AN IMPROVED BOUND FOR THE HAUSDORFF
DIMENSION OF (n,2)-SETS

THEMIS MITSIS

ABSTRACT. We improve on the bound for the Hausdorff dimension
of sets containing a translate of every 2-plane.

1. INTRODUCTION

An (n, 2)-set is a subset of R containing a translate of every 2-plane.
It is natural to ask whether such a set must be, in some sense, large.
In low dimensions the answer is affirmative. Marstrand [3] proved that
(3,2)-sets have positive Lebesgue measure and Bourgain [1] showed
that the same is true for (4,2)-sets. In higher dimensions it is an open
question whether an (n,2)-set must have positive measure. We refer
the reader to [1] for a discussion on the relation of this problem to the
Kakeya conjecture.

On the other hand, the estimates for the 2-plane transform due to
Christ [2] imply that for n > 4, an (n, 2)-set has Hausdorff dimension
at least (2n + 2)/3.

In this paper we use the endpoint estimate for the Radon transform
in R3 together with geometric-combinatorial ideas in the spirit of Wolff
[5] to improve on this bound. Namely, we prove the following.

Theorem 1.1. Ifn > 4 then the Hausdorff dimension of an (n,2)-set
is at least (2n + 3)/3.

2. PRELIMINARIES

We set out the notation and the terminology we will be using.

Sn=1 C R™ is the (n — 1)-dimensional unit sphere.

B(a,r) is the closed ball of radius r centered at the point a.

For X c R", X* stands for its orthogonal complement.

Ife e S" ' a € R"then L.(a) = {a + te : t € R} is the line in the
e-direction passing through the point a.

Ifee S" 1 aeR", 3>0then TP = {x € R" : dist(z, L.(a)) < 3}
is the infinite tube with axis L.(a) and cross-section radius f3.
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L denotes k-dimensional Lebesgue measure and £° counting mea-
sure. When the context is clear we will use the notation |-| for all these
measures.

Let G,, be the Grassmannian manifold of all 2-dimensional linear
subspaces of R" equipped with the unique probability measure which
is invariant under the action of the orthogonal group. The elements of
G,, will be refered to as direction planes.

If P, P, € G,, then their distance is defined by

d(Py, P2) = ||projp, — projp, |

where projp : R® — P is the orthogonal projection onto P.

A set of points or direction planes is called p-separated if the distance
between any two of its elements is at least p.

If PG, 1<1<4,§>0then P is a rectangle of dimensions
[ Xx1x¢§x---x0,that is, the image of [0,{] x [0,] x [0,4] x --- x [0, ]

n—2

under a rotation and a translation, such that its faces with dimensions
[ x | are parallel to P. Such a set will be refered to as a J-plate or
simply as a plate. When [ = 1 the superscript [ will be supressed.

If PF°NPLY + () and d(Py, Py) = 0 we will say that the plates intersect
at angle 6.

The letter C' will denote various constants whose values may change
from line to line. Similarly, C. will denote constants depending on e. If
we need to keep track of the value of a constant through a calculation
we will use subscripted letters C, Cs, ... or the notation C.

Finally, <y means x < Cz and x ~ y means (x Sy & y < x).

We close this section with a geometric lemma which allows us to
control the intersection of two plates containing a line segment of given
length. It can be proved by coordinate geometry.

Lemma 2.1. Let P P be two plates such that d(Py, Py) < 1/2.
Then, for any a,b € PP APy, r > 0 with r < |a — b| < 2r we have

Py N Py" N B(a,2r) C T(a),
where e = (a — b)/|la — b| and B = Cn/d(P, P»).
Note that the lemma implies that for any two plates P\, P." with
d(Py, P2) < 1/2, there exist e € S"7!, a € R" so that
AP < )
where 5 = Cn/d(Py, Py). Therefore

n—1

P AP < 1P AT ()] < -
PN E < 1P T S
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3. AN AUXILIARY ESTIMATE

In this section we prove a lemma which gives a lower bound for
the measure of a set having large intersection with a family of plates
with well-separated direction planes. The proof of Theorem 1.1 will be
based on setting up a suitable configuration of plates and applying this
lemma for appropriately chosen values of the parameters involved.

Lemma 3.1. Suppose E is a set in R", 3,k <1 and B = {P;}}L, is
an n-separated subset of G, with diam(B) < 1/2, such that for each j
there is a plate Pj’" satisfying

C
PP EN (T ()" | > w|P)"|
for alle € S"1, a € R*. Then
|B] 2 (log(C/3)) > g2=2/35| B2,

Proof. For each a € P;’" NE let

e

q(j,a,i) = irelf |le77 N EN B(a, 32°) N (Tﬁ(a))c |.
Then
q(4.a,0) = 0 and g (j,a,log(C/B)) = 4| P}"|.
Therefore there is a smallest i(j, a) such that
a(j a.i(j,0)) > 51 P

Since there are at most log(C'/3) possible i(j,a), there is an i(j) and a
set A C le»’” N E of measure

|A%| Z (log(C/B8)) " w| P}
such that for each a € A;-
. L K l,n . . K In
q<],a,2(])) > §|]DJ | and Q(],G,Z(]) — 1) < §|Pj |

Since there are M plates and at most log(C'/[3) possible i(j) there is
an g and a set C' C {le”} such that

C'| 2 (log(C/B)) ™" M
and for each PJM’ € C' and cach a € A
i Ci s B pl,
[P0 ENB(a, 62°) 0 (T ()] > S1F"
for all e € S™ ! and

PPN EN B(a, 42771 N (TB (a)>c| < Tphn)
J ) — 92"

e(j,a)
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for some e(j,a) € S 1. Tt follows that
C
K\ o, L, B
S < (P EN (1], (@)
. C
— P AENB(a,0207) 0 (T (@)

io—11\C c
— [P EnN (B(a, B2°7)) ﬂ(Tf(j’a)(a)> |

< PN EN (Bla.s2o)"|
log(C/B) ' A
= Y PN EN(B(a,32°)\ B(a, 20 )) |.
k=0
Therefore there is a k(j, a) such that

[P} N EN (B(a, B200F09) \ B(a, g2lot+ia71)) |
2 (log(C/B)) ™" k| Py7].

By the same argument as before, we conclude that there is a number
r = (20tko~1 and a set C C C' with

C| 2 (log(C/B) > M (1)
so that for each Pj’" € C there is a subset A; C A;. of measure
45| Z (log(C/B)) ™% K| P (2)

such that for each a € A;
|P" A E N Bla,2r) 0 (T2(a)°] 2 5| P (3)
for all e € S"! and
[Py N EN (B(a,2r) \ Bla, 7)) | Z (log(C/B) " s F;". (4)

We will make different estimates for |E| depending on the overlap of
the sets A;. We fix a number N and consider two cases.

CASEL VaeR" {j:aec A;} <N.
CASEIL JaeR" |{j:ac A} > N.

In case I we have

B2 U alzg 314

j:P;’WGC j:PJl.’WEC
| o
L el tos(C/)

2 loa(C/B) s 6
where we have used (1) and (2).

Vv

vV
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In case II, we fix a number p and consider two subcases.

(I)1. Vb € B(a,2r) \ B(a,r) [{j:a€ Ajbe P} < p.
(I)s. 3b € B(a,2r) \ Bla,r) [{j:a€ Ajbe P} > p.

In subcase (II); we have

El > | |J P"nEN(B(a,2r)\ Bla,r))]

j:aEAj

> = 3 IR0 EN (Bla2n)\ Blar))]

jZCLEAj
> N -1 n—2
R o, (oe(C/B)) " nn (6)
where the last inequality follows from (4).

In subcase (II); let B’ be a maximal Cyn/(3-separated subset of {P; :

a € Aj,b € P/"}. Then |B| 2 pB*"=?. Note that if P;, P, € B’ then
by Lemma 2.1

PN PN B(a,2r) C TCP (a) C T (a)
where e = (a — b)/|a — b|, provided that C; has been chosen large
enough. Therefore the family

C
{PI"NENB(e,2r) 0 (T/(2)": P, € B}

is disjoint. Consequently
] > | | PAENB@2r) N (T(a)"
j:PjEB’
S [P A EN Bla,2r) 0 (THa)®)
j:PjeB’
B[k~
/62(n—2)lu€nn—2 (7)

where we have used (3).
So, in case II we see that choosing

= N2 (og(C/B) 1 g~
(6) and (7) imply that

|E| 2 (log(C/B))"? g2k N2, (8)

2
2

Choosing
N = M*? (log(C/ )" g2/
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(5) and (8) yield
] 2 (log(C/B)) ™/ 202/ =2

proving the lemma. O

4. THE 3-PLANE ESTIMATE

In this section we use the mapping properties of the Radon transform
in R3 to derive an estimate for the measure of a set intersecting a family
of plates which are contained in a neighborhood of a 3-plane. In the
proof of Theorem 1.1 we will end up summing such estimates.

For a function f : R® — R satisfying the appropriate integrability
conditions, the Radon transform
Rf:S*xR—R
is defined by

Rf(e.t) = / f(2)dC3 ().

(e,x)y=t

It is proved in Oberlin and Stein [4] that for any measurable set E C R?
one has the following estimate.

IRXE3 00 S IXEN3)2

where
1/3

IRxel; = / (s Rcs(. 1) o ()

and do is surface measure.
We can discretize this result as follows.

Lemma 4.1. Suppose E is a set in R3, X\ < 1 and let {P}L, be a
0-separated set in Gs such that for each k there is plate P,i’cg satisfying

PE N Bl > AP
Then
|E| > \3/2MV3%s.

Proof. For each e € S? let P, be the plane with normal e passing
through the origin. Then there is a §-separated set {e;}21, on S? such
that P, = P,,. Note that since 1 <[ < 4, for each e € B(eg,§/2) N S?
we have

A <P NE| < /cQ((Pe +2) N E)dL (x)

Ie
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where I, is an interval on P with £1(I.) < §. Therefore there exists
x, € I, such that

NS LA((P+x)NE).
Hence

A SsupRyg(e,t).
t
We conclude that
$ea S Y [ R ) dote)
t

k' Blen,d/2)ns?
< /(supRXE(e,t))?’da(e)
52 '
= IRxelw Slixeli, =B
]

This, in turn, gives rise to the following higher dimensional analogue.

Lemma 4.2. Suppose E is a set in R", A < 1, Il C R" is a 3-plane
and { P}, is a §-separated set in G, such that for each k there exists
a plate P satisfying
Py c % and |P N E| > AP}
where T1€% = {z € R": dist(z,I1) < C8} is the C§-neighborhood of I1.
Then
|ENTIO| > A3MY26m2,

Proof. Whithout loss of generality we may asssume that ITis the z1xox3-

plane. Since P} C TI° there is a direction plane Q; C II such that

d(Py, Qx) < 9. Therefore we can find a plate QZ’C”S with P} C Qi’cla.
It follows that

QY N ENTY| > A2,

Let B be a maximal Cyd-separated subset of {P,}2L, and put B’ =
{Qk : P, € B}. Then for Q;,Qx € B', j # k, we have

d(Qj, Qr) > d(Pj, Pr) — d(P}, Q;) — d(Py, Qx) > (Co — C)d > 6
for Cy sufficiently large.
Now for each @, € B’ let

Lk:{xeB(o,éa)mHL:ﬁ( zvcl‘smEm(Hm))gé_‘S},

3

-~ A
Hy, = {x € B(0,Co) NI : L3QY nEN (M + 1)) > 5}.
3
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Note that
LHQR N EN(I+2)) S 6, for all 2 € B(0,C6) NI
Hence

A2 < |QEY N ENTIY

- / L2QX NEN (I + x))dL"(x)

B(0,C6)NITL

_ / £3(Q* A B A (11 4+ 2))dL3(a)
Ly

+ /£3( 200N BN (I + 2))dL" 3 (2)
Hy,
Ad
< 06T+ COLM TR (Hy).
Cs
Therefore, L"3(Hy) 2 A0" 2 for Cs sufficiently large.
Next, let M’ = |B’| and define

L:{xGB(O,é(S)ﬂHL:\{k;::cer}\<Aé\,f},
4

H:{xGB(O,éé)ﬂHJ‘:\{k:xGHkHZ/\g}.
4

Then
ATEM S Z/XHk :/ZXHk+/ZXHk
k H k 7 k

AM'
< M'LVP(H)+ ——L"3(L)
Cy
AM'
< M'LYV(H)+ ——C§ 3.
Cy
Therefore L 3(H) =2 A\d" 2 for Cy sufficiently large.
Note that for each x € H there are at least AM'/Cy plates in I 4 x,
that is, plates in a copy of R?, with d-separated direction planes and
such that the 3-dimensional measure of their intersection with £N (114

r) is at least C~'\d. Hence, by Lemma 4.1
L3EN (T + ) 2 N2AM)V20.
We conclude that
ENT%| > /53(E N (I + 2))dL 3 (z)
H

> )\5n—3>\3/2(>\M/)1/25
8
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5. THE HAUSDORFF DIMENSION BOUND
Theorem 1.1 will be a consequence of the following.

Proposition 5.1. Suppose E is a set in R", A < 1 and {P;}}L, is a
d-separated set in G, with diam({P;}1,) < 1/2, such that for each j
there is plate P? satisfying

J
5 5
PN E| > AP
Then
|E| > C;l56)\&M(2n73)/(6(n72))5n72
where o 1s a positive constant depending on n.

Proof. Our first objective is to find a large family of plates intersecting
many other plates at approximately the same angle. To this end, fix a
number p and for each z € Pf N E let

S, p)={be P NE:|{k:x,be P} <pu}.
We say that a plate P? has property (LM)-p if

A A
{x € Pf NE: S, z,pn)| > 55"2}’ > 55”’2

and it has property (HM)-p if

Z één—%
2

A
{x € PPAE:|S(j,x,1)| < 55"-2}

Then each plate falls into at least one of these categories. We consider
two cases.

CASE 1. There is a set C’ of at least M /2 plates with property (LM)-
L

CASE II. There is a set C” of at least M /2 plates with property
(HM)-p.
In case I let
. A
Al = {ac € P;SﬂE Sz, )| > 55 2}.

We fix a number N and consider two subcases

(I1. Va € R™ [{j:a€ AL} < N.
(I)2. Ja € R™ |{j:a€ A} > N.
9



In subcase (I);

s L o Mo
Bz U 4125 D 142 500 (9)

7T AN
j:pfec j:Pec

In subcase (1),

‘ 1 . N | .
El =] | SGaml == > [SGan > ﬂké 2 (10)

j:a€A9 j:aeA;.
Choosing N = 27Y2MY/2;,1/2(9) and (10) imply that
1 M1/2 n—2
|E| > CTENE A0
So letting
1 M
= — )22 11

we see that we cannot have case I for py. Consequently, there is a
set. C” of at least M /2 plates so that for each P € C” there is a set
A7 C Pf N E of measure

A n—2
471 = 50

such that for each a € A;’
A
{beP’NE:|{k:abe P} >pu}|> 55”*2.

Fix a € A}. Then, by the pigeonhole principle, for each b € PfﬂE with
{k :a,b € P’} > po, there is an i(j,a,b), 1 < i(j,a,b) < log(C/9),
such that

{k:a,be P} and 620D~ < d(P;, B,) < 521y

> (log(C/8)) ™" po-

Since there are at most log(C'/d) possible i(j,a,b), then for a given
a € A7 there is an i(j, a) such that

{be PPNE:|{k:abe P and 620" < d(P;, P;) < 6209}
> (log(C/8)) ™" po}| Z (log(C/8)) " A6™ 2.

By the same argument, for a given Pj € C" there is a set A; C A7 of
measure

|4;] 2 (log(C'/8)) = A0™* (12)
and an i(j) such that for each a € A,
{be PPNE:|[{k:abe P} and 62'07" < d(P;, ;) < 62'9}]
> (log(C/38)) ™" no}| Z (log(C/8)) "' A0" 2.
10



Since there are at least M/2 plates in C” we conclude that there is a
number p = §2%°~! and a subset C C C” with

C| Z (log(C/d)) ' M (13)
so that for each Pf € C and each a € A,

{b e PfﬁE :{k :a,b€ P and p < d(Pj, Py) < 2p}|
> (log(C/9)) ™" mo}| Z (log(C/8)) A" 2. (14)

Heuristically, (12) and (14) tell us that each member of C intersects
a large number of plates at angle approximately p. We are going to
estimate this number by exploiting the bound for the measure of their
intersection.

For each Pf € C and each a € A; let

Aj(a) ={P}:a€ P} and p < d(P;, P;) < 2p},

Aj(a)={be Pf NE:|{k:abe P} and p <d(P;, Py) < 2p}|
> (log(C/8)) ™" po}-

Then, by the remark following Lemma 2.1, we have

p
@z ) IPNE]

on—1
k:PISGAj (a)

= 5np—1 / Z XP]?

ps kiPREA;(a)
0
on—1 / Z XP}
Aj(a) k:PgEAj(a)
_p —
57 145(@)] (log(C/9)) g
% (108(C/)) Mo /3o -

where the last inequality follows from (14). Therefore, if we let

D; ={P): PN P} # 0 and p < d(P;, P) < 2p}

Vv

v

then

P
Dl 2 Y P nRIL

.pd
k:PYED;

- 5np—1/ Z Xp}

P? k:PJeD;

=N EDY
g1 XP}
Aj k:PgEDj

11
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p
— 5 [ @lda
Aj
2 (log(C/3))7*X*(p/8)* o (16)

where the last inequality follows from (12) and (15).

Note that the preceding counting argument enabled us to gain an
extra p/d factor. This will play an important role in what follows.

We are now in a position to carry out a construction which will allow
us to use the 3-plane estimate of Section 4.

For each Pf € C, suppose {ej;;}; is a maximal 6/p-separated set of
points on the (n — 3)-dimensional unit sphere S"~' N P;* and let

where ¢; is the center of Pf and H;i is the 3-plane spanned by e;; and

P;. Using geometry, one can show that for each P} € D; there exists
an i such that P} C M1%°, where Hﬁ‘g is the C'd-neighborhood of II;;.

Therefore, if we let "
Dji={P e D;: P c 1}
then
@:Um.

Now for each P? € C let ]Bf = P;l’Cp be a plate with direction plane
P;, the same center as Pf and the indicated dimensions. Note that if

C is large enough then for each P € D; we have P,f C ]5;’ . We will
show that these dilated plates have large intersection with E. More
precisely, we claim that for all e € S"°!, a € R

~ M
P°NE T C > (—1lge)nt4 P 3(n—2) 1
BN EN(I7@)] 2 €N g (17)

where v = \(log(1/d))~!. To see this, fix a plate ]Sjp, ee S aeR"
and let

E' =En(T2(a))".
Note that for every P} € D; we have

[PENE' > [P NE| [P NT(a)|
> A" 2 — O)\(log(1/5)) tem2
3
> )2
= 4

for ¢ sufficiently small.
We consider two cases.

CASE L § < ~p.
12



CASEIIL. § > ~p.

In case I let
X; = {z € R" : dist(z, ¢; + P;) < vp}.
Then for each P} € D,
PPNX; C PPN X,

Hence, by Lemma 2.1, P N AX; is contained in a tube of cross-section

radius Cy. Therefore
|PIN (PP NE' NXY) |P{ N E N XY

= |PPNE|—|PNENA|

> | NE|-|PN&
> é(sn—2
-2

for ¢ sufficiently small.
Now, if dist(z,c; + P;) > p it is easy to see that = belongs to at
most Cy~("~3) sets Hﬁ‘s. Consequently

PraE| > [P nEnatnng
> B3 (PP E AN NI
Z 7n—3>\35n—22|pﬂ|1/2

where the last inequality follows from Lemma 4.2 applied to the set
P/NEN ch, the families of plates {D;;}; and the 3-planes {II;;},.

In case II, since [{I1;;};] < (p/0)" 2, we have
PPNE| > || JPrnE NI
O ((AaPo0Tabi
> Y B ) N

z ,yn—3)\35n—2 Z |Dji|1/2

with the last inequality true by Lemma 4.2 applied to the set f’f NE,
the families of plates {D;;}; and the 3-planes {IL;;},.
We conclude that in either case
[POE| 27" N2y Dyl (18)

13



To estimate the sum above, note that Hg‘s, being the 55—neighborhood

of a copy of R3, can contain at most C(p/d)? plates whose direction
planes are -separated and at distance approximately p from P;. There-
fore

p
D1 <D 1Dl S 5 > 1Dyl (19)
Combining (11), (16), (18) and (19) we obtain

- M
PP OE| > Ol oo L gsn2)
‘ J | = Ve 6’E|2

as claimed.
Note that (17) trivially implies that

|E| > Co1 6N /5)1 /3 13572, 20)
Now let B be a maximal Cp-separated subset of {F; : PJ{S € C}. Then
B| 2 (6/p)*"=2|C| Z (log(C/8))"1(6/p)*"~H M.
Rewriting (17) as

pM

PPAEN (T ()| > Crteeantd L
B0 BN (T @) ] 2 O el

3(n—2)| p
5302 )
we see that the family {ﬁjﬁ : P; € B} satisfies the conditions of Lemma
3.1 withl=4,n=Cp, B=~=Alog(1/§))"" and

M
_ 0—155)\n+4p753(n—2).
& € S|E[2pn2

Hence, after some algebra

|E| > C«;lée)\(5n+13)/9(é/p)(2nf7)/9M4/95n72_ (21)
If p > dMY/2("=2) then (20) yields
’E’ > C;l(56)\(n+4)/3M(2n73)/(6(n72))57172. (22)

If p < MY 2(=2) then (21) gives
|E| > Ce—156)\(5n+13)/9M(2n—3)/(6(n—2))571—2‘ (23)
Letting o = (5n + 13)/9 and combining (22) and (23) we get
|E| > C«E—l66)\04M(2n—3)/(6(n—2))5n—2
proving the proposition. O

The proof of Theorem 1.1 is now, essentially, Lemma 2.15 in [1]. We
give a sketch for the convenience of the reader.
Let F' be an (n,2)-set. Using measure theory, we can find a compact

set £ C F and aset A C G, of positive measure so that diam(A) < 1/2
14



and for every P € A there is a square Sp of unit area such that Sp is
parallel to P and

L*(SpNE)>1/2.
Fix a covering {B(x;,r;)} of E and let
I, = {@ 2R <y < 2_(k_1)}, v, = |Ig],

Ek =FEnN U B({L’Z‘,Ti), Ek = U B(IZ,2T’Z)

i€} i€l

Then, by the pigeonhole principle, one can find a k£ and a set B C A
of measure at least C~1k~2 so that

L2(SpNEL) 2 k72, for all P € B.
Let {P;}}L, be a maximal 2~ *-separated set in B. Then
M > |29%k(n=2)
and for each P; there is a plate PjQ_k such that
[P B 2 kPR
So, by Proposition 5.1
|Ex| > C7 k-t ket
where £ = 2a+ (2n—3)/(3(n—2)), s = (2n+3)/3. On the other hand
|Ey| < vp27Fn,
Therefore
v > O =82k,
Consequently
Zris—% Z sz—k(s—Qe) > C«ﬁ—lk—§2ke > 55_1‘
We conclude that the Hausdorff dimension of F' is at least s.
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