < a}..). Let vy = max{u — b,0},
v— = —min{u —b,0}. Then |u —b| = vy +v_. In what follows v will denote

either v, or v_.
Let 0 < ¢; < t3 < 0o. Then the function vttf satisfies

p ({ef (@) = 0)) 2 X, 1)

and we conclude using Lemma 2.1 and Inequality (5) that

(o > 1) ]e -t < 2 inf [ ({lof: — el > ¢/2})]

1

P

Q|

-1/2

IN

2410, (/Q 9,2 (Y) du(y))

S =

— 25“00 (/Q ng{t1<u§t2}dM(y)) (12)
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for all £ > 0. This yields

oo

EZWWMU§“>ﬂDﬁs2F%KL¢wmmw. (13)

k=—o00

Because {02, > 2%} = {v > 2¥*1} we have

o0

Z opk [ ({v > 2k+1})]

k=—00

b
q

20t [ P)duty), (19
Q
which immediately gives the estimate

1ol iy = Aﬂ“Mummnﬁﬁs%mﬂéfwmw»

Finally
inf [lu =l fus@)y < llu=blLen
< 2 (|l [uniey + 1010
< Cpy G / 9" (y) du(y), (15)
Q
as desired.

i1) As in the part i), choose b € R such that

p(quz ) > "D and pfu <y > 49

2 2
Let v; = max{u—b,0}, v_ = —min{u — b,0}. In what follows v will denote
either v or v_. Fix 0 < #; <ty < 0o. Using the expansion exp(t) =Y -, ﬁ:,

we have that

inf ( |vff —-c
ceR Q

for all k =1,2,3,..., and, consequently

1

_sk_ % s=—1 s—1 s
du) < Oy - Oy (KD ( / 95 1, (¥) du(y)) (16)
Q




for every m > 1. Especially, we get the weak type inequality

s—1
inf ¢ [c ({Jof? — ¢l > 1}) ]

<0 P e Q@ ([ a0t ) (18)

for all m > 1 and every ¢ > 0. Applying Lemma 2.1 we conclude that

tlu(fo2>8))]™ < Ci(Co2/e)m [ep(Q)])mm's ( /Q 951,t2(y)du(y)>s

1
s

< CL1C0(Cy, 8)[ep(Q)] 5m™s ( /Q 91,1, (Y) du(y))

for all m > 1 and every ¢t > 0. Next we will choose m,t;,t, and ¢t. Fix ¢ € Z
and let m = log (“(eﬂ) Then

{v>2i+1})
¢ M ’ “%%)
ep(S2)

<ci-caon (D) ([wmm) oo

for all ¢t > 0. Choosing t; = 2¢,t, = 2!T! and t = 2¢ we arrive at

s—1

» n (057 > 23)\ oozt
=10 .
log™ (%) en(€2)
<0 CCo) ([ b)) (20)
Q
Notice that {vZ" > 2/} = {v > 2°*1} and so
s—1
i1 , ;
/,L ( ’U%l > 21}) leE(%*u({vg(;z_)’_l})) s

o) =€ . (21)



We thus obtain

8

>scl-c<cz,s> ([sraowanm) . @)

2i

s;l e (Q)
log ™+ ( ey

We raise the estimate to the power s and sum over i. This results in

it 9si
P <CrOCas) [ g dnty). @3
- lo S— CH(Q) 0
i=—00 108 \i({v>27+1Y)
and the inequality
s Oo ts*l S S
ol = [ Ty < O C(Ca) [ ) duty) 20
8 (uﬁv>ﬂ)>

immediately follows. Finally

inf [ — clliuw < Mt Bl
< 2 (ol + Iv-lw, @)
< C1-C(Chs) / ¢ () duly), (25)
Q

as desired.

Remark 2.2 Using [27, Lemma 1.8.18 and Ezercice 1.7] we see that, in the
case ¢ > p > 0, Theorem 1.1 really gives new information. It follows that in
the case ¢ > p > 0, under the assumptions of Theorem 1.1, Inequality (5) is
equivalent with Inequality (6), modulo the constants. Also, if

o] tsfl
s — dt < oo,
||f||BWS(Q) A 10g571 ( ep(2) )

u{lf1>t})

for some fized s > 1, then it is easy to see that there exist constants C1(s)
and Cy(s) such that

S

X |f ()] ! . .
fye (ca(s> ||f||Bws<m) dp(w) < Caols) () (26)




which tells that under the assumptions of Theorem 1.1 Inequality (7) is equiv-
alent, modulo the constants, with Inequality (8). However it is easy to con-
struct [8] a function f which satisfies

/Q exp (C|(2))) 7T du(z) < oo

with some constant C, but nevertheless || f| gy, ) = oo

3 Consequences of the Poincaré inequality

In this section the starting point is to assume that a pair (u, g) of locally
integrable functions satisfies the (1, p)-Poincaré inequality

inf ]i o lu(y) — cldu(y) < Kpr <]i o gp(y)du(y)) (27)

with some 0 > 1, p > 0 and K, > 0, for all balls B(z,or) C X. Here
fA vdu = ﬁ fA vdy. Then the function g estimates the mean oscillation of
u very much the same way as |Vu| does in the Euclidean case.

Given a function v and 0 < t; < t3 < 00, We set

vi2 = min{max{0,v — t; },to — 1}
as before. Let the pair (u, g) satisfy a (1, p)-Poincaré inequality in X. As-
sume that for every b € R, 0 < t; < ¢, < oo and ¢ € {—1,1}, the pair
U1, gX {11 <v<ts}, Where v = i(u — b), satisfies the (1,p)-Poincaré inequality
in X (with fixed constants K,,c). Then we say that the pair (u,g) has a
truncation property.

We assume the doubling condition: there exists a positive constant Cp

such that for every x € X
u(B(z,2r)) < Cp p(B(z,7)). (28)

We also need a lower estimates for the measure of a ball: there exists C, > 0
and s > 1 such that for every z € X and all 0 < r < R < odiam(X)

M>Cb(r)s. (29)

u(B(@, R) =~ " \R



Furthermore in this section we assume that X is proper and our metric is a
length metric:

d(z,y) = inf lenght of v, ,, (30)

Yz,y

where the infimum is taken over all curves v, , and v,, is a curve joining z
to y. Proper means that closed balls are compact.

Combining Theorem 1.1 with |7, Theorem 9.7] we get the following result.

Corollary 3.1 Let (X,d) be a metric space equipped with a metric d that
satisfies (30) and a measure p which is doubling and satisfies (29). Assume
that the pair (u, g) satisfies the (1,p)-Poincaré inequality (27) with p € [1, s]
and the pair (u, g) has the truncation property.

i) In the case p € [1, s) we have
RP
(u(B))

it) If in addition the space is connected and p = s > 1, then

® 3

cER

nt [T - > )] < oL [ ) aut)

oo ts—l
inf/ dt < CgRs][ 9 (y) du(y).
ceR s—1 eu(B) -
/0 log <—u({|uu*0\>t})) B

The constants Cy and Cy depend on p,s,o, K,, Cy and Cp only.

If we have a (1,1)-Poincaré inequality, then Corollary 3.1 is true for p > 1
even without the truncation assumption. This is proven in [15] by using
sophisticated Riesz potential estimates.

There are two important examples of settings where pairs (u,g) that
satisfy a (1, p)-Poincaré inequality and have the truncation property show
up. The first is the class of spaces that support a p-Poincaré inequality for
Lipschitz functions and their point-wise Lipschitz constants. See the survey
[12], [7], [9] and the references in these papers. The second arises from
Dirichlet spaces. Here one assumes that the Dirichlet form is local to obtain
the truncation property. See e.g. [22], [23] and [24], and the references in
[7, Section 10.5]. In both of these settings, the p-Poincaré inequality is only
assumed for a fixed p > 1 and it need not necessarily hold for p = 1. Thus

Corollary 3.1 is not covered by the “classical” Euclidean arguments.
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4 The Euclidean setting

As mentioned in the introduction, the assumption (5) of Theorem 1.1 holds
only for domains of certain types for fixed levels p > 1. Moreover, (7) can well
hold when no Sobolev-Poincaré-type inequalities are true for small values of
p. We confine ourselves with giving a few examples.

We say that a bounded domain 2 C R” is an s-John domain, s > 1, if
there exists a constant C' > 1, and a distinguished point xy € {2 so that each
point z € € can be joined to zy (inside Q) by a rectifiable curve (called a
John curve), v : [0,{] = Q, y(0) = z, ¥(l) = y, parametrised by arc length (I
depends on z), and such that distance to the boundary satisfies

dist (y(t),09Q) > C~'¢* (31)

for all t € [0,1]. Note that xy can be replaced by any other point in 2. The
constant in (31) however, depends on the choice of zy. In such a domain we
obtain the following inequality by combining Theorem 1.1 and results in [6]
and [11].

Corollary 4.1 Let Q2 C R™ be an s-John domain, s > 1. If1 < p < g <
(nfl?sp+lfp’ then

inf / P {u—c > 15 dt < O, o(Q) /Q Vu@) Pz (32)

ceR [
whenever u € C*(Q).

In the setting of Corollary 4.1 there are no Sobolev-Poincaré inequalities when
p < (s—1)(n—1), see [6]. Also notice that a simply connected plane domain
(n = 2) of finite area that supports the inequality (32) for all u € C*(2) with
some 1 <p<2andq= 2% is necessarily 1-John by the main result in [3].
Let ¢ : [0,00) — [0,00), ¢(0) = 0, be a continuous, increasing and
subadditive function. Then a bounded domain Q@ C R*, n > 2, is a C%¢-
domain if for every point b € 0f2, there exists ry, a Cartesian system of
coordinates (2, ,) € R*~! x R with the origin at the point b, and a function

O : {z':|2'| <o} = R such that

i) B(b,19) N has the form {(z',z,) € B(0,7¢) : z, > ®(z')}

10



it) B(b,19) N O has the form {(z',z,) € B(0,7¢) : x, = ®(z')}
i) |®(z') — @(y')| < ¢(|z' — ¢'|) for all 2',y' € R*™ and |2'|, |¢/| < 0.

In such a domain we have the following inequality by combining Theorem 1.1
and the main result in [13] (see also [17]). Here we also used the compactness
result in [7, Theorem 8.1].

Corollary 4.2 Let Q C R*, n > 2, be a C%®-domain, 1 < p < q¢ < 0o, and
assume that 1) = ¢! satisfies

P(2t)
Hgsup -5

If, for a certain § > 0, ¢ satisfies the condition

< oQ.

: - - 33
()S<L;I<)J (||1/J || La(0,0) ||1/J ||LFf(t6 ) oo (33)

then

ceR

inf / P fu—c > 15 dt < Oy o(Q) / Vu@) Pz (34)
0 Q
whenever u € C*(Q).

Let 2 C R*, n > 2. The quasihyperbolic distance between a pair of
points z,y € (Q is defined to be

ds
=inf [ —
kQ(x, y) ’1712,3, /ym,y dlSt (S, 89) (35)

where the infimum is taken over all curves 7, , in 2 joining z to y. Let 3 > 0.
We say that € satisfies a S-quasihyperbolic boundary condition if the growth
condition

1. dist (zg,00)

k20, 2) < ,Bl & dist (x,09)

+ Cy (36)
is satisfied for all x € 0, where z, is a fixed basepoint and Cy = Cy(zg) < o0.

Combining Theorem 1.1 and one of the results in [21] we obtain the following

corollary.

11



Corollary 4.3 Let Q2 C R", n > 2, satisfy the quasihyperbolic boundary
condition (36) for some B < 1. Then

00 tnfl
inf/ dt < Cy, / Vu(z)|" dz 37
c€R Jq logn—l( €| ) B Q| ( )| ( )

{lu—c[>}]

for all u € C*(Q).

Notice that a simply connected planar domain (n = 2) with finite measure
that supports Inequality (37) for all u € C''(Q) necessarily satisfies the quasi-
hyberbolic boundary condition with some 5 < 1 by the results in [17, p.214|
and [4].
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