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Abstract

We answer a question of Jost on the validity of Poincaré inequalities for
metric space-valued functions in a Dirichlet domain. We also investigate the
relationship between Dirichlet functions and elements of the Sobolev-type
space of functions introduced by Korevaar and Schoen.

1 Introduction

There has been an extensive study done of Sobolev type functions on metric spaces
and harmonic analysis from the point of view of the underlying geometry of the met-
ric space; see [C], [H], [HaK], [KMc], [HeK1], [HeK2], [HKM], [KS], [KKMa], [KiMa],
[HKST], [Sh1], [Sh2], [KaSh], [KiSh], and the references therein. Concurrently a lot
of literature on the study of Dirichlet forms from the point of view of probability
theory has appeared; see [J], [St1], [St2], [St3], [M], [BM1], [BM2], [BB], [FOT], and
the references therein. The paper [J] studies Dirichlet forms on general metric spaces
and establishes regularity results for corresponding harmonic functions. While the
approach of Dirichlet forms yields only classes corresponding to the Sobolev space
W 1,2(Rn), the advantage of the approach of [J] to harmonic analysis is that it is
applicable in an even more general setting than that studied in [C], [Sh1], [Sh2], and
[KiSh]. In fact, there are fractal spaces without many rectifiable curves but sup-
porting nontrivial Dirichlet forms satisfying a Poincaré inequality; see [BB]. In such
spaces the theory developed in [J], [St1], [St2], and [St3] is more useful. The key
inequality behind the theory developed in these papers is the Poincaré inequality.
The aim of this paper is to answer a question posed in [J] regarding the validity of a
Poincaré inequality for metric space-valued Dirichlet forms given that a correspond-
ing Poincaré inequality holds for extended real-valued Dirichlet functions. We use
a technique developed in [HKST] to answer this question. The main result of this
paper is Theorem 3.4.
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While the axiomatic definition of Dirichlet forms given in [BD], [St1], and [FOT]
deals only with real-valued functions on metric spaces ([BD] deals only with complex-
valued functions on the complex plane, but the results there are generalizable), [J]
considers functions between general metric spaces. We will consider the general
definition of [J]. In the approach taken in [J], Jost fixes the domain and considers
Dirichlet functions into all metric spaces simultaneously. For ease of presentation
we will break this definition down and consider a Dirichlet domain to consist of
Dirichlet functions between two metric spaces.

This paper is designed as follows. The second section recapitulates the definition
of Dirichlet energy forms, see also [J]. Some claims made in this section about the
corresponding bilinear Dirichlet form are proved in the appendix to this paper. We
answer a question of Jost [J, p. 12] in the third section using a method developed in
[HKST]. In the fourth section we study the connection between the Sobolev spaces
of Korevaar and Schoen [KS] and the domains of Dirichlet forms.

Acknowledgement. We wish to thank Juha Heinonen for valuable discussions
on the topic of Dirichlet forms.

2 Definitions

We follow the approach of Jost in defining Dirichlet forms using the energy forms;
see [J, Section 2]. Given a metric measure space X endowed with a metric d and
a non-trivial Borel-regular measure µ, the space L2(X, µ) is the collection of all
extended real-valued functions f for which ‖f‖2

L2 :=
∫

X
|f |2 dµ is finite. This space

becomes a Hilbert space when endowed with the inner product (f, g) :=
∫

X
fg dµ.

We first define a Dirichlet domain of extended real-valued functions on X and
then, given a second metric space Y , we use this definition to define a Dirichlet
domain of functions from X to Y .

Definition 2.1. We say that a map E : L2(X, µ) → R+ ∪{∞} is a Dirichlet energy
form if the following five conditions are satisfied:

1. Quadratic contraction property - If E(f) < ∞ and ϕ : R → R is an L-Lipschitz
map then E(ϕ ◦ f) ≤ L2E(f).

2. Closedness - If {un} is a Cauchy sequence in L2(X) so that E(un) < ∞ for all
n and E(un − um) → 0 as n, m → ∞, then E(un − u) → 0 as n → ∞. Here u
is the L2-limit of the Cauchy sequence {un}.

3. Density condition - Denoting by D(E) the collection of all functions f in
L2(X, µ) for which E(f) < ∞, we have that D(E) is dense in L2(X, µ) in its
norm and is dense in the space Lip0(X) of Lipschitz functions with compact
support equipped with the supremum norm.

4. Minkowski inequality - For every pair of functions u, v in L2(X),√
E(u + v) ≤

√
E(u) +

√
E(v).
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5. Parallelogram rule - For every pair of functions u, v ∈ L2(X),

E(u + v) + E(u − v) = 2 (E(u) + E(v)) .

The set D(E) is said to be the Dirichlet domain corresponding to E .

Because of the Minkowski inequality and the quadratic contraction property,
D(E) is a vector space, and indeed is a normed space when endowed with the norm

‖u‖E := ‖u‖L2(X) +
√
E(u).

Conditions 2 and 4 together imply that if {un} is a sequence satisfying the hypotheses
of condition 2 and u is the corresponding L2-limit of this sequence, then E(u) =
limn→∞ E(un) < ∞. Moreover, as a consequence of the closedness condition 2, D(E)
is a Banach space under this norm. See [J], [St1], [St2], [M], and [FOT] for further
properties of Dirichlet forms.

Let now Y also denote a metric space (with metric dY ), y0 ∈ Y , and let
L2(X; Y, y0) be the collection of all maps f : X → Y for which the “norm”
‖f‖L2 :=

∫
X

dY (f(x), y0)
2 dµ(x) is finite. Without loss of generality we can assume

that Y is a Banach space, since every metric space can be isometrically embedded in
a Banach space; see for example, [HKST, Section 1.2]. The advantage in assuming
that Y is a Banach space lies in the fact that in this case L2(X; Y, y0) is also a
normed vector space.

Using the fact that L2(X) is a Hilbert space, Beurling and Deny prove in [BD]
the existence of a unique measure-valued bilinear form associated with the Dirichlet
form

η : D(E) × D(E) → M(X)

(where M(X) is the collection of all finite signed Radon measures on X) which
satisfies

1

4
(E(u + v) − E(u − v)) =

∫
X

dη(u, v).

The measure η(u, u) associated with the Dirichlet function u plays the role of the
point-wise derivative of u in the general setting.

Definition 2.2. A map E :
⋃

y0∈Y L2(X; Y, y0) → R+∪{∞} is said to be a Dirichlet

energy form if there is a corresponding Dirichlet energy form ER : L2(X, µ) →
R+ ∪ {∞} so that the following conditions are satisfied:

1. Quadratic contraction property - whenever E(f) < ∞ and ϕ : Y → R is an
L-Lipschitz map,

ER(ϕ ◦ f) ≤ L2E(f).

Moreover, if E(f) is finite and ψ : Y → Y is an L-Lipschitz map, then

E(ψ ◦ f) ≤ L2E(f).
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2. Closedness - if {un} is a Cauchy sequence in L2(X; Y, y0) converging to u so
that E(un) < ∞ and for every Lipschitz map ϕ : Y → R the sequence {ϕ◦un}
satisfies the hypotheses of condition 2 of Definition 2.1 for the functional ER,
then E(u) < ∞.

3. If ER(ϕ ◦ f) < ∞ for every Lipschitz map ϕ : Y → R then E(f) < ∞.

4. Minkowski inequality - if u, v are two functions in
⋃

y0∈Y L2(X; Y, y0), then

√
E(u + v) ≤

√
E(u) +

√
E(v).

5. Parallelogram rule - for every pair of functions u, v in
⋃

y0∈Y L2(X; Y, y0),

E(u + v) + E(u − v) = 2 (E(u) + E(v)) .

6. There is a symmetric bilinear Radon measure-valued form

η : D(E) × D(E) → M(X)

(where M(X) is the collection of all finite signed Radon measures on X) which
satisfies

1

4
(E(u + v) − E(u − v)) =

∫
X

dη(u, v).

This bilinear form satisfies the following conditions. First, if u, v ∈ D(E), then
the support of the measure η(u, v) is disjoint from any open set on which u
or v is constant. Next, if ψ is an L-Lipschitz map from R to Y and f is a
function in L2(X) such that ER(f) < ∞, then

dη(ψ ◦ f, ψ ◦ f) ≤ L2dηR(f, f),(2.3)

and moreover, if ϕ is an L-Lipschitz map from Y to R and E(u) < ∞, then

dηR(ϕ ◦ u, ϕ ◦ u) ≤ L2dη(u, u).(2.4)

Here ηR is the energy measure associated with the form ER and inequalities
(2.3) and (2.4) are assumed to hold on the level of measures (this property is
called strong locality in [J] and [M]).

The set D(E) := {f ∈
⋃

y0∈Y L2(X; Y, y0) : E(f) < ∞} is called the Dirichlet
domain of E .

Because of Condition 1, whenever k is a real number and f ∈ D(E), we have
E(kf) = k2E(f) and E(f + k) = E(f); see [J]. Condition 6 cannot be proven for the
metric space-valued Dirichlet functions using the method in [BD] since in general
L2(X; Y, y0) is not a Hilbert space. Therefore we assume this condition as part of
the definition. In most examples, such measure-valued forms can be easily seen to
exist by the very nature of the construction of the energy form E . We leave it to
the reader to verify that condition 6 implies conditions 4, 5, and the first part of
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condition 1. For the sake of transparency we include these conditions explicitly in
the above definition.

In order to obtain a bilinear form from the energy form, [J] considers a polariza-
tion of the energy form

E(u, v) :=
1

4
(E(u + v) − E(u − v)) .

By conditions 4 and 5 such polarization is a bilinear form on
⋃

y0∈Y L2(X; Y, y0);
see the Appendix. While [J] does not explicitly state conditions 4 and 5 as part of
the definition of the energy form, they are sufficient to yield a bilinear form via the
above polarization. Furthermore, conditions 4 and 5 hold true if the polarization is
bilinear.

The classical example of a Dirichlet form is given by the gradient operator:
D(E) = W 1,2(Rn), and E(f) =

∫
Rn |∇f |2 for functions f in W 1,2(Rn). In this case

the associated measure-valued form is given by dη(u, v)(x) := ∇u(x) · ∇v(x) dx.
A generalization of the classical Sobolev space W 1,2(Rn) is the Newtonian space
N1,2(X) for a metric measure space X; see [HKST], [C], or [Sh1].1 Cheeger shows
in [C, Theorem 4.38] that a form of Rademacher’s theorem holds on metric measure
spaces equipped with a doubling measure supporting a (1, 2)-Poincaré inequality
(see [HeK1] or [C] for the definition of Poincaré inequality used in this result). He
in fact constructs a derivative operator:

d : N1,2(X) → L2(X; Rk)

for some positive integer k. Specifically, there is a measurable partition X =
⋃

α Xα∪
Z, µ(Z) = 0, and a collection of Lipschitz maps Fα : X → Rk, so that whenever
f : X → R is a Lipschitz map the equation

lim
y→x

∣∣∣∣f(x) − f(y) − df(x) · (Fα(x) − Fα(y))

d(y, x)

∣∣∣∣ = 0(2.5)

holds for almost every x ∈ Xα.
Lipschitz functions with bounded support are dense in N1,2(X); see [Sh1]. In

[C, Theorem 4.47] it is shown that the operator d admits a unique extension to
all functions in N1,2(X) so that whenever {fn} is a Cauchy sequence of Lipschitz
functions in N1,2(X) converging to f then |dfn − df | = |d(fn − f)| converges to 0
in the L2-norm. A scaled version of this derivative operator yields a Dirichlet type
form similar to the classical case: D(E) = N1,2(X) and, for functions f ∈ N1,2(X),
we define

E(f) =

∫
X

|df |2 dµ.(2.6)

The inner product structure 〈·, ·〉 of Rk permits us to construct the corresponding
bilinear form

E(u, v) =

∫
X

〈du , dv〉 dµ.(2.7)

1The paper [C] gives an alternate definition of a Sobolev type space on metric measure spaces,
but it is shown in [Sh1] that this definition yields the same space as the Newtonian space studied
in [Sh1] and [HKST].
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It is easy to verify that the form defined by E(u) = E(u, u) does satisfy the conditions
given in the definition 2.1 of a Dirichlet form. Thus the Newtonian space N1,2(X)
is an example of a Dirichlet domain. Analogous definitions of Newtonian spaces
exist for maps between two abstract metric measure spaces supporting a doubling
measure and a Poincaré inequality, see [C] and [HKST]. Such Newtonian spaces also
give rise to Dirichlet forms.

3 Independence of Poincaré inequalities on target

spaces

In this section we use a technique developed in [HKST] to answer a question of Jost
[J, p. 12] regarding Poincaré inequalities.

Let E denote a Dirichlet form on a metric measure space X equipped with a
non-trivial Borel measure µ. The following definitions are based on [J].

Given a Dirichlet form E satisfying Definition 2.1 we say that a subspace Γ
of D(E) ∩ C0

0(X) is a µ-separating core if Γ is dense in C0
0(X) with respect to the

supremum norm, is dense in D(E) with respect to the norm ‖f‖1 := E(f)1/2+‖f‖L2 ,
and has the following separation property: for every x, y ∈ X with x �= y there is a
function ϕ ∈ Γ so that ϕ(x) �= ϕ(y) and dηR(ϕ, ϕ) ≤ dµ on the level of measures,
i.e., ηR(ϕ, ϕ)(E) ≤ µ(E) for all Borel subsets E of X. Here C0

0(X) denotes the
space of all continuous functions with compact support. See [J] and [St2] for more
on separating cores.

For the remainder of the paper we assume that the Dirichlet form E has a µ-
separating core Γ. As in [J, Section 4] and [BM1] we construct an induced metric
dE on X as follows:

dE(x, y) = sup{ϕ(x) − ϕ(y) : ϕ ∈ Γ, dηR(ϕ, ϕ) ≤ dµ}(3.1)

for x, y ∈ X. Also as in [J] and [BM1], we assume that the topology induced by the
metric dE coincides with the topology induced by the underlying metric of X and
that the measure µ on X is a doubling measure for balls in the dE-metric, that is,
there exists a constant C ≥ 1 so that for every x ∈ X and every r > 0,

µ(BE(x, 2r)) = µ(2BE(x, r)) ≤ Cµ(BE(x, r)).

Here BE(y, R) := {z ∈ X : dE(y, z) < R}.

Definition 3.2. Let X be a metric measure space equipped with a metric d and
measure µ, V be a Banach space, and E be a Dirichlet form acting on functions
from X into V . We say that X supports a weak (2, 2)-Poincaré inequality for the
form E with respect to V (or merely, weak Poincaré inequality with respect to V ), if
there are constants λ ≥ 1 and C > 0 so that for every function f ∈ D(E) and every
dE-ball BE ⊂ X we have∫

BE

‖f − fBE
‖2 dµ ≤ C diamE(BE)2

∫
λBE

dη(f, f),(3.3)
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where

fBE
:=

1

µ(BE)

∫
BE

f dµ =:

∫
BE

f dµ,

‖ · ‖ is the norm on the Banach space V , and η is the energy density measure
associated with the Dirichlet form; see condition 6 in Definition 2.2. If V = R, then
we say that X supports a weak Poincaré inequality for E. The strong form of the
inequality corresponds to the choice λ = 1.

We note here that for Borel sets A the mean value fA satisfies the equation
ΛfA = 1

µ(A)

∫
A

Λf dµ for every Λ ∈ V ∗; see [HKST, Section 2] and the references
therein for more on integration of Banach space-valued functions.

Let E be a Dirichlet form acting on L2-maps from X to a collection V of non-
trivial Banach spaces V so that there is a common Dirichlet form ER satisfying
conditions 1 and 2 of Definition 2.2 for each Dirichlet domain corresponding to the
Banach spaces V in V .

Theorem 3.4. Let X be a metric space equipped with a non-trivial Borel measure
µ, and let E be a Dirichlet form on X as above. Then the following are equivalent:

(1) X supports a weak Poincaré inequality for the form ER.

(2) X supports a weak Poincaré inequality for E with respect to some Banach space
V in V.

(3) For every Banach space V in V, X supports a weak Poincare inequality for E
with respect to V .

We remind the reader that we assume the measure µ is a doubling measure with
respect to the induced metric dE.

Recall again that if Y is an arbitrary metric space, it can be isometrically em-
bedded into some Banach space. Hence the above theorem yields a positive answer
to the question posed by Jost in [J, p. 12]: the metric measure space X supports a
weak Poincaré inequality for real-valued functions in D(E) if and only if it supports
a weak Poincaré inequality (as in inequality (3.3)) for every metric space target Y .

The proof of Theorem 3.4 follows closely the argument in [HKST, Theorem 4.3].

Proof. The implication (3) ⇒ (2) is trivial and the implication (2) ⇒ (1) follows
from inequality (2.3) once we embed R isometrically into the (non-trivial) Banach
space V . To complete the proof, we will show the implication (1) ⇒ (3).

Let V ∈ V , f ∈ D(E) ∩ L2(X; V, v0), and let Λ ∈ V ∗ with ‖Λ‖V ∗ ≤ 1. Then
Λ : V → R is a ‖Λ‖V ∗-Lipschitz map, and we have the strong locality inequality
(2.4). By the quadratic contraction property, Λ ◦ f is in D(ER). Hence∫

BE

|Λ ◦ f − (Λ ◦ f)BE
|2 dµ ≤ C‖Λ‖2

V ∗ diamE(BE)2η(f, f)(λBE)

µ(λBE)
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for every Λ ∈ V ∗ and every dE-ball BE ⊂ X. If x, y are Lebesgue points of Λ◦f , then
letting B0 = B(x, 2dE(x, y)) and Bi = B(x, 2−idE(x, y)), B−i = B(y, 2−idE(x, y))
for i ∈ N (the balls in the dE-metric), by the standard telescoping argument we see
that

|Λ ◦ f(x) − Λ ◦ f(y)| ≤
∑
i∈Z

|(Λ ◦ f)Bi
− (Λ ◦ f)Bi+1

|(3.5)

≤ C‖Λ‖2
V ∗dE(x, y)

(
M2λdE(x,y)η(f, f)(x)1/2+(3.6)

+M2λdE(x,y)η(f, f)(y)1/2
)
,(3.7)

where

MRη(f, f)(x) = sup
0<r<R

η(f, f)(BE(x, r))

µ(BE(x, r))
.(3.8)

(Note that by assumption the dE-ball BE(x, r) is an open subset of the metric space
(X, d); since µ is a Borel measure, BE(x, r) is µ-measurable, and so the Lebesgue
differentiation theorem holds.)

By Proposition 3.10 below, it now suffices to show that for µ-almost every x, y
in X we have the inequality

‖f(x) − f(y)‖ ≤ CdE(x, y)
(
Mλ1dE(x,y)η(f, f)(x)1/2 + Mλ1dE(x,y)η(f, f)(y)1/2

)(3.9)

for some λ1 ≥ 1 independent of x, y and f . This can be done as in [HKST, Theorem
4.3]; the proof will be included here for the sake of completeness.

By inequality (3.5), for every Λ ∈ V ∗ there is a set ZΛ ⊂ X of measure zero
so that for every pair of points x, y ∈ X\ZΛ inequality (3.5) holds for the function
Λ ◦ f . Since the measure on (X, dE) is doubling, X is a separable space. Therefore
there exists a set Z0 ⊂ X of measure zero so that f(X\Z0) is separable (this is
a consequence of Lusin’s theorem together with the fact that continuous images
of separable metric spaces are separable). Hence the difference set {f(x) − f(y) :
x, y ∈ X\Z0} is also separable, and has a countable dense subset {vi}i∈N of nonzero
elements. By the Hahn-Banach theorem, for each integer i there exists Λi ∈ V ∗ so
that ‖Λi‖V ∗ = 1 and Λi(vi) = ‖vi‖. We abbreviate Zi = ZΛi

. Note that the measure
of the set Z0 ∪

⋃
i Zi is zero, and for every pair x, y in the complement of this zero-

measure set, inequality (3.5) holds for the functions Λk ◦ f , k ∈ N. Now for every
pair x, y in X \ (Z0 ∪

⋃
i Zi) we can approximate ‖f(x) − f(y)‖ by a sub-sequence

{Λik ◦ f(x) − Λik ◦ f(y)} to obtain the inequality (3.9).

The following proposition, used in the above proof, is similar to Proposition 4.6
in [HKST].

Proposition 3.10. Let (X, dE) be a metric space equipped with a doubling measure
µ, let V be a Banach space, and let f ∈ D(E) ∩ L2(X; V ). If for µ-almost every
x, y ∈ X the function f satisfies

‖f(x) − f(y)‖ ≤ CdE(x, y)
(
Mλ1dE(x,y)η(f, f)(x)1/2 + Mλ1dE(x,y)η(f, f)(y)1/2

)(3.11)

then f satisfies the Poincaré inequality (3.3) with λ = 2λ1.
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Proof. By inequality (3.11), if BE ⊂ X is a dE-ball, then∫
BE

‖f(x) − fBE
‖ dµ(x) =

∫
BE

∥∥∥∥
∫
BE

f(x) − f(y) dµ(y)

∥∥∥∥ dµ(x)

≤
∫
BE

∫
BE

‖f(x) − f(y)‖ dµ(y) dµ(x)

≤ C(diamE(BE))

∫
BE

Mλ1 diam(BE)η(f, f)(z)1/2 dµ(z).

An application of Lemma 3.15 yields the required result.

Lemma 3.12. Let η be a Borel measure on the metric measure space (X, dE, µ) so
that 0 < η(X) < ∞. Then the restricted Hardy-Littlewood maximal function

MRη(x) = sup
0<r<R

η(BE(x, r))

µ(BE(x, r))
(3.13)

satisfies the weak (1, 1)-inequality: there exists a constant C > 0 so that

µ({x ∈ BE : MRη(x) > τ}) ≤ C

τ
η(2BE)(3.14)

for all τ > 0 and all dE-balls BE of radius greater than or equal to R.

Using Lemma 3.12, we can prove the following lemma as in [HaK, 14.11].

Lemma 3.15. Under the assumptions of Lemma 3.12,

∫
BE

MRη(x)1/2 dµ(x) ≤ C

√
η(2BE)

µ(BE)
.(3.16)

Proof of Lemma 3.12. The proof follows the classical proof of the Hardy-Littlewood
theorem. Let

A = {x ∈ BE : MRη(x) > τ}.

For each x ∈ A there is a radius rx > 0 so that rx ≤ R and η(BE(x,rx))
µ(BE(x,rx))

> τ . The

collections of these dE-balls BE(x, rx), x ∈ A, covers the set A. By a general covering
theorem (see [HaK, Theorem 14.12]), we can find a countable sub-cover {5Bi} of A
so that {Bi} is a pairwise disjoint collection. By the doubling property of µ with
respect to the metric dE and by the fact that BE(x, rx) ⊂ 2BE,

µ(A) ≤
∑

i

µ(5Bi) ≤ C
∑

i

µ(Bi) ≤
C

τ

∑
i

η(Bi) ≤
C

τ
η (∪iBi) ≤

C

τ
η(2BE).

Thus Lemma 3.12 is proved.
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Proof of Lemma 3.15. Using the Cavalieri principle and Lemma 3.12, we have∫
BE

MRη(x)1/2 dµ(x) =

∫ ∞

0

µ({x ∈ BE : MRη(x) > τ 2}) dτ

≤
∫ β

0

µ(BE) dτ +

∫ ∞

β

Cη(2BE)

τ 2
dτ

= µ(BE)β +
C

β
η(2BE)

for β > 0. Choosing β =
√

η(2BE)
µ(BE)

, we see from above that∫
BE

MRη(x)1/2 dµ(x) ≤ C
√

µ(BE)η(2BE),

and this yields the required inequality.

By means of Theorem 3.4 one can strengthen the principal results of the paper [J].
The assumption of a metric space-valued Poincaré inequality can be replaced with
the corresponding real-valued inequality, which is in principle more easily verifiable.
Recall that [J] proves the Harnack inequality and Hölder continuity of metric space-
valued Dirichlet energy minimizers, under the additional assumption that the target
space has non-positive curvature.

4 Dirichlet domains and the Sobolev spaces of

Korevaar and Schoen

In this final section we will assume that the Dirichlet form E satisfies the following
condition in addition to conditions 1 through 6 of Definition 2.2.

7. We assume that the µ-separating core Γ consists of all Lipschitz functions
ϕ : X → R with bounded support and that for all such Lipschitz functions ϕ,

C2 (Lip ϕ(x))2 dµ(x) ≥ dηR(ϕ, ϕ) ≥ C−2 (Lip ϕ(x))2 dµ(x),

where

Lip ϕ(x) := lim
r→0

sup
y∈B(x,r)

|ϕ(x) − ϕ(y)|
d(x, y)

and the constant C ≥ 1 is independent of x and ϕ.

We also assume henceforth that X is quasi-convex, that is, there is a constant
C0 > 0 so that for every pair of points x, y in X there is a rectifiable curve con-
necting x and y with length at most Cd(x, y). For a relationship between Poincaré
inequalities and quasi-convexity see [HaK, Proposition 4.4].

By condition 7 we can replace the dE-balls in the Poincaré inequality with the
underlying metric balls and the corresponding dE-diameter of these balls by their
regular diameter, and furthermore, the assumption in [J] and [BM1] regarding the
topology induced by dE is automatically satisfied (see the discussion in Section 3).
This follows from the next lemma.
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Lemma 4.1. If the Dirichlet form E satisfies condition 7, then the metric dE is
bilipschitz equivalent to the underlying metric d.

Proof. Let x and y be two points in X. Then we can construct a 1-Lipschitz map
ϕ : X → R so that ϕ(x) = d(x, y), ϕ(y) = 0, and the support of ϕ lies in the clo-
sure of the ball B(x, d(x, y)). By the preceding assumptions, the modified function
C−1ϕ is an admissible function for calculating dE(x, y), and therefore we see that
dE(x, y) ≥ C−1d(x, y). Now suppose that ϕ ∈ Γ and dη(ϕ, ϕ) ≤ dµ. Then ϕ is Lip-
schitz with Lip ϕ(x) ≤ C, and hence the global Lipschitz constant of ϕ is bounded
above by a constant L > 0 depending only on C and the quasi-convexity constant
C0. Thus we have |ϕ(x) − ϕ(y)| ≤ Ld(x, y), and hence dE(x, y) ≤ Ld(x, y). Thus
the induced metric dE is bilipschitz equivalent with the underlying metric d.

As stated in the second section, the Newtonian space N1,2(X) of [Sh1] is an
example of a Dirichlet domain. Another example is the Sobolev type space of Ko-
revaar and Schoen [KS]. In the paper [St3], Sturm proves that the Korevaar-Schoen
space KS1,2(X; Y ) is a Dirichlet domain corresponding to a local Dirichlet form.
Given the discussion in [St3], it is natural to ask whether KS1,2(X; Y ) is the only
Dirichlet domain (up to isomorphism) of functions on a metric space. In this section
we explore the relationship between the Sobolev type spaces KS1,2(X; Y ) defined
by Korevaar and Schoen [KS] and the domain D(E) of a general Dirichlet form

E :
⋃

y0∈Y

L2(X; Y, y0) → R+ ∪ {∞}.

As a consequence of Proposition 4.2 an extension of Sturm’s result follows: the
Dirichlet domain constructed from the space KS1,2(X; Y, y0) cannot be extended as
a Dirichlet domain to a larger space.

Recall that the space KS1,2(X; Y, y0) is defined to be the collection of all func-
tions f ∈ L2(X; Y, y0) for which the approximating energies

e2
ε(x; f) :=

∫
B(x,ε)

dY (f(x), f(y))2

ε2
dµX(y)

converge to a finite energy

EKS(f) := sup
balls B

lim sup
ε→0

∫
B

e2
ε(x; f) dµX(x) < ∞.

We show that, under some additional conditions on the Dirichlet energy form E ,
the corresponding Dirichlet domain D(E) embeds into the Korevaar-Schoen space
KS1,2(X; Y ) continuously. Since Y can be isometrically embedded into a Banach
space V , again without loss of generality we consider only the case Y = V .

Recall that condition 7 is assumed for the following two propositions and hence
a measure is doubling with respect to one of the metrics d and dE if, and only if,
it is doubling with respect to the other metric. Moreover, the Poincaré inequality
remains valid if we replace the dE-metric balls BE with d-metric balls B.
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Proposition 4.2. Consider a metric measure space X supporting a doubling mea-
sure and a Poincaré inequality for the Dirichlet energy form ER related to the Dirich-
let form E : L2(X; Y, y0) → R+ ∪ {∞}. Then D(E) embeds via a Banach space
isomorphism into KS1,2(X; Y, y0).

We follow the argument of [KMc, Section 4] in proving the above proposition.

Proof. By Theorem 3.4 X supports a Poincaré inequality for E with respect to V .
Let f ∈ D(E) and x, y ∈ X be two Lebesgue points for f . Note that by the doubling
property of the measure on X such Lebesgue points are of full measure in X. By
the usual telescoping argument,

‖f(x) − f(y)‖ ≤
∑
i∈Z

‖fBi
− fBi+1

‖ ≤
∑
i∈Z

∫
Bi

‖f − fBi
‖ dµ

≤
∑
i∈Z


∫

Bi

‖f − fBi
‖2 dµ




1/2

where ‖·‖ denotes the norm on the Banach space V and B0 = B(x, d(x, y)). Let
Bi = 2−iB0 and B−i = 2−iB(y, d(x, y)) for i ∈ N. By the Poincaré inequality for E ,

‖f(x) − f(y)‖ ≤ C
∑
i∈Z

2−|i|d(x, y)

(
η(f, f)(λBi)

µ(λBi)

)1/2

.

As in [HaK, Section 5] and [KMc, Theorem 4.1], we define

Jrη(f, f)(x) :=
∞∑
i=0

2−ir

(
η(f, f)(B(x, 2−iλr))

µ(B(x, 2−iλr))

)1/2

as a generalization of the Riesz potential. Then we have

‖f(x) − f(y)‖ ≤ C (Jrη(f, f)(x) + Jrη(f, f)(y))

whenever r ≥ d(x, y). Hence

‖f(x) − f(y)‖2 ≤ C
(
Jrη(f, f)(x)2 + Jrη(f, f)(y)2

)
.

Fix ε > 0 and let y ∈ B(x, ε). Choosing r = 2ε we have

‖f(x) − f(y)‖2

ε2
≤ C

ε2

(
J2εη(f, f)(x)2 + J2εη(f, f)(y)2

)
,

and therefore

e2
ε(x; f) ≤ C

ε2


J2εη(f, f)(x)2 +

∫
B(x,ε)

J2εη(f, f)(y)2 dµX(y)


 .
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By an adaptation of the proof of [HaK, Theorem 5.3] we know that∫
B(x0,r)

J2rη(f, f)(z)2 dµX(z) ≤ Cr2η(f, f)(B(x0, 2λr))(4.3)

for every x0 ∈ X. Thus

e2
ε(x; f) ≤ C

ε2
J2εη(f, f)(x)2 + C

η(f, f)(B(x, 2λε))

µ(B(x, 2λε))

and hence (using (4.3) again)∫
B(x0,ε)

e2
ε(x; f) dµX(x) ≤ Cη(f, f)(B(x0, 2λε))

+ C

∫
B(x0,ε)

η(f, f)(B(x, 2λε))

µ(B(x, 2λε))
dµX(x).

From this we can conclude that∫
B(x0,ε)

e2
ε(x; f) dµX(x) ≤ Cη(f, f)(B(x0, 3λε)),

and now by the doubling property of the measure µ and by a standard covering
argument, ∫

X

e2
ε(x; f) dµX(x) ≤ Cη(f, f)(X) = CE(f).

Thus EKS(f) ≤ CE(f) and we have the required embedding.

The next result provides us with a converse to the above proposition under an
additional condition on the form E .

Definition 4.4. We say that a Dirichlet form E : D(E)×D(E) → R+ has the strong
quadratic contraction property if all real-valued Lipschitz functions with bounded
support are in the domain D(ER) and

E(f) ≤ sup
ϕ

ER(ϕ ◦ f)(4.5)

where the supremum is taken over all 1-Lipschitz functions ϕ from Y into R (in fact,
equality holds in (4.5) by condition 1 of the definition of Dirichlet forms).

Observe that inequality (4.5) strengthens condition 3 in Definition 2.2. The
classical examples W 1,2(Rn), H1,2(X), M1,2(X) of Dirichlet domains as well as the
fractal constructions of Barlow and Bass [BB] all satisfy the above property, and
hence it is a reasonable assumption.

Proposition 4.6. Let E be a Dirichlet form on maps from X to V , where X is a
proper metric measure space endowed with a doubling measure. If E has the strong
quadratic contraction property and moreover X supports a Poincaré inequality for
the Korevaar-Schoen measure EKS, then KS1,2(X; V, v0) embeds in D(E).

13



Proof. Let f ∈ KS1,2(X; V, v0) and ϕ : V → R be a 1-Lipschitz function. Then
|ϕ ◦ f(x) − ϕ ◦ f(y)| ≤ |f(x) − f(y)|, and hence ϕ ◦ f belongs to KS1,2(X; R) =
KS1,2(X) with EKS(ϕ ◦ f) ≤ EKS(f).

Given ε > 0 we can cover X by a countable number of balls Bi = B(xi, ε) of
uniformly bounded overlap (since the measure on X is doubling). Fix such an ε > 0
and define a locally Lipschitz approximation fε as follows:

fε(x) :=
∑
i∈N

ϕi(x) (ϕ ◦ f)Bi

where the functions ϕi, i ∈ N, constitute a C/ε-Lipschitz partition of unity subor-
dinate to the cover {Bi}. By [KMc, Lemma 4.6] we have

|fε(x) − fε(y)| ≤ Cd(x, y)

∫
B(x,2ε)

(
e2
5ε(z; ϕ ◦ f)

)1/2
dµ(z)

≤ Cd(x, y)


 ∫

B(x,2ε)

e2
5ε(z; ϕ ◦ f) dµ(z)




1/2

.

Hence

Lip fε(x) ≤ C


 ∫

B(x,2ε)

e2
5ε(z; ϕ ◦ f) dµ(z)




1/2

.

Therefore by the assumption on the energy density ηR (condition 7), if B is a ball
of radius ε, then ∫

B

dηR(fε, fε)(x) ≤ C

∫
B

∫
B(x,2ε)

e2
5ε(z; ϕ ◦ f) dµ(z) dµ(x)

≤ C

∫
B

e2
5ε(x; ϕ ◦ f) dµ(x).

Let B0 be a ball in X. Then by a standard covering argument the above inequality
yields ∫

B0

dηR(fε, fε) ≤ C

∫
B0

e2
5ε(x; f) dµ(x)

where C > 0 is independent of B0.
Now suppose f is a Lipschitz function with compact support - that is, outside a

compact set, f takes on the vector value 0. By the Poincaré inequality EKS(f) = 0
implies that f is constant and hence E(f) = 0. Therefore we may assume without
loss of generality that EKS(f) > 0. Since dηR(fε + a, fε + a) = dηR(fε, fε) for
every constant a ∈ R, without loss of generality we can assume that the 1-Lipschitz
function ϕ has the property that ϕ(0) = 0. Then each fε also is Lipschitz and has
compact support. Furthermore, we can choose the above ball B0 sufficiently large
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so that f and all of the functions fε, 0 < ε < 1, have support inside B0. Then by
the strong locality of ηR, ∫

B0

dηR(fε, fε) =

∫
X

dηR(fε, fε).

Since lim supε→0

∫
B0

e2
5ε(x; ϕ ◦ f) ≤ EKS(f) < ∞ and EKS(f) > 0, for sufficiently

small ε > 0 we have
∫

B0
e2
5ε(x; ϕ ◦ f) ≤ 2EKS(f). Hence ER(fε) ≤ CEKS(f) for

sufficiently small ε > 0. Therefore {fε} is a bounded sequence of functions in D(ER)
when D(ER) is equipped with the norm

‖u‖ER
:= ER(u)1/2 + ‖u‖L2 , u ∈ D(ER),

and fε → ϕ◦f almost everywhere by the argument in the proof of [HKST, Lemma 8.2].
Since D(ER) is a Hilbert space under the norm ‖ · ‖ER

, we can use Mazur’s lemma to
conclude that ϕ◦f ∈ D(ER) if f is Lipschitz with bounded support, and in this case
we also see that ER(ϕ ◦ f) ≤ CEKS(f). Now by inequality (4.5), we see that f is in-
deed in D(E) and that its Dirichlet energy satisfies E(f) ≤ supϕ ER(ϕ◦f) ≤ CEKS(f)
(if we do not have inequality (4.5), then by condition 3 of the definition of Dirichlet
forms we can still conclude that f ∈ D(E), but we do not have control over the
Dirichlet energy of f in terms of EKS(f)).

As X supports a Poincaré inequality for the Korevaar-Schoen energy measure
EKS, Lipschitz functions of bounded support are dense in KS1,2(X; Y ) (see [KS] or
[KMc]). Hence all functions f ∈ KS1,2(X; V, v0) are in D(E) with E(f) ≤ CEKS(f),
and thus we have the embedding stated in the proposition.

5 Appendix

In this appendix we provide a proof of the claim in Section 2 that the polarization
of an energy form is bilinear. We also look at more natural conditions that would
guarantee the validity of condition 6 in the definition of Dirichlet forms.

Proposition 5.1. Let E : L2(X, µ) → R+ ∪ {∞} be a Dirichlet form. Then the
polarization

E(u, v) :=
1

4
(E(u + v) − E(u − v))(5.2)

is a bilinear form on L2(X, µ).

Proof. Recall that E satisfies

E(u + v) + E(u − v) = 2 (E(u) + E(v)) ,(5.3)

see condition 5 of Definition 2.1. Let u, v, w be three functions in D(E). By repeated
use of equation (5.3), we find that

E(u, v) + E(w, v) =
E(u + v) + E(w + v)

4
− E(u − v) + E(w − v)

4

=
E(u + w + 2v) + E(u − w)

8
− E(u + w − 2v) + E(u − w)

8

=
E(u + w + 2v) − E(u + w − 2v)

8
=

E(u + w, 2v)

2
.
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Note also that 4E(0, v) = E(v) − E(v) = 0. Hence

E(f, v) = E(f, v) + E(0, v) =
E(f + 0, 2v)

2

for f ∈ D(E) and so

E(u, v) + E(w, v) = E(u + w, v).(5.4)

If α is a non-negative integer, then E(αu, v) = αE(u, v) by equation (5.4). If
α = 1/q where q is a positive integer, then

E(u, v) = E(q
1

q
u, v) = qE(αu, v),

and again we have E(αu, v) = αE(u, v). Hence E(αu, v) = αE(u, v) whenever
α ∈ Q+. Now if α ∈ R+ \Q+, we can choose a sequence {αi} ⊂ Q+ so that αi → α,
and by using the above equation for each αi we see that E(αiu, v) = αiE(u, v) →
αE(u, v). By the Minkowski inequality,√

E(αu + v) =
√

E(αu − αiu + αiu + v) ≤
√
E(αu − αiu) +

√
E(αiu + v).

Hence

|
√

E(αu + v) −
√

E(αiu + v)| ≤
√

E(αu − αiu) ≤ |α − αi|
√

E(u) → 0

where the last inequality is due to the strong quadratic contraction property. Thus
E(αiu+ v) → E(αu+ v), and similarly E(αiu− v) → E(αu− v). Hence E(αiu, v) →
E(αu, v), and by the above discussion for rational α we see that the equality

E(αu, v) = αE(u, v)(5.5)

holds for all non-negative real numbers α.
Finally, note that 0 = E(0, v) = E(u − u, v) = E(u, v) + E(−u, v) by equation

(5.4) and so

E(−u, v) = −E(u, v).(5.6)

It is easy to see that

E(u, v) = E(v, u).(5.7)

By equations (5.4), (5.5), (5.6), and (5.7) we see that E is indeed a symmetric
bilinear form.

It is also easily verified that the bilinearity of the polarization implies conditions
4 and 5 of the definition of Dirichlet energy forms.

We consider condition 6 in the definition of Dirichlet forms. Note that in the
above proof of bilinearity of the polarization, we only needed conditions 1 through
5 of the definition of Dirichlet forms.
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If E is a Dirichlet form on real-valued functions, then to guarantee the existence
of the corresponding measure-valued form η it suffices to know that for every non-
negative continuous function ϕ with bounded support we have

E(ϕu, u) − 1

2
E(u2, ϕ) ≥ 0.(5.8)

Under this assumption, the Riesz representation theorem applied to the positive
definite linear operator Tu(ϕ) = E(ϕu, u)− 1

2
E(u2, ϕ) yields a finite Radon measure

η(u, u) so that Tu(ϕ) =
∫

X
ϕ dη(u, u). By covering X with a countable collection

of balls with bounded overlap and considering a partition of unity ψk, k ∈ N, we
see that E(u, u) =

∑
k∈N

(E(ψku, u)− 1
2
E(u2, ψk)) is given by E(u, u) = η(u, u)(X).

(Here we use the fact that E(v, w) = 0 whenever w is constant.) A corresponding
polarization yields the measure-valued bilinear form. Such polarization is bilinear
because the form E is. To verify this, it suffices to verify that for every compactly
supported Lipschitz function ϕ∫

X

ϕ dη(u + v, w) =

∫
X

ϕ dη(u, w) +

∫
X

ϕ dη(v, w).

Using the equation
∫

X
ϕ dη(f, f) = E(ϕu, u) − 1

2
E(u2, ϕ) and using the bilinearity

of E we can obtain the above equality.
The Dirichlet forms obtained in [BB] as well as the Dirichlet forms obtained by

using the Cheeger derivatives (see the discussion in Section 2) satisfy the condition
(5.8). It is not clear what its analogue for general metric space-valued forms should
be. One possible analogue would be to require that for all non-negative continuous
functions with bounded support E(ϕu, u)− 1

2
E(|u|2, ϕ) ≥ 0 where, if the range of u

lies in a Banach space, |u(x)| is the Banach space norm of the element u(x).
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