
AN IMPROVED BOUND FOR THE HAUSDORFF
DIMENSION OF (n, 2)-SETS

THEMIS MITSIS

Abstract. We improve on the bound for the Hausdorff dimension
of sets containing a translate of every 2-plane.

1. Introduction

An (n, 2)-set is a subset of R
n containing a translate of every 2-plane.

It is natural to ask whether such a set must be, in some sense, large.
In low dimensions the answer is affirmative. Marstrand [3] proved that
(3, 2)-sets have positive Lebesgue measure and Bourgain [1] showed
that the same is true for (4, 2)-sets. In higher dimensions it is an open
question whether an (n, 2)-set must have positive measure. We refer
the reader to [1] for a discussion on the relation of this problem to the
Kakeya conjecture.

On the other hand, the estimates for the 2-plane transform due to
Christ [2] imply that for n > 4, an (n, 2)-set has Hausdorff dimension
at least (2n + 2)/3.

In this paper we use the endpoint estimate for the Radon transform
in R

3 together with geometric-combinatorial ideas in the spirit of Wolff
[5] to improve on this bound. Namely, we prove the following.

Theorem 1.1. If n > 4 then the Hausdorff dimension of an (n, 2)-set
is at least (2n + 3)/3.

2. Preliminaries

We set out the notation and the terminology we will be using.

Sn−1 ⊂ R
n is the (n − 1)-dimensional unit sphere.

B(a, r) is the closed ball of radius r centered at the point a.
For X ⊂ R

n, X⊥ stands for its orthogonal complement.
If e ∈ Sn−1, a ∈ R

n then Le(a) = {a + te : t ∈ R} is the line in the
e-direction passing through the point a.

If e ∈ Sn−1, a ∈ R
n, β > 0 then T β

e = {x ∈ R
n : dist(x, Le(a)) ≤ β}

is the infinite tube with axis Le(a) and cross-section radius β.
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Lk denotes k-dimensional Lebesgue measure and L0 counting mea-
sure. When the context is clear we will use the notation | · | for all these
measures.

Let Gn be the Grassmannian manifold of all 2-dimensional linear
subspaces of R

n equipped with the unique probability measure which
is invariant under the action of the orthogonal group. The elements of
Gn will be refered to as direction planes.

If P1, P2 ∈ Gn, then their distance is defined by

d(P1, P2) = ‖projP1
− projP2

‖
where projP : R

n → P is the orthogonal projection onto P .
A set of points or direction planes is called ρ-separated if the distance

between any two of its elements is at least ρ.
If P ∈ Gn, 1 ≤ l ≤ 4, δ > 0 then P l,δ is a rectangle of dimensions

l× l× δ × · · · × δ︸ ︷︷ ︸
n−2

, that is, the image of [0, l]× [0, l]× [0, δ]× · · · × [0, δ]

under a rotation and a translation, such that its faces with dimensions
l × l are parallel to P . Such a set will be refered to as a δ-plate or
simply as a plate. When l = 1 the superscript l will be supressed.

If P l,δ
1 ∩P l,δ

2 �= ∅ and d(P1, P2) = θ we will say that the plates intersect
at angle θ.

The letter C will denote various constants whose values may change
from line to line. Similarly, Cε will denote constants depending on ε. If
we need to keep track of the value of a constant through a calculation

we will use subscripted letters C1, C2, . . . or the notation C̃.
Finally, x � y means x ≤ Cx and x � y means (x � y & y � x).

We close this section with a geometric lemma which allows us to
control the intersection of two plates containing a line segment of given
length. It can be proved by coordinate geometry.

Lemma 2.1. Let P l,η
1 , P l,η

2 be two plates such that d(P1, P2) ≤ 1/2.

Then for any a, b ∈ P l,η
1 ∩ P l,η

2 , r > 0 with r ≤ |a − b| ≤ 2r we have

P l,η
1 ∩ P l,η

2 ∩ B(a, 2r) ⊂ T β
e (a),

where e = (a − b)/|a − b| and β = Cη/d(P1, P2).

Note that the lemma implies that for any two plates P l,η
1 , P l,η

2 with
d(P1, P2) ≤ 1/2, there exist e ∈ Sn−1, a ∈ R

n so that

P l,η
1 ∩ P l,η

2 ⊂ T β
e (a),

where β = Cη/d(P1, P2). Therefore

|P l,η
1 ∩ P l,η

2 | ≤ |P l,η
1 ∩ T β

e (a)| � ηn−1

d(P1, P2)
.

2



3. An auxiliary estimate

In this section we prove a lemma which gives a lower bound for
the measure of a set having large intersection with a family of plates
with well-separated direction planes. The proof of Theorem 1.1 will be
based on setting up a suitable configuration of plates and applying this
lemma for appropriately chosen values of the parameters involved.

Lemma 3.1. Suppose E is a set in R
n, β, κ ≤ 1 and B = {Pj}M

j=1 is
an η-separated subset of Gn with diam(B) ≤ 1/2, such that for each j

there is a plate P l,η
j satisfying

|P l,η
j ∩ E ∩

(
T β

e (a)
)� | ≥ κ|P l,η

j |
for all e ∈ Sn−1, a ∈ R

n. Then

|E| � (log(C/β))−5/3 β2(n−2)/3κ|B|1/3ηn−2.

Proof. For each a ∈ P l,η
j ∩ E let

q(j, a, i) = inf
e
|P l,η

j ∩ E ∩ B(a, β2i) ∩
(
T β

e (a)
)� |.

Then

q(j, a, 0) = 0 and q (j, a, log(C/β)) ≥ κ|P l,η
j |.

Therefore there is a smallest i(j, a) such that

q(j, a, i(j, a)) ≥ κ

2
|P l,η

j |.

Since there are at most log(C/β) possible i(j, a), there is an i(j) and a

set A′
j ⊂ P l,η

j ∩ E of measure

|A′
j| � (log(C/β))−1 κ|P l,η

j |
such that for each a ∈ A′

j

q(j, a, i(j)) ≥ κ

2
|P l,η

j | and q(j, a, i(j) − 1) ≤ κ

2
|P l,η

j |.

Since there are M plates and at most log(C/β) possible i(j) there is

an i0 and a set C ′ ⊂ {P l,η
j } such that

|C ′| � (log(C/β))−1 M

and for each P l,η
j ∈ C′ and each a ∈ A′

j

|P l,η
j ∩ E ∩ B(a, β2i0) ∩

(
T β

e (a)
)� | ≥ κ

2
|P l,η

j |

for all e ∈ Sn−1 and

|P l,η
j ∩ E ∩ B(a, β2i0−1) ∩

(
T β

e(j,a)(a)
)�

| ≤ κ

2
|P l,η

j |
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for some e(j, a) ∈ Sn−1. It follows that

κ

2
|P l,η

j | ≤ |P l,η
j ∩ E ∩

(
T β

e(j,a)(a)
)�

|

− |P l,η
j ∩ E ∩ B(a, β2i0−1) ∩

(
T β

e(j,a)(a)
)�

|

= |P l,η
j ∩ E ∩

(
B(a, β2i0−1)

)� ∩
(
T β

e(j,a)(a)
)�

|

≤ |P l,η
j ∩ E ∩

(
B(a, β2i0−1)

)� |

=

log(C/β)∑
k=0

|P l,η
j ∩ E ∩

(
B(a, β2i0+k) \ B(a, β2i0+k−1)

)
|.

Therefore there is a k(j, a) such that

|P l,η
j ∩ E ∩

(
B(a, β2i0+k(j,a)) \ B(a, β2i0+k(j,a)−1)

)
|

� (log(C/β))−1 κ|P l,η
j |.

By the same argument as before, we conclude that there is a number
r = β2i0+k0−1 and a set C ⊂ C′ with

|C| � (log(C/β))−2 M (1)

so that for each P l,η
j ∈ C there is a subset Aj ⊂ A′

j of measure

|Aj| � (log(C/β))−2 κ|P l,η
j | (2)

such that for each a ∈ Aj

|P l,η
j ∩ E ∩ B(a, 2r) ∩

(
T β

e (a)
)� | � κ|P l,η

j | (3)

for all e ∈ Sn−1 and

|P l,η
j ∩ E ∩ (B(a, 2r) \ B(a, r)) | � (log(C/β))−1 κ|P l,η

j |. (4)

We will make different estimates for |E| depending on the overlap of
the sets Aj. We fix a number N and consider two cases.

CASE I. ∀a ∈ R
n |{j : a ∈ Aj}| ≤ N .

CASE II. ∃a ∈ R
n |{j : a ∈ Aj}| ≥ N .

In case I we have

|E| ≥ |
⋃

j:P l,η
j ∈C

Aj| ≥
1

N

∑
j:P l,η

j ∈C

|Aj|

� 1

N
|C| (log(C/β))−2 κηn−2

� M

N
(log(C/β))−4 κηn−2 (5)

where we have used (1) and (2).
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In case II, we fix a number µ and consider two subcases.

(II)1. ∀b ∈ B(a, 2r) \ B(a, r) |{j : a ∈ Aj, b ∈ P l,η
j }| ≤ µ.

(II)2. ∃b ∈ B(a, 2r) \ B(a, r) |{j : a ∈ Aj, b ∈ P l,η
j }| ≥ µ.

In subcase (II)1 we have

|E| ≥ |
⋃

j:a∈Aj

P l,η
j ∩ E ∩ (B(a, 2r) \ B(a, r)) |

≥ 1

µ

∑
j:a∈Aj

|P l,η
j ∩ E ∩ (B(a, 2r) \ B(a, r)) |

� N

µ
(log(C/β))−1 κηn−2 (6)

where the last inequality follows from (4).

In subcase (II)2 let B′ be a maximal C1η/β-separated subset of {Pj :

a ∈ Aj, b ∈ P l,η
j }. Then |B′| � µβ2(n−2). Note that if Pj, Pk ∈ B′ then

by Lemma 2.1

P l,η
j ∩ P l,η

k ∩ B(a, 2r) ⊂ TCβ/C1
e (a) ⊂ T β

e (a)

where e = (a − b)/|a − b|, provided that C1 has been chosen large
enough. Therefore the family{

P l,η
j ∩ E ∩ B(a, 2r) ∩

(
T β

e (a)
)�

: Pj ∈ B′
}

is disjoint. Consequently

|E| ≥ |
⋃

j:Pj∈B′

P l,η
j ∩ E ∩ B(a, 2r) ∩

(
T β

e (a)
)� |

=
∑

j:Pj∈B′

|P l,η
j ∩ E ∩ B(a, 2r) ∩

(
T β

e (a)
)� |

� |B′|κηn−2

� β2(n−2)µκηn−2 (7)

where we have used (3).
So, in case II we see that choosing

µ = N1/2 (log(C/β))−1/2 β−(n−2)

(6) and (7) imply that

|E| � (log(C/β))−1/2 βn−2κN1/2ηn−2. (8)

Choosing

N = M2/3 (log(C/β))−7/3 β−2(n−2)/3
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(5) and (8) yield

|E| � (log(C/β))−5/3 β2(n−2)/3κM1/3ηn−2

proving the lemma.

4. The 3-plane estimate

In this section we use the mapping properties of the Radon transform
in R

3 to derive an estimate for the measure of a set intersecting a family
of plates which are contained in a neighborhood of a 3-plane. In the
proof of Theorem 1.1 we will end up summing such estimates.

For a function f : R
3 → R satisfying the appropriate integrability

conditions, the Radon transform

Rf : S2 × R → R

is defined by

Rf(e, t) =

∫
〈e,x〉=t

f(x)dL2(x).

It is proved in Oberlin and Stein [4] that for any measurable set E ⊂ R
3

one has the following estimate.

‖RχE‖3,∞ � ‖χE‖3/2

where

‖RχE‖3,∞ =


∫

S2

(sup
t

RχE(e, t))3dσ(e)




1/3

and dσ is surface measure.
We can discretize this result as follows.

Lemma 4.1. Suppose E is a set in R
3, λ ≤ 1 and let {Pk}M

k=1 be a

δ-separated set in G3 such that for each k there is plate P l,Cδ
k satisfying

|P l,Cδ
k ∩ E| ≥ λ|P l,Cδ

k |.
Then

|E| � λ3/2M1/2δ.

Proof. For each e ∈ S2 let Pe be the plane with normal e passing
through the origin. Then there is a δ-separated set {ek}M

k=1 on S2 such
that Pk = Pek

. Note that since 1 ≤ l ≤ 4, for each e ∈ B(ek, δ/2) ∩ S2

we have

λδ ≤ |P l,Cδ
k ∩ E| ≤

∫
Ie

L2((Pe + x) ∩ E)dL1(x)
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where Ie is an interval on P⊥
e with L1(Ie) � δ. Therefore there exists

xe ∈ Ie such that

λ � L2((Pe + xe) ∩ E).

Hence

λ � sup
t

RχE(e, t).

We conclude that

λ3δ2M �
∑

k

∫
B(ek,δ/2)∩S2

(sup
t

RχE(e, t))3dσ(e)

≤
∫
S2

(sup
t

RχE(e, t))3dσ(e)

= ‖RχE‖3
3,∞ � ‖χE‖3

3/2 = |E|2.

This, in turn, gives rise to the following higher dimensional analogue.

Lemma 4.2. Suppose E is a set in R
n, λ ≤ 1, Π ⊂ R

n is a 3-plane
and {Pk}M

k=1 is a δ-separated set in Gn such that for each k there exists
a plate P δ

k satisfying

P δ
k ⊂ ΠC̃δ and |P δ

k ∩ E| ≥ λ|P δ
k |

where ΠC̃δ = {x ∈ R
n : dist(x, Π) ≤ C̃δ} is the C̃δ-neighborhood of Π.

Then

|E ∩ ΠC̃δ| � λ3M1/2δn−2.

Proof. Whithout loss of generality we may asssume that Π is the x1x2x3-

plane. Since P δ
k ⊂ ΠC̃δ there is a direction plane Qk ⊂ Π such that

d(Pk, Qk) � δ. Therefore we can find a plate Q2,C1δ
k with P δ

k ⊂ Q2,C1δ
k .

It follows that

|Q2,C1δ
k ∩ E ∩ ΠC̃δ| ≥ λδn−2.

Let B be a maximal C2δ-separated subset of {Pk}M
k=1 and put B′ =

{Qk : Pk ∈ B}. Then for Qj, Qk ∈ B′, j �= k, we have

d(Qj, Qk) ≥ d(Pj, Pk) − d(Pj, Qj) − d(Pk, Qk) ≥ (C2 − C)δ ≥ δ

for C2 sufficiently large.
Now for each Qk ∈ B′ let

Lk =

{
x ∈ B(0, C̃δ) ∩ Π⊥ : L3(Q2,C1δ

k ∩ E ∩ (Π + x)) ≤ λδ

C3

}
,

Hk =

{
x ∈ B(0, C̃δ) ∩ Π⊥ : L3(Q2,C1δ

k ∩ E ∩ (Π + x)) ≥ λδ

C3

}
.
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Note that

L3(Q2,C1δ
k ∩ E ∩ (Π + x)) � δ, for all x ∈ B(0, C̃δ) ∩ Π⊥.

Hence

λδn−2 ≤ |Q2,C1δ
k ∩ E ∩ ΠC̃δ|

=

∫
B(0,C̃δ)∩Π⊥

L3(Q2,C1δ
k ∩ E ∩ (Π + x))dLn−3(x)

=

∫
Lk

L3(Q2,C1δ
k ∩ E ∩ (Π + x))dLn−3(x)

+

∫
Hk

L3(Q2,C1δ
k ∩ E ∩ (Π + x))dLn−3(x)

≤ λδ

C3

Cδn−3 + CδLn−3(Hk).

Therefore, Ln−3(Hk) � λδn−3 for C3 sufficiently large.
Next, let M ′ = |B′| and define

L =

{
x ∈ B(0, C̃δ) ∩ Π⊥ : |{k : x ∈ Hk}| <

λM ′

C4

}
,

H =

{
x ∈ B(0, C̃δ) ∩ Π⊥ : |{k : x ∈ Hk}| ≥

λM ′

C4

}
.

Then

λδn−3M ′ �
∑

k

∫
χHk

=

∫
H

∑
k

χHk
+

∫
L

∑
k

χHk

≤ M ′Ln−3(H) +
λM ′

C4

Ln−3(L)

≤ M ′Ln−3(H) +
λM ′

C4

Cδn−3.

Therefore Ln−3(H) � λδn−3 for C4 sufficiently large.
Note that for each x ∈ H there are at least λM ′/C4 plates in Π + x,

that is, plates in a copy of R
3, with δ-separated direction planes and

such that the 3-dimensional measure of their intersection with E∩(Π+
x) is at least C−1λδ. Hence, by Lemma 4.1

L3(E ∩ (Π + x)) � λ3/2(λM ′)1/2δ.

We conclude that

|E ∩ ΠC̃δ| ≥
∫
H

L3(E ∩ (Π + x))dLn−3(x)

� λδn−3λ3/2(λM ′)1/2δ
8



� λ3M1/2δn−2.

5. The Hausdorff dimension bound

Theorem 1.1 will be a consequence of the following.

Proposition 5.1. Suppose E is a set in R
n, λ ≤ 1 and {Pj}M

j=1 is a

δ-separated set in Gn with diam({Pj}M
j=1) ≤ 1/2, such that for each j

there is plate P δ
j satisfying

|P δ
j ∩ E| ≥ λ|P δ

j |.
Then

|E| ≥ C−1
ε δελαM (2n−3)/(6(n−2))δn−2

where α is a positive constant depending on n.

Proof. Our first objective is to find a large family of plates intersecting
many other plates at approximately the same angle. To this end, fix a
number µ and for each x ∈ P δ

j ∩ E let

S(j, x, µ) =
{
b ∈ P δ

j ∩ E : |{k : x, b ∈ P δ
k}| ≤ µ

}
.

We say that a plate P δ
j has property (LM)-µ if∣∣∣∣

{
x ∈ P δ

j ∩ E : |S(j, x, µ)| ≥ λ

2
δn−2

}∣∣∣∣ ≥ λ

2
δn−2

and it has property (HM)-µ if∣∣∣∣
{

x ∈ P δ
j ∩ E : |S(j, x, µ)| ≤ λ

2
δn−2

}∣∣∣∣ ≥ λ

2
δn−2.

Then each plate falls into at least one of these categories. We consider
two cases.

CASE I. There is a set C ′ of at least M/2 plates with property (LM)-
µ.

CASE II. There is a set C ′′ of at least M/2 plates with property
(HM)-µ.

In case I let

A′
j =

{
x ∈ P δ

j ∩ E : |S(j, x, µ)| ≥ λ

2
δn−2

}
.

We fix a number N and consider two subcases

(I)1. ∀a ∈ R
n |{j : a ∈ A′

j}| ≤ N.
(I)2. ∃a ∈ R

n |{j : a ∈ A′
j}| ≥ N.
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In subcase (I)1

|E| ≥ |
⋃

j:P δ
j ∈C′

A′
j| ≥

1

N

∑
j:P δ

j ∈C′

|A′
j| ≥

M

4N
λδn−2. (9)

In subcase (I)2

|E| ≥ |
⋃

j:a∈A′
j

S(j, a, µ)| ≥ 1

µ

∑
j:a∈A′

j

|S(j, a, µ)| ≥ N

2µ
λδn−2. (10)

Choosing N = 2−1/2M1/2µ1/2, (9) and (10) imply that

|E| ≥ 1

23/2

M1/2

µ1/2
λδn−2.

So letting

µ0 =
1

16

M

|E|2λ2δ2(n−2) (11)

we see that we cannot have case I for µ0. Consequently, there is a
set C ′′ of at least M/2 plates so that for each P δ

j ∈ C′′ there is a set

A′′
j ⊂ P δ

j ∩ E of measure

|A′′
j | ≥

λ

2
δn−2

such that for each a ∈ A′′
j

|
{
b ∈ P δ

j ∩ E : |{k : a, b ∈ P δ
k}| ≥ µ0

}
| ≥ λ

2
δn−2.

Fix a ∈ A′′
j . Then, by the pigeonhole principle, for each b ∈ P δ

j ∩E with

|{k : a, b ∈ P δ
k}| ≥ µ0, there is an i(j, a, b), 1 ≤ i(j, a, b) ≤ log(C/δ),

such that

|{k : a, b ∈ P δ
k and δ2i(j,a,b)−1 ≤ d(Pj, Pk) ≤ δ2i(j,a,b)}|

≥ (log(C/δ))−1 µ0.

Since there are at most log(C/δ) possible i(j, a, b), then for a given
a ∈ A′′

j there is an i(j, a) such that

|{b ∈ P δ
j ∩ E : |{k : a, b ∈ P δ

k and δ2i(j,a)−1 ≤ d(Pj, Pk) ≤ δ2i(j,a)}|
≥ (log(C/δ))−1 µ0}| � (log(C/δ))−1λδn−2.

By the same argument, for a given P δ
j ∈ C′′ there is a set Aj ⊂ A′′

j of
measure

|Aj| � (log(C/δ))−1λδn−2 (12)

and an i(j) such that for each a ∈ Aj

|{b ∈ P δ
j ∩ E : |{k : a, b ∈ P δ

k and δ2i(j)−1 ≤ d(Pj, Pk) ≤ δ2i(j)}|
≥ (log(C/δ))−1 µ0}| � (log(C/δ))−1λδn−2.

10



Since there are at least M/2 plates in C ′′ we conclude that there is a
number ρ = δ2i0−1 and a subset C ⊂ C′′ with

|C| � (log(C/δ))−1M (13)

so that for each P δ
j ∈ C and each a ∈ Aj

|{b ∈ P δ
j ∩ E : |{k : a, b ∈ P δ

k and ρ ≤ d(Pj, Pk) ≤ 2ρ}|
≥ (log(C/δ))−1 µ0}| � (log(C/δ))−1λδn−2. (14)

Heuristically, (12) and (14) tell us that each member of C intersects
a large number of plates at angle approximately ρ. We are going to
estimate this number by exploiting the bound for the measure of their
intersection.

For each P δ
j ∈ C and each a ∈ Aj let

Aj(a) =
{
P δ

k : a ∈ P δ
k and ρ ≤ d(Pj, Pk) ≤ 2ρ

}
,

Aj(a) = {b ∈ P δ
j ∩ E : |{k : a, b ∈ P δ

k and ρ ≤ d(Pj, Pk) ≤ 2ρ}|
≥ (log(C/δ))−1 µ0}.

Then, by the remark following Lemma 2.1, we have

|Aj(a)| �
∑

k:P δ
k∈Aj(a)

|P δ
j ∩ P δ

k |
ρ

δn−1

=
ρ

δn−1

∫
P δ

j

∑
k:P δ

k∈Aj(a)

χP δ
k

≥ ρ

δn−1

∫
Aj(a)

∑
k:P δ

k∈Aj(a)

χP δ
k

≥ ρ

δn−1
|Aj(a)|(log(C/δ))−1µ0

� (log(C/δ))−2λ(ρ/δ)µ0 (15)

where the last inequality follows from (14). Therefore, if we let

Dj =
{
P δ

k : P δ
j ∩ P δ

k �= ∅ and ρ ≤ d(Pj, Pk) ≤ 2ρ
}

then

|Dj| �
∑

k:P δ
k∈Dj

|P δ
j ∩ P δ

k |
ρ

δn−1

=
ρ

δn−1

∫
P δ

j

∑
k:P δ

k∈Dj

χP δ
k

≥ ρ

δn−1

∫
Aj

∑
k:P δ

k∈Dj

χP δ
k

11



=
ρ

δn−1

∫
Aj

|Aj(a)|da

� (log(C/δ))−3λ2(ρ/δ)2µ0 (16)

where the last inequality follows from (12) and (15).
Note that the preceding counting argument enabled us to gain an

extra ρ/δ factor. This will play an important role in what follows.
We are now in a position to carry out a construction which will allow

us to use the 3-plane estimate of Section 4.
For each P δ

j ∈ C, suppose {eji}i is a maximal δ/ρ-separated set of

points on the (n − 3)-dimensional unit sphere Sn−1 ∩ P⊥
j and let

Πji = cj + Π′
ji

where cj is the center of P δ
j and Π′

ji is the 3-plane spanned by eji and

Pj. Using geometry, one can show that for each P δ
k ∈ Dj there exists

an i such that P δ
k ⊂ ΠC̃δ

ji , where ΠC̃δ
ji is the C̃δ-neighborhood of Πji.

Therefore, if we let

Dji =
{

P δ
k ∈ Dj : P δ

k ⊂ ΠC̃δ
ji

}
then

Dj =
⋃
i

Dji.

Now for each P δ
j ∈ C let P̃ ρ

j = P 4,Cρ
j be a plate with direction plane

Pj, the same center as P δ
j and the indicated dimensions. Note that if

C is large enough then for each P δ
k ∈ Dj we have P δ

k ⊂ P̃ ρ
j . We will

show that these dilated plates have large intersection with E. More
precisely, we claim that for all e ∈ Sn−1, a ∈ R

n

|P̃ ρ
j ∩ E ∩ (T γ

e (a))� | ≥ C−1
ε δελn+4 ρM

δ|E|2 δ3(n−2) (17)

where γ = λ(log(1/δ))−1. To see this, fix a plate P̃ ρ
j , e ∈ Sn−1, a ∈ R

n

and let

E ′ = E ∩ (T γ
e (a))� .

Note that for every P δ
k ∈ Dj we have

|P δ
k ∩ E ′| ≥ |P δ

k ∩ E| − |P δ
k ∩ T γ

e (a)|
≥ λδn−2 − Cλ(log(1/δ))−1δn−2

≥ 3

4
λδn−2

for δ sufficiently small.
We consider two cases.

CASE I. δ ≤ γρ.
12



CASE II. δ ≥ γρ.

In case I let

Xj = {x ∈ R
n : dist(x, cj + Pj) ≤ γρ} .

Then for each P δ
k ∈ Dj

P δ
k ∩ Xj ⊂ P 2γρ

k ∩ Xj.

Hence, by Lemma 2.1, P δ
k ∩ Xj is contained in a tube of cross-section

radius Cγ. Therefore

|P δ
k ∩ (P̃ ρ

j ∩ E ′ ∩ X �
j )| = |P δ

k ∩ E ′ ∩ X �
j |

= |P δ
k ∩ E ′| − |P δ

k ∩ E ′ ∩ Xj|
≥ |P δ

k ∩ E ′| − |P δ
k ∩ Xj|

≥ λ

2
δn−2

for δ sufficiently small.
Now, if dist(x, cj + Pj) ≥ γρ it is easy to see that x belongs to at

most Cγ−(n−3) sets ΠC̃δ
ji . Consequently

|P̃ ρ
j ∩ E ′| ≥ |

⋃
i

P̃ ρ
j ∩ E ′ ∩ X �

j ∩ ΠC̃δ
ji |

� γn−3
∑

i

|(P̃ ρ
j ∩ E ′ ∩ X �

j ) ∩ ΠC̃δ
ji |

� γn−3λ3δn−2
∑

i

|Dji|1/2

where the last inequality follows from Lemma 4.2 applied to the set

P̃ ρ
j ∩ E ′ ∩ X �

j , the families of plates {Dji}i and the 3-planes {Πji}i.

In case II, since |{Πji}i| � (ρ/δ)n−3, we have

|P̃ ρ
j ∩ E ′| ≥ |

⋃
i

P̃ ρ
j ∩ E ′ ∩ ΠC̃δ

ji |

� (δ/ρ)n−3
∑

i

|(P̃ ρ
j ∩ E ′) ∩ ΠC̃δ

ji |

≥ γn−3
∑

i

|(P̃ ρ
j ∩ E ′) ∩ ΠC̃δ

ji |

� γn−3λ3δn−2
∑

i

|Dji|1/2

with the last inequality true by Lemma 4.2 applied to the set P̃ ρ
j ∩E ′,

the families of plates {Dji}i and the 3-planes {Πji}i.
We conclude that in either case

|P̃ ρ
j ∩ E ′| � γn−3λ3δn−2

∑
i

|Dji|1/2. (18)

13



To estimate the sum above, note that ΠC̃δ
ji , being the C̃δ-neighborhood

of a copy of R
3, can contain at most C(ρ/δ)2 plates whose direction

planes are δ-separated and at distance approximately ρ from Pj. There-
fore

|Dj| ≤
∑

i

|Dji| � ρ

δ

∑
i

|Dji|1/2. (19)

Combining (11), (16), (18) and (19) we obtain

|P̃ ρ
j ∩ E ′| ≥ C−1

ε δελn+4 ρM

δ|E|2 δ3(n−2)

as claimed.
Note that (17) trivially implies that

|E| ≥ C−1
ε δε/3λ(n+4)/3(ρ/δ)1/3M1/3δn−2. (20)

Now let B be a maximal Cρ-separated subset of {Pj : P δ
j ∈ C}. Then

|B| � (δ/ρ)2(n−2)|C| � (log(C/δ))−1(δ/ρ)2(n−2)M.

Rewriting (17) as

|P̃ ρ
j ∩ E ∩ (T γ

e (a))� | ≥ C−1
ε δελn+4 ρM

δ|E|2ρn−2
δ3(n−2)|P̃ ρ

j |

we see that the family {P̃ ρ
j : Pj ∈ B} satisfies the conditions of Lemma

3.1 with l = 4, η = Cρ, β = γ = λ(log(1/δ))−1 and

κ = C−1
ε δελn+4 ρM

δ|E|2ρn−2
δ3(n−2).

Hence, after some algebra

|E| ≥ C−1
ε δελ(5n+13)/9(δ/ρ)(2n−7)/9M4/9δn−2. (21)

If ρ ≥ δM1/(2(n−2)) then (20) yields

|E| ≥ C−1
ε δελ(n+4)/3M (2n−3)/(6(n−2))δn−2. (22)

If ρ ≤ δM1/(2(n−2)) then (21) gives

|E| ≥ C−1
ε δελ(5n+13)/9M (2n−3)/(6(n−2))δn−2. (23)

Letting α = (5n + 13)/9 and combining (22) and (23) we get

|E| ≥ C−1
ε δελαM (2n−3)/(6(n−2))δn−2

proving the proposition.

The proof of Theorem 1.1 is now, essentially, Lemma 2.15 in [1]. We
give a sketch for the convenience of the reader.

Let F be an (n, 2)-set. Using measure theory, we can find a compact
set E ⊂ F and a set A ⊂ Gn of positive measure so that diam(A) ≤ 1/2

14



and for every P ∈ A there is a square SP of unit area such that SP is
parallel to P and

L2(SP ∩ E) ≥ 1/2.

Fix a covering {B(xi, ri)} of E and let

Ik =
{
i : 2−k ≤ ri ≤ 2−(k−1)

}
, νk = |Ik|,

Ek = E ∩
⋃
i∈Ik

B(xi, ri), Ẽk =
⋃
i∈Ik

B(xi, 2ri).

Then, by the pigeonhole principle, one can find a k and a set B ⊂ A
of measure at least C−1k−2 so that

L2(SP ∩ Ek) � k−2, for all P ∈ B.

Let {Pj}M
j=1 be a maximal 2−k-separated set in B. Then

M � k−222k(n−2)

and for each Pj there is a plate P 2−k

j such that

|P 2−k

j ∩ Ẽk| � k−2|P 2−k

j |.
So, by Proposition 5.1

|Ẽk| ≥ C−1
ε k−ξ2−k(n−s+ε)

where ξ = 2α+(2n−3)/(3(n−2)), s = (2n+3)/3. On the other hand

|Ẽk| � νk2
−kn.

Therefore

νk ≥ C−1
ε k−ξ2k(s−ε).

Consequently∑
i

rs−2ε
i � νk2

−k(s−2ε) ≥ C−1
ε k−ξ2kε ≥ C̃−1

ε .

We conclude that the Hausdorff dimension of F is at least s.
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