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Abstract. We establish a lower bound for the Hausdorff dimension of
the boundary associated with a conformal deformation of the Euclidean
metric on the unit ball in Rn. The deformations we consider are mo-
tivated by quasiconformal maps. Our abstract approach leads to new
results on the boundary behavior of these maps. We prove a conjecture
by Hanson on the compression of sets and obtain an improved version of
the so-called wall theorem. We also establish a Riesz-Privalov theorem
in higher dimensions.

1. Introduction

In the recent paper [3] by Bonk, Koskela and Rohde it was shown that a
large part of Geometric Function Theory relies on only two properties of
the derivative |f ′| of a conformal map f of the unit disc B2 in the complex
plane. Namely, the estimate |f ′(z)| ≈ |f ′(w)| whenever the points z, w ∈ B2

have hyperbolic distance at most 1 and the fact that∫
f−1(B(w,r))

|f ′|2 dm2 ≤ πr2 for w ∈ f(B2) and r > 0.

(For notation used in the introduction see the body of the paper, in partic-
ular Sec. 2).

More generally, we can consider a continuous density ρ : Bn → (0,∞) and
define a metric dρ and a measure µρ by setting

dρ(x, y) = inf
γ

∫
γ
ρ(z) |dz| for x, y ∈ Bn,

where the infimum is taken over all rectifiable curves γ that join x to y in
Bn, and

µρ(E) =
∫

E
ρn dmn for a Borel set E ⊆ Bn.

The following conditions generalize the two properties of the density ρ = |f ′|,
where f is a conformal map. The first one is the Harnack type inequality

HI(A) : 1/A ≤ ρ(x)
ρ(y)

≤ A whenever x, y ∈ B(z, 1
2(1 − |z|)) for some z ∈ Bn,

and the second one a volume growth condition for the open balls in dρ-metric

VG(B) : µρ(Bρ(x, r)) ≤ Brn for all x ∈ Bn, r > 0.
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For densities ρ which satisfy these conditions for some constants A ≥ 1 and
B > 0, in [3] a detailed study of the metric space (Bn, dρ) was performed and
counterparts for many properties of conformal maps were established. In the
case that ρ arises as the derivative of a conformal map f , the space (Bn, dρ)
looks like the image f(B2) equipped with the internal metric. Another class
of densities satisfying HI(A) and VG(B) consists of appropriately averaged
Jacobians af of quasiconformal maps f : Bn → Rn. In this case A and B

depend only on the dimension n and the dilatation K of f (cf. Sec. 6). The
study of (Bn, dρ) is not simply a repetition of the theory of quasiconformal
maps as the class of the admissible densities ρ satisfying HI(A) and VG(B)
is strictly larger than the collection of densities arising as averaged Jacobians
(cf. [2]).

An interesting object is the boundary ∂ρBn which we have to add to
(Bn, dρ) in order to make this metric space complete. As a set the boundary
∂ρBn that can be identified with the set of those points ζ ∈ ∂Bn for which
the ray [0, ζ) is rectifiable in the metric dρ. If ρ comes from a conformal
map f , then ∂ρB2 consists of the points ζ ∈ ∂B2 for which the image of
the ray [0, ζ) is rectifiable. So ∂ρB2 corresponds to the rectifiably accessible
boundary points of f(B2).

Related to expansion and compression behavior of a quasiconformal map
f : Bn → Rn on the boundary ∂Bn is the quest to find upper and lower
bounds for the Hausdorff dimension dimρ(E) (with respect to the metric
dρ) of subsets E ⊆ ∂ρBn. The “expansion behavior” is relatively well under-
stood. One of the results in [3] states that, even though ∂ρBn can be infinite
dimensional relative to dρ, an essential part E of ∂ρBn is of Hausdorff di-
mension dimρ(E) at most n. For the “compression behavior” only the weak
result dimρ(∂ρBn) ≥ C(n, B) > 0 was shown in [3].

The main purpose of the present paper is to establish methods which can
be used to understand compression behavior of quasiconformal maps and
more generally of densities ρ satisfying HI(A) and VG(B).

Our first result shows that these densities behave like quasiconformal
maps and establishes the natural lower bound for dimρ(∂ρBn).

Theorem 1.1. Suppose n ≥ 2 and ρ : Bn → (0,∞) is continuous and sat-
isfies HI(A) and VG(B) for some constants A ≥ 1 and B > 0. Then
dimρ(∂ρBn) ≥ n − 1.

In fact, even more is true; the bound on the dimension holds locally
as well. To study this local behavior we associate with a point x ∈ Bn

a corresponding part Sx of the boundary ∂Bn. The set Sx is the radial
projection of a Whitney type ball centered at x from the origin on ∂Bn. For
simplicity we formulate the local version only for quasiconformal mappings
and use the (n − 1)-dimensional Hausdorff content Hn−1,∞ to measure the
size of a set.
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Theorem 1.2. Suppose f : Bn → Ω ⊆ Rn is a K-quasiconformal map.
Then

Hn−1,∞(f(Sx)) ≥ cdist(f(x), ∂Ω)n−1 for x ∈ Bn,

where c = c(n, K) > 0.

The conclusion of Theorem 1.2 was conjectured by Hanson in [4].
Related to Theorem 1.2 we also obtain a new proof for the “wall” con-

jecture (cf. [5]) that was originally verified by Väisälä [9]. Actually, we will
prove a stronger result (cf. Thm. 6.5).

Theorem 1.3. Suppose f : Bn → Ω ⊆ Rn is a K-quasiconformal map.
Then

Hn−1,∞(
∂Ω ∩ B(y, 2 dist(y, ∂Ω))

)
≥ cdist(y, ∂Ω)n−1 for y ∈ Ω,

where c = c(n, K) > 0.

Furthermore, our methods allow us to relate the growth of the integral
means of ρn−1 to the size of ∂ρBn. This is similar to the classical Riesz-
Privalov theorem which says that if f : B2 → Ω is a conformal map onto a
Jordan region Ω ⊆ C, then the length of ∂Ω and the H1-norm of f ′ are equal.
We again content ourselves with restricting to the quasiconformal setting.
To state the result we need a version of the concept of porosity: If Ω ⊆ Rn

is a region and λ ≥ 1, then the λ-porous part ∂λΩ of the boundary of Ω is
the set of all boundary points y which are the limit of a sequence of points
in Ω whose distance to y does not exceed the distance to the boundary by
more than the factor λ (cf. Def. 7.5).

Our result generalizes the Riesz-Privalov theorem for quasiconformal maps
f : Bn → Ω and compares the Hausdorff (n − 1)-measure of an appropriate
porous part of ∂Ω with some “norm” ||af ||n−1 coming from the integral
means of an−1

f for the averaged Jacobian af .

Theorem 1.4. Suppose n ≥ 3 and f : Bn → Ω ⊆ Rn is a K-quasiconformal
map. Then there exists λ = λ(n, K) ≥ 1 and c = c(n, K) ≥ 1 such that

(1/c)||af ||n−1
n−1 ≤ Hn−1(∂λΩ) ≤ c||af ||n−1

n−1.

A similar statement is true in the planar case n = 2 when we replace ∂λΩ
by ∂Ω. Theorem 1.4 is a consequence of more general estimates for n ≥ 3.
Namely, Hn−1(∂λΩ) can be controlled from above by ||af ||n−1

n−1 for any λ ≥ 1.
The converse estimate holds for the entire boundary ∂Ω, but it may well
happen that Hn−1(∂Ω) = ∞ when ||af ||n−1

n−1 < ∞. On the other hand, we
can allow for a nontrivial exceptional set. Indeed, if n ≥ 3 and M ⊆ ∂Bn

satisfies Hn−2(M) = 0, then ||af ||n−1
n−1 ≤ C(K, n)Hn−1(f(∂Bn \ M)).

An outline of the content of this paper is as follows. In Sec. 2 we set up
notation, and prove and cite some auxiliary results. In Sec. 3 we discuss
Hausdorff measures and introduce an important concept to measure the
size of a set in the boundary which is based on “shadowing” instead of
covering a set. Sec. 4 is devoted to studying how a set can separate a set
on the boundary from the origin. These considerations lead to Prop. 4.8
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which is the main result of this section. Sec. 5 discusses modulus estimates.
The principal result Prop. 5.5 is an upper inequality for the modulus of
curve families in ∂Bn that we call the “Main Modulus Estimate”. It is of
prime importance for the results in this paper. An immediate consequence
is Thm. 1.1, whose proof is given at the end of Sec. 5. In Sec. 6 we prove
Thm. 6.3 and the Hanson conjecture Thm. 1.2 (cf. Cor. 6.4). Moreover, we
prove Thm. 6.5 which implies Thm. 1.3. Finally, in Sec. 7 we look at analogs
of the Riesz-Privalov Theorem for quasiconformal maps. In dimension 2 we
obtain Thm. 7.3. In higher dimensions we have to utilize the concept of the
λ-porous part of the boundary and we prove Thm. 7.6 and Thm. 7.8. An
immediate consequence of these results is Thm. 1.4. We give an example
(cf. 7.10) which shows that our results are optimal.

The results of this paper were proven in 1997 during a stay of the first
named author at the University of Jyväskylä. He would like to thank the
people in the Department of Mathematics for their hospitality. The authors
also thank J. Lehrbäck for typesetting the manuscript.

2. Notation and auxiliary results

In general, we will denote by C(A, B, . . . ), c1(A, B, . . . ), etc., positive con-
stants that can be chosen to depend only on some parameters A, B, . . . . So
C = C(A, B, . . . ) is short hand for the fact that C is a positive constant
that depends only on A, B, . . . , while an inequality a ≤ c(A, B, . . . ) for some
quantity a means that it is bounded by a number depending only on the
specified parameters. If we write a � b, a � b, a ≈ b for some quantities
a and b, then we mean that there exists a positive constant (the constant
of “comparability”) depending only on some specified parameters such that
a ≤ cb, ca ≥ b, and (1/c)a ≤ b ≤ ca, respectively. If in these inequalities
no parameters for c are specified, then it is understood that we can take a
fixed numerical constant for c.

We use the notation N = {1, 2, 3, . . . } and N0 = {0, 1, 2, . . . }. If M is any
set, then #M ∈ N0 ∪ {∞} is the number of points in M . We consider the
Euclidean space Rn, and unless otherwise stated n ≥ 2. We denote by |x|
the Euclidean norm of a vector x ∈ Rn. So |x− y| is the Euclidean distance
of two points x, y ∈ Rn. Moreover, we denote by diam(E) the diameter of
a set E ⊆ Rn, by dist(E, F ) the distance of two sets E, F ⊆ Rn and by
B(x, r) and B̄(x, r) the open and closed Euclidean ball centered at x ∈ Rn

with radius r > 0, respectively. The unit ball in Rn is Bn. If E ⊆ Rn is a
set, then ∂E and Ē denote the boundary and the closure of E, respectively.
The spherical metric σ on the unit sphere ∂Bn is the metric induced by
the restriction of the Euclidean Riemannian metric of Rn to ∂Bn. The sets
Σ(ζ, r) ⊆ ∂Bn and Σ̄(ζ, r) ⊆ ∂Bn are the open and closed spherical balls
with center ζ ∈ ∂Bn and radius r > 0, respectively. If x, y ∈ Rn, then [x, y]
will be the compact line segment with end points x and y. Similar notation
will be used for open and half open line segments.
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If z ∈ Bn we let

Bz = B(z, 1
2(1 − |z|))(2.1)

be the “Whitney” type ball in Bn centered at z. If E ⊆ Bn we denote by
S(E) the radial projection of E on ∂Bn from the origin. More precisely,

S(E) = {ζ ∈ ∂Bn : [0, ζ) ∩ E �= ∅}.
The set S(E) is the “shadow” of E on the boundary. Note that S(E) = ∂Bn

if 0 ∈ E. An important special case is the shadow of a Whitney type ball
Bz and we introduce special notation for this situation. So for z ∈ Bn we
let

Sz = S(Bz) = {ζ ∈ ∂Bn : [0, ζ) ∩ B(z, 1
2(1 − |z|)) �= ∅}.(2.2)

The set Sz ⊆ ∂Bn can be written as a spherical ball with radius comparable
to 1 − |z|. To be specific, for z ∈ Bn we have

Sz = ∂Bn = Σ(ζ, π) for arbitrary ζ ∈ ∂Bn if 0 ≤ |z| < 1
3 ,

and
Sz = Σ

(
ζ, arcsin

(
1−|z|
2|z|

))
if 1

3 ≤ |z| < 1,

where ζ = S(z) is the projection of z from 0 on ∂Bn. If B ⊆ Rn is a ball
of radius r and λ > 0, then λB is the ball with the same center as B and
radius λr, closed or open according to which of these properties B has. If
we want to use the same notation for spherical balls, we have to be careful,
because the center of a spherical ball cannot uniquely be recovered from the
ball if its radius is too large. If λ ≥ 1 this ambiguity does not matter, and
λΣ(a, r) = Σ(a, λr) is well defined for such λ.

We will need the following elementary fact whose proof we leave to the
reader.

Lemma 2.1. If x, y ∈ Bn and Sy ⊆ Sx, then [0, z] ∩ Bx �= ∅ for every
z ∈ By.

A curve in Ω ⊆ Rn is a continuous mapping γ : I → Ω, where I ⊆ R is
an interval. We denote the length of γ by length(γ), and (abusing notation)
the image set γ(I) also by γ.

If ρ : Rn → [0,∞] is a nonnegative Borel measurable function (which we
will often call densities), then the ρ-length of a locally rectifiable curve is
defined as

lengthρ(γ) =
∫

γ
ρ(z) |dz|,

where integration is with respect to Euclidean length.
Suppose in addition that ρ : Bn → (0,∞) is continuous. Then, as indi-

cated in the introduction, we can define a metric dρ by setting for x, y ∈ Bn

dρ(x, y) = inf lengthρ(γ),

where the infimum is taken over all rectifiable curves in Bn connecting x

and y. It is easy to see that the topology on Bn induced by dρ agrees with
the standard topology. Notions related to the metric dρ will have the usual
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notation used for the Euclidean metric with the additional subscript ρ. For
example, Bρ(x, r) denotes the open ρ-ball centered at x ∈ Bn with radius
r > 0.

Let
h(x) =

2
1 − |x|2 for x ∈ Bn

be the density of the hyperbolic metric on Bn of constant negative sectional
curvature −1. In accordance with our previous convention, dh will be the
hyperbolic metric and metric notation that refers to the hyperbolic metric
will have the subscript h.

Recall that a boundary point x of a region Ω ⊆ Rn is called accessible, if
there exists a curve γ : [a, b] → Rn such that γ([a, b)) ⊆ Ω and γ(b) = x.

Lemma 2.2. Suppose that ρ : Bn → (0,∞) is a continuous density. Then
for all a ∈ Bn and r > 0, the set Ω = Bρ(a, r) ⊆ Bn is a region and every
(Euclidean) boundary point of Ω which lies in Bn is accessible.

Proof. The set Ω is open and every point in Ω can be connected with a by
a path lying in Ω. Hence Ω is a region.

To prove the second part of the lemma, let x ∈ ∂Ω∩Bn be arbitrary. Note
that a �= x. We can choose ε > 0 small enough such that a /∈ B̄(x, ε) ⊆ Bn

and 1
2ρ(x) ≤ ρ(y) ≤ 2ρ(x) for y ∈ B̄(x, ε).

Since x is a boundary point of Ω = Bρ(a, r), by definition of the metric
dρ there exist curves αk : [0, sk] → Ω for k ∈ N0 such that αk(0) = a,
|αk(sk) − x| ≤ 2−(k+1)ε and lengthρ(αk) < r for k ∈ N0.

For k ∈ N0 we can choose points 0 < tk,0 < tk,1 < . . . < tk,k < sk such
that

|αk(tk,ν) − x| = 2−νε and αk([tk,ν , sk]) ⊆ B̄(x, 2−νε)(2.3)

for ν ∈ {0, . . . , k}.
By successively choosing subsequences of {αk} and passing to a “diagonal”

subsequence of {αk} if necessary, we may in addition assume that

|αk(tk,ν) − αl(tl,ν)| ≤ 2−(ν+3)ε for ν ∈ N0, k, l ≥ ν.(2.4)

Since αk(sk) ∈ B̄(x, 2−(k+1)ε) and |αk(tk,k) − x| = 2−kε we have
length(αk|[tk,k, sk]) ≥ 2−(k+1)ε and so lengthρ(αk|[tk,k, sk]) ≥ 2−(k+2)ερ(x).
This implies

dρ(a, αk(tk,k)) ≤ lengthρ(αk|[0, tk,k]) < r − lengthρ(αk|[tk,k, sk])

< r − 2−(k+2)ερ(x).
(2.5)

For k ∈ N0 let Lk be the line segment with end points αk(tk,k) and
αk+1(tk+1,k). Then Lk ⊆ B̄(x, 2−kε) by (2.3), and by (2.4)

lengthρ(Lk) ≤ 2ρ(x) · 2−(k+3)ε = 2−(k+2)ερ(x).

Together with (2.5) this implies Lk ⊆ Ω.
Now let γ : [0, 1) → Ω be a curve whose image set is

α0([0, t0,0]) ∪ L0 ∪ α1([t1,0, t1,1]) ∪ L1 ∪ α2([t2,1, t2,2]) ∪ . . .
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Note that in this union the end point of a curve is the initial point of the
curve following in the union. Moreover, γ ⊆ Ω. Note γ(0) = a and since

Lk ∪ αk(tk,k−1) ∪ . . . ⊆ B̄(x, 2−kε) for k ∈ N0,

we have limt→1 γ(t) = x. This shows that x is an accessible boundary point
of Ω.

For the arguments in the following sections it is very important to fix
once and for all some set C in Bn that is uniformly spread out with respect
to the hyperbolic metric. In our notation we suppress the dependence of
C on n. To obtain such a set, consider a Whitney cube decomposition W
of Bn. This means W is a countable collection of dyadic cubes with sides
parallel to the coordinate planes which have pairwise disjoint interiors such
that Bn =

⋃
Q∈W Q and

diam(Q) ≤ dist(Q, ∂Bn) ≤ 4 diam(Q) for Q ∈ W.

Now let C be the set of the centers xQ of the cubes Q ∈ W. Then the
countable set C is a uniformly separated net in the hyperbolic metric, i.e.,

sup
z∈Bn

disth(z, C) ≤ c1(n) for z ∈ Bn, and

dh(x, y) ≥ c2(n) > 0 for x, y ∈ C, x �= y.
(2.6)

Moreover,

1 ≤
∑
z∈C

χ
Bz

≤
∑
z∈C

χ
λBz

≤ c3(n, λ) for 0 < λ < 2,(2.7)

and

1 ≤
∑

z∈C, Bz∩∂B(0,t) 
=∅
χ

Sz
≤ c4(n) for 0 ≤ t < 1.(2.8)

Here χ
E

denotes the characteristic function of a set. Property (2.7) says
that the collection {Bz : z ∈ C} covers Bn. Moreover, since for 0 < λ < 2 we
have that the hyperbolic diameter of λBz for z ∈ Bn is uniformly bounded
by a constant depending only on λ, the collection {λBz : z ∈ C} has bounded
overlap. Property (2.8) says that if we project the balls {Bz : z ∈ C} which
meet a fixed sphere ∂B(0, t) on ∂Bn, then the collection of spherical balls
thus obtained covers ∂Bn with bounded overlap.

With a density ρ : Bn → (0,∞) we can associate a measure µρ defined on
Borel sets E ⊆ Bn by

µρ(E) =
∫

E
ρn dmn,

where mn denotes Lebesgue measure on Rn. The spherical measure on any
sphere ∂B(a, r) ⊆ Rn is denoted by σn−1.

The continuous densities ρ : Bn → (0,∞) that we consider in this paper
satisfy in addition the conditions HI(A) and VG(B) (for some constants
A ≥ 1 and B > 0) stated in the introduction.

For these densities we will recall several results from [3]. The first one is
the Gehring-Hayman Theorem [3, Thm. 3.1].
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Theorem 2.3. (Gehring-Hayman Theorem) Suppose ρ : Bn → (0,∞) is a
continuous density on Bn satisfying HI(A) and VG(B). Then there is a
constant C = C(A, B, n) > 0 with the following property. If α is a hyperbolic
geodesic in Bn with end points in B̄n and γ is any other curve in Bn with
the same end points, then

lengthρ(α) ≤ C lengthρ(γ).

Recall that hyperbolic geodesics are subarcs of circles or lines perpendic-
ular to ∂Bn.

It is very convenient to have special notation for the ρ-size of the Whitney
type ball Bx. If ρ is fixed we let

rx = ρ(x)(1 − |x|) ≈ diamρ(Bx) for x ∈ Bn.(2.9)

In [3] it was shown that the completion of the space (Bn, dρ) can be ob-
tained by adding a boundary ∂ρBn to Bn. The ρ-boundary ∂ρBn can be iden-
tified with the subset of ∂Bn consisting of all ζ ∈ ∂Bn with lengthρ([0, ζ]) <

∞. The inequality lengthρ([0, ζ]) < ∞ is true for all points outside an excep-
tional set E of vanishing n-capacity. In particular, the Hausdorff dimension
of E is zero. The metric dρ extends to Bn ∪ ∂ρBn. We will use the notation
B′

ρ(a, r) for the open ball with center a ∈ Bn ∪ ∂ρBn and radius r > 0 as a
subset of Bn ∪ ∂ρBn.

3. Hausdorff measures

For M ⊆ Rn, α ∈ (0,∞), and δ ∈ (0,∞] let

Hα,δ(M) = inf
{∑

k∈N

rα
k : M ⊆

⋃
k∈N

B(xk, rk) ∧ ∀k ∈ N : rk ≤ δ

}
.(3.1)

Here and in the following we use the convention inf ∅ = +∞. Note that
Hα,δ(M) is nonincreasing in δ. In particular, we can define the α-Hausdorff
measure Hα(M) ∈ [0,∞] by

Hα(M) := lim
δ→0

Hα,δ(M).(3.2)

The number Hα,∞(M) is called the α-Hausdorff content of M . For δ ∈ (0,∞]
we have

Hα,∞(M) ≤ Hα,δ(M) ≤ Hα(M).(3.3)

The Hausdorff dimension of M is defined by

dim(M) = inf {α ∈ (0,∞) : Hα(M) = 0}.(3.4)

Suppose ρ : Bn → (0,∞) is a continuous density on Bn satisfying HI(A) and
VG(B). To measure the size of a set M ⊆ Bn ∪ ∂ρBn we define Hα,δ

ρ (M)
similar as in (3.1) by using ρ-balls instead of Euclidean balls. We define
Hα

ρ (M) as in (3.2) and dimρ(M) as in (3.4). Note that we get the following
inequality which corresponds to (3.3)

Hα,∞
ρ (M) ≤ Hα,δ

ρ (M) ≤ Hα
ρ (M) for δ ∈ (0,∞].
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This inequality shows that if we want to estimate the size of M from above,
then we get the strongest statements if we use the ρ-Hausdorff measure
Hα

ρ (M). Similarly, we get the strongest statements for lower estimations
if we use the ρ-Hausdorff content Hα,∞

ρ (M). It turns out that, if ρ comes
from a quasiconformal mapping f : Bn → Rn (i.e., ρ = af , cf. Sec. 6), then
the ρ-Hausdorff content is in general too large to obtain lower estimates on
the Hausdorff content of image sets. Therefore, we will introduce a content
for a set which is quantitatively smaller than the ρ-Hausdorff content. For
its definition, recall the set C that we fixed in Sec. 2 and the notation rx =
ρ(x)(1 − |x|) for our fixed density ρ. Now let M ⊆ ∂ρBn, α ∈ (0,∞), and
δ ∈ (0,∞]. Define

Φα,δ
ρ (M) = inf

{∑
x∈E

rα
x : E ⊆ C ∧ M ⊆

⋃
x∈E

Sx ∧ ∀x ∈ E : rx ≤ δ

}
.

In contrast to Hausdorff contents where covers of the set were considered,
in the definition of Φα,δ

ρ we consider families of Whitney type balls whose
shadows cover M . We restrict ourselves to sets M ⊆ ∂ρBn here, because
Φα,δ

ρ will be useful only for estimating the size of sets in the boundary.

Proposition 3.1. Suppose ρ : Bn → (0,∞) is a continuous density satis-
fying HI(A) and VG(B). If α ∈ (0,∞) and δ ∈ [0,∞], then there exist
constants λ = λ(A, B, n) > 0 and C = C(A, B, n, α) > 0 such that

Φα,λδ
ρ (M) ≤ CHα,δ

ρ (M) for M ⊆ ∂ρBn.

The proof will easily follow from the following lemma where we make the
assumptions of Prop. 3.1.

Lemma 3.2. There exist constants l0 = l0(n) ∈ N and C = C(A, B, n) > 0
with the following property. If a ∈ Bn ∪ ∂ρBn, and r > 0, then there exists
x1, . . . , xl ∈ C with l ≤ l0 and such that ∂ρBn ∩ B′

ρ(a, r) ⊆
⋃l

ν=1 Sxν and
rxν ≤ Cr for ν ∈ {1, . . . , l}.

Proof. The constants of comparability in this proof will depend on A, B,
and n.

Let M := ∂ρBn ∩ B′
ρ(a, r) ⊆ ∂Bn. There is nothing to prove if M = ∅. If

M consists of a single point, ζ say, then lengthρ([0, ζ)) < ∞. This implies
that rx tends to zero for points x ∈ Bn for which Bx ∩ [0, ζ) �= ∅ as x

tends to ζ. So if x ∈ C with Bx ∩ [0, ζ) �= ∅ is sufficiently close to ζ, then
{ζ} = M ⊆ Sx and rx is arbitrarily small.

So we may assume, that M contains at least two points. Hence diam(M) >

0 and we can choose ζ1, ζ2 ∈ M with |ζ1 − ζ2| ≥ 1
2 diam(M). Moreover,

there exists z ∈ Bn such that M ⊆ Sz and 1 − |z| ≈ diam(M). For some
l0 = l0(n) ∈ N, the set Bz can be covered by balls Bx1 , . . . , Bxl

, where l ≤ l0
and x1, . . . , xl ∈ C, and we can in addition assume that each of these balls
Bxν meets Bz. Thus by HI(A)

rxν ≈ rz for ν ∈ {1, . . . , l},(3.5)



10 MARIO BONK AND PEKKA KOSKELA

and

M ⊆ Sz = S(Bz) ⊆
l⋃

ν=1

Sxν .(3.6)

Let γ be the hyperbolic geodesic in Bn joining ζ1 and ζ2. By the Gehring-
Hayman theorem this is essentially the curve of shortest ρ-length in Bn with
end points ζ1 and ζ2. Note that even though ζ1, ζ2 ∈ ∂ρBn, the distance
dρ(ζ1, ζ2) is still equal to infimum over lengthρ(α) for curves α in Bn con-
necting ζ1 and ζ2. Hence dρ(ζ1, ζ2) ≈ lengthρ(γ). On the other hand, since
|ζ1 − ζ2| ≥ 1

2 diam(M) ≈ 1− |z| and M ⊆ Sz, the hyperbolic geodesic γ has
a subcurve γ′ with length(γ′) � 1 − |z| and supy∈γ′ dh(y, z) � 1. It follows
that

rz � lengthρ(γ
′) ≤ lengthρ(γ) ≈ dρ(ζ1, ζ2) ≤ 2r.

The lemma follows from this, (3.5) and (3.6).

Proof of Prop. 3.1. Suppose M ⊆ ∂ρBn and
⋃

k∈N
B′

ρ(xk, rk) is a cover of M

with rk ≤ δ for k ∈ N. For each ball B′
ρ(xk, rk) choose points xk,1, . . . , xk,lk ∈

C according to Lemma 3.2. Here lk ≤ l0(n). For λ = λ(A, B, n) > 0 we have
that

rxk,ν
≤ λrk ≤ λδ for k ∈ N, ν ∈ {1, . . . , lk}.

Moreover,

M ⊆ ∂ρBn ∩
⋃
k∈N

Bρ(xk, rk) ⊆
⋃
k∈N

lk⋃
ν=1

Sxk,ν
.

Therefore,

Φα,λδ
ρ (M) ≤

∑
k∈N

lk∑
ν=1

rα
xk,ν

≤ l0λ
α

∑
k∈N

rα
k .

Passing to the infimum over all covers of M in the last sum the claim follows
with C = C(A, B, n, α) = l0λ

α.

Define for M ⊆ ∂ρBn, α ∈ (0,∞), and δ ∈ (0,∞]

Φ̃α,δ
ρ (M) = inf

{∑
x∈E

rα
x : E ⊆ C ∧ M ⊆

⋃
x∈E

Sx ∧ ∀x ∈ E : 1 − |x| ≤ δ

}
.

Lemma 3.3. Suppose ρ : Bn → (0,∞) is a continuous density satisfying
HI(A) and VG(B). Then there exists constants C = C(A, B, n) > 0 and
β = β(B, n) > 0 with the following property. If α ∈ (0,∞) and δ ∈ (0,∞],
then

Φ̃α,δ
ρ (M) ≤ Φα,δ′

ρ (M) for M ⊆ ∂ρBn,

where δ′ = Cρ(0)δβ.

Proof. By [3, Thm. 5.1] we have

1 − |x| ≤
(

rx

Cρ(0)

)1/β

for x ∈ Bn,

with β = β(B, n) > 0 and C = C(A, B, n) > 0. So if x ∈ C and rx ≤
Cρ(0)δβ, then 1 − |x| ≤ δ. The claim follows.
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4. Shadows and separation

Throughout this section we make the standing assumption that ρ : Bn →
(0,∞) is a continuous density that satisfies HI(A) and VG(B) for some
constants A ≥ 1 and B > 0. All constants of comparability will depend
only on A, B and n.

Lemma 4.1. Suppose λ > 0, E ⊆ C, and supx∈E rx < ∞. Then the family
{Bρ(x, λrx) : x ∈ E} is locally finite in Bn, i.e., for every z ∈ Bn there exists
a neighborhood U of z such that U ∩ Bρ(x, λrx) �= ∅ for only finitely many
x ∈ E. Moreover, if Ω =

⋃
x∈E Bρ(x, λrx), then every boundary point of Ω

which lies in Bn is accessible.

Proof. There exists c1 = c1(n, A) > 0 and c2 = c2(n, A) > 0 such that the
sets Bρ(x, c1rx), x ∈ C, are pairwise disjoint, and µρ(Bρ(x, c1rx)) ≥ c2r

n
x .

To show the local finiteness of our family at a point z ∈ Bn, note that
there are only finitely many members x ∈ E with Bx ∩ Bz �= ∅. So it is
enough to show that the set Ez of all x ∈ E such that Bx ∩ Bz = ∅ and
Bρ(x, λrx) ∩ U �= ∅ is finite, where U = 1

2Bz.
Now if x ∈ Ez, then Bρ(x, c1rx) ⊆ Bρ(z, R), where

R := diamρ(1
2Bz) + (λ + c1) supx∈E rx < ∞.

On the other hand, for x ∈ Ez we have λrx ≥ distρ(∂Bz,
1
2Bz) ≥ 1

4Arz. From
VG(B) we now see

(#Ez)
c2

(4Aλ)n
rn
z ≤ c2

∑
x∈Ez

rn
x ≤ µρ

( ⋃
x∈Ez

Bρ(x, c1rx)
)

≤ µρ(Bρ(z, R)) ≤ BRn.

This gives an upper bound for #Ez as desired.
The first part of the lemma implies ∂Ω ∩ Bn ⊆ (

⋃
x∈E ∂Bρ(x, λrx)) ∩ Bn.

The second claim now follows from Lem. 2.2

For a set Ω ⊆ Bn denote by R(Ω) the set of all ζ ∈ ∂Bn for which Ω
separates a tail of [0, ζ), i.e., there exists z ∈ [0, ζ) such that every curve γ

in Bn connecting the origin to a point of [z, ζ) has to meet Ω. Obviously,
R(Ω1) ⊆ R(Ω2) ⊆ ∂Bn, whenever Ω1 ⊆ Ω2 ⊆ Bn.

Lemma 4.2. Suppose Ω1,Ω2 are regions in Bn such that every boundary
point of these regions in Bn is accessible. If Ω1∩Ω2 = ∅, then R(Ω1) ⊆ R(Ω2)
or R(Ω2) ⊆ R(Ω1) or R(Ω1) ∩ R(Ω2) = ∅.

Proof. Suppose none of the three possibilities holds. Then there exist ζ1 ∈
R(Ω1) \ R(Ω2), ζ2 ∈ R(Ω2) \ R(Ω1), and ζ ∈ R(Ω1) ∩ R(Ω2).

Moreover, we can choose z1 ∈ [0, ζ1), z2 ∈ [0, ζ2) and z ∈ [0, ζ) such that
Ω1 separates [z1, ζ1) and [z, ζ) from the origin, and Ω2 separates [z2, ζ2) and
[z, ζ) from the origin. Since ζ1 /∈ R(Ω2) and ζ2 /∈ R(Ω1), there exist curves
γ1 and γ2 in Bn connecting the origin to [z1, ζ1) and [z2, ζ2), respectively,
such that γ1 ∩ Ω2 = ∅ and γ2 ∩ Ω1 = ∅. Since Ω1 separates [z1, ζ1) and Ω2

separates [z2, ζ2) from the origin, we have γ1 ∩ Ω1 �= ∅ and γ2 ∩ Ω2 �= ∅.
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Therefore, we can find curves α1 ⊆ γ1, α2 ⊆ γ2 such that α1, α2 start in
Ω1,Ω2, respectively, end at the origin and do not meet Ω2,Ω1, respectively.

Since Ω1 and Ω2 are regions, this shows that we can travel from any point
of Ω1 to the origin along a curve without hitting Ω2 and vice versa. Since
Ω1 and Ω2 both separate [z, ζ) from the origin, there exists a first point
z0 ∈ (Ω1 ∪ Ω2) ∩ [0, ζ) as we travel from z to 0 along [0, z].

W.l.o.g. we may assume z0 ∈ Ω1. Since Ω1 ∩ Ω2 = ∅, z0 /∈ Ω2. Assume
z0 ∈ ∂Ω1. Since Ω1 is a region, and every boundary point of Ω1 in Bn is
accessible, we can find a curve α connecting an end point of α1 in Ω1 with
z0 such that α \ {z0} ⊆ Ω1. This is also true if z0 ∈ Ω1.

In any case, [z, z0] ∪ α ∪ α1 is a curve connecting [z, ζ) with the origin
without hitting Ω2. This is a contradiction, since Ω2 separates [z, ζ) from
the origin.

Lemma 4.3. Suppose Ω1,Ω2 are regions as in Lem 4.2. If Ω1 ∩ Ω2 �= ∅
and ∅ �= R(Ω1) � R(Ω2), then any curve γ from the origin to a point in Ω1

meets Ω2.

Proof. As in the first part of the proof of Lem. 4.2, we see that there exists
a curve α2 from the origin to a point in Ω2 with α2 ∩Ω1 = ∅. Assume there
is a curve γ as in the statement with γ ∩ Ω2 = ∅. Then let α1 = γ, take a
point ζ ∈ R(Ω1) ⊆ R(Ω2) and proceed as in the proof of Lem. 4.2 to get a
contradiction.

Lemma 4.4. Suppose Ων , ν ∈ N, are pairwise disjoint regions in Bn that
have accessible boundary points in Bn. If the family {Ων} is locally finite in
Bn, then every set R(Ωα) �= ∅ is contained in a unique set R(Ωβ) for which
R(Ωβ) is maximal among the sets R(Ων), ν ∈ N.

Proof. If R(Ωα) �= ∅ and both R(Ωα) ⊆ R(Ωβ1) and R(Ωα) ⊆ R(Ωβ2),
where R(Ωβ1) and R(Ωβ2) are maximal, then R(Ωβ1) ⊆ R(Ωβ2) or R(Ωβ2) ⊆
R(Ωβ1) by Lem. 4.2. By maximality, R(Ωβ1) = R(Ωβ2). This shows the
uniqueness.

For the existence we have to show that every inclusion chain

∅ �= R(Ωα1) � R(Ωα2) � R(Ωα3) � . . .

is finite.
Suppose not and let ζ ∈ R(Ωα1). Then there exists z1 ∈ Ωα1 ∩ [0, ζ), for

otherwise Ωα1 would not separate any tail of [0, ζ) from the origin.
By Lem. 4.3 there exists z2 ∈ Ω2 ∩ [0, z1]. Repeating this argument we

obtain points zν ∈ Ωαν for ν ∈ N such that zν+1 ∈ [0, zν ], ν ∈ N. Then the
sequence (zν)ν∈N converges and has a limit point z ∈ Bn. This is impossible,
since the regions Ων are disjoint and form a locally finite family in Bn.

Lemma 4.5. Suppose Ω ⊆ Bn is a region and ζ ∈ ∂Bn \ ∂ρBn lies in the
boundary of R(Ω) (as a subset of ∂Bn). Then ζ ∈ Ω and diamρ(Ω) = ∞.

Proof. Suppose ζ /∈ Ω. Then there exists ε > 0 such that B(ζ, ε) ∩ Ω = ∅.
Since ζ lies in the boundary of R(Ω), there exist points ζ1 ∈ R(Ω) ∩B(ζ, ε)
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and ζ2 ∈ [∂Bn \R(Ω)] ∩B(ζ, ε). Choose z2 ∈ [0, ζ2) close enough to ζ2 such
that z2 ∈ B(ζ, ε). Since Ω separates no tail of [0, ζ2), there exists a curve γ

connecting the origin to [z2, ζ2) with γ∩Ω = ∅. But then Ω cannot separate
any tail of [0, ζ1) from the origin, since any line segment [x, y] lies in Bn \Ω
whenever x, y ∈ B(ζ, ε) ∩ Bn. Choosing x on [0, ζ1) sufficiently close to ζ1

and for y the end point of γ on [z2, ζ2), we can connect any tail of [0, ζ1)
with 0 without hitting Ω. This contradicts ζ1 ∈ R(Ω).

Assume diamρ(Ω) < ∞. Then there exists C1 < ∞ such that dρ(0, x) ≤
C1 for x ∈ Ω. By the Gehring-Hayman Theorem, [0, x] is essentially the
curve of smallest ρ-length connecting 0 and x in Bn. It follows that there
exists a constant C2 < ∞ such that lengthρ([0, x]) ≤ C2 for x ∈ Ω. Since
ζ ∈ Ω we can choose a sequence (xk) in Ω with (xk) → ζ. A limiting
argument using the continuity of ρ then implies

lengthρ([0, ζ)) = lim
r→1,r<1

lengthρ([0, rζ]) ≤ lim sup
k→∞

lengthρ([0, xk]) ≤ C2.

But ζ /∈ ∂ρBn and so lengthρ([0, ζ)) = ∞. This is a contradiction.

Lemma 4.6. Suppose t ≥ 1. Then there exists λ = λ(A, B, n, t) > 0 with
the following property. If x ∈ Bn and Ω = Bρ(x, λrx), then tSx ⊆ R(Ω).

Proof. By [3, Thm. 6.3 and Prop. 6.2] there exists c1 = c1(A, B, n) > 0 such
that the following separation property is true. If ζ ∈ ∂Bn, y ∈ (0, ζ), and γ

is any curve in Bn connecting [0, y) and (y, ζ), then γ ∩ Bρ(y, c1ry) �= ∅. In
other words, ζ ∈ R(Bρ(y, c1ry)) whenever ζ ∈ ∂Bn and y ∈ [0, ζ).

Now if ζ ∈ tSx, then disth(x, [0, ζ)) < c2(t). Hence for each ζ ∈ tSx, we
can find yζ ∈ [0, ζ) with dh(x, yζ) < c2(t). Then ryζ

≤ c3rx and dρ(x, yζ) ≤
c3rx for ζ ∈ tSx, where c3 = c3(A, t) > 0. Hence if λ = λ(A, B, n, t) =
c3(1 + c1), then Bρ(yζ , c1ryζ

) ⊆ Bρ(x, λrx), and so

tSx ⊆
⋃

ζ∈tSx

R(Bρ(yζ , c1ryζ
)) ⊆ R(Bρ(x, λrx)).

Lemma 4.7. Suppose ζ1, ζ2 ∈ ∂Bn, x ∈ [0, ζ1), ε > 0, and |ζ1 − ζ2| ≥
ε(1 − |x|). If γ is any curve in Bn connecting [x, ζ1) \ Bx and [0, ζ2), then

lengthρ(γ) ≥ crx,

where c = c(A, B, n, ε) > 0.

Proof. Let u ∈ [x, ζ1) \ Bx and v ∈ [0, ζ2) be the end points of γ, and α

be the hyperbolic geodesic joining u and v. Then by the Gehring-Hayman
theorem

lengthρ(γ) ≥ c1(A, B, n) lengthρ(α).(4.1)

On the other hand, our assumptions imply |u − v| � c2(ε)(1 − |x|) and
therefore it is easily seen that the hyperbolic geodesic α contains a subcurve
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α′ with length(α′) ≥ c3(ε)(1 − |x|) and supy∈α′ dh(x, y) ≤ c4(ε). It follows
from HI(A) that

lengthρ(α) ≥ lengthρ(α
′) ≥ c5(A, ε)(1 − |x|)ρ(x) = c5(A, ε)rx.(4.2)

Inequalities (4.1) and (4.2) imply the claim.

Proposition 4.8. Suppose E ⊆ C, z ∈ Bn, ε > 0, and γ is a compact curve
in ∂Bn. If

(a) Sx ⊆ Sz for x ∈ E,

(b) γ ∩ ∂ρBn ⊆
⋃

x∈E 5Sx,

(c) diam(γ) ≥ ε(1 − |z|),
then

∑
x∈E rx ≥ crz, where c = c(A, B, n, ε) > 0.

Proof. We may assume
∑

x∈E rx < ∞, for otherwise there is nothing to
prove.

By Lem. 4.6 there exists λ = λ(A, B, n) > 0 such that Bρ(x, λrx) sepa-
rates a tail of [0, ζ) for all ζ ∈ 5Sx, x ∈ Bn. Then by Lem. 4.1 the connected
components Ω1,Ω2, . . . of the open set U =

⋃
x∈E Bρ(x, λrx) ⊆ Bn form a

family of regions whose boundary points in Bn are accessible. Moreover, the
family is locally finite in Bn.

Our choice of λ implies R(Bρ(x, λrx)) ⊇ 5Sx for x ∈ E . Our assumption
(b) hence shows that each point ζ ∈ γ∩∂ρBn lies in the interior (w.r.t. ∂Bn)
of some R(Ων).

By Lem. 4.4 there is at least one of the regions Ων , say Ω, for which the
set R(Ω) is maximal among the sets R(Ων) and contains a point of γ ∩∂ρBn

in its interior.
We may assume that γ has a parametrization γ : [0, 1] → ∂Bn. Let I ⊆

[0, 1] be the set of t ∈ [0, 1] for which γ(t) lies in the interior (w.r.t. ∂Bn) of
R(Ω). Then I �= ∅ is a relative open set in [0, 1]. We claim that I = [0, 1].

Otherwise, there exists a point t0 ∈ [0, 1] in the relative boundary of I in
[0, 1]. Since I is open in [0, 1], t0 /∈ I, but t0 is a limit point of points in I.
This implies that ζ0 = γ(t0) does not lie in the interior of R(Ω), but is a
limit point of interior points of R(Ω). In particular, ζ0 lies in the boundary
of R(Ω).

Assume ζ0 ∈ ∂Bn \ ∂ρBn. Then diamρ(Ω) = ∞ by Lem. 4.5. This is
impossible, since the ρ-diameter of every component Ων of U is bounded by
2λ

∑
x∈E rx < ∞. To see this note that two points u, v ∈ U lie in the same

component of U if and only if there exist distinct points x1, . . . , xk ∈ E such
that u ∈ Bρ(x1, λrx1), v ∈ Bρ(xk, λrxk

) and

Bρ(xν , λrxν ) ∩ Bρ(xν+1, λrxν+1) �= ∅
for ν ∈ {1, . . . , k − 1}. The points u and v can then be joined by a curve in
the component which has ρ-length at most

2λ
k∑

ν=1

rxν ≤ 2λ
∑
x∈E

rx.
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Thus ζ0 = γ(t0) ∈ γ ∩∂ρBn. Then ζ0 ⊆ 5Sx for some x ∈ E , and so ζ0 lies
in the interior of some R(Ωl). We have seen above that ζ0 is a limit point of
points in R(Ω) distinct from ζ0. Therefore, R(Ωl) ∩R(Ω) �= ∅. By Lem. 4.2
and the maximality of R(Ω) this implies R(Ωl) ⊆ R(Ω). In particular, ζ0

would lie in the interior of R(Ω). Since we know that this is not true, we
get a contradiction. This shows that I = [0, 1] as claimed. Hence γ lies in
R(Ω).

Choose ζ1, ζ2 ∈ γ such that |ζ1 − ζ2| = diam γ. Since ζ1, ζ2 ∈ R(Ω), we
have [0, ζ1) ∩ Ω �= ∅ and [0, ζ2) ∩ Ω �= ∅. From the consideration above
it follows that there are pairwise distinct points x1, . . . , xk ∈ E such that
[0, ζ1) ∩ Bρ(x1, λrx1) �= ∅, [0, ζ2) ∩ Bρ(xk, λrxk

) �= ∅ and

Bρ(xν , λrxν ) ∩ Bρ(xν+1, λrxν+1) �= ∅
for ν ∈ {1, . . . , k − 1}. In particular, there exists a curve α in B connecting
[0, ζ1) and [0, ζ2) with

lengthρ(α) ≤ 2λ
∑
x∈E

rx.(4.3)

Moreover, we may assume that α passes through at least one of the points
x1, . . . , xk, i.e., there exists x0 ∈ E with x0 ∈ α. The point x0 lies on some
ray [0, ζ ′1), ζ ′1 ∈ ∂Bn. Since |ζ1 − ζ ′1| + |ζ2 − ζ ′1| ≥ |ζ1 − ζ2| = diam(γ), there
is a point ζ ′2 ∈ {ζ1, ζ2} for which

|ζ ′1 − ζ ′2| ≥ 1
2 |ζ1 − ζ2| = 1

2 diam(γ) ≥ 1
2ε(1 − |z|).

Since Sx0 ⊆ Sz by assumption (a), there exists a point y ∈ Bz ∩ [0, x0] by
Lem. 2.1. In other words, y lies in on the ray [0, ζ ′1) “above” x0. The curve
α connects [x0, ζ

′
1) ⊆ [y, ζ ′1) to [0, ζ ′2) If x0 ∈ By then rx0 ≈ ry ≈ rz, and the

statement of the proposition is then trivially true.
If x0 /∈ By, then α connects [y, ζ ′1) \ By to [0, ζ ′2). Moreover, |ζ ′1 − ζ ′2| ≥

1
2ε(1 − |z|) ≥ 3

4ε(1 − |y|).
By Lem. 4.7 there is a constant c = c(A, B, n, ε) > 0 such that

lengthρ(α) ≥ cry ≈ crz.(4.4)

The claim now follows follows from (4.3) and (4.4).

5. Modulus estimates

Suppose Γ is a curve family in Rn and ρ : Bn → [0,∞] is Borel measurable.
The density ρ is called admissible for Γ if∫

γ
ρ(z) |dz| ≥ 1(5.1)

for all locally rectifiable curves γ ∈ Γ.
The modulus of Γ is defined as

modn Γ = inf
∫

Rn

ρn dmn,(5.2)

where the infimum is taken over all densities admissible for Γ.
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If Γ is a curve family in ∂Bn, n ≥ 2, the spherical modulus is defined by

modσ
n−1 Γ = inf

∫
∂Bn

ρn−1 dσn−1,(5.3)

where the infimum ranges over all Borel densities that are admissible for
Γ. Obviously, we can in addition assume that ρ is supported on ∂Bn. We
emphasize the difference between theses modulus concepts by the additional
superscript σ (for “spherical”) in (5.3).

Proposition 5.1. Suppose 0 < α ≤ n − 1. Let x ∈ Bn, let E ⊆ Sx be a
Borel set, and Γ be the family of curves in Bn connecting Bx and E. Then

Hα,∞(E) ≤ c(1 − |x|)α modn Γ,

where c = c(α, n) > 0.

Proof. For x = 0 this is [6, Prop. 4.3]. The general case follows from a
modification of the argument to our present situation (cf. [7, Form. (3.3)]).
Alternatively, we can reduce to the case x = 0 by using a Möbius transfor-
mation T fixing Bn and mapping x to 0. Note that T preserves the modulus
of curve families and expands distances in Sx by a factor comparable to
(1 − |x|)−1.

Lemma 5.2. Let n ≥ 3. Then there exist a numerical constant c1 > 0 and
constants ε = ε(n) > 0, c2 = c2(n) > 0 with the following property. Let
x ∈ Bn, M ⊆ Sx, and Hn−2,∞(M) ≤ ε(1 − |x|)n−2. Denote by Γ the family
of all compact curves γ ⊆ Sx \ M such that diam(γ) ≥ c1(1 − |x|). Then
modσ

n−1 Γ ≥ c2.

Proof. Fix a center for the spherical ball Sx and shrink its radius r ≤ π

which is comparable to 1 − |x| by a factor 2 so that the smaller ball fits
into a hemisphere. Consider only curves γ in this new spherical ball. It can
be mapped onto the ball B = B(0, R) ⊆ Rn−1 of radius R := 1 − |x| by a
bilipschitz map whose bilipschitz constant is bounded by a fixed number.

By using this auxiliary map, we are reduced to a Euclidean situation and
it is enough to show that if ε = ε(n) > 0 is small, and M ⊆ B is a set with
Hn−2,∞(M) < εRn−2, then for the family of all compact curves γ ⊆ B \ M

such that diam(γ) ≥ 1
3R we have modn−1Γ ≥ c(n) > 0.

Consider the annulus A := B̄(0, R2) \ B(0, R1) ⊆ B, where R1 = 1
3R and

R2 = 2
3R. Let M ′ = A ∩ M and Γ′ be the family of all closed segments in

A \ M ′ which are subsets of rays starting from 0 and have their end points
on the different boundary components of A. Then Γ′ ⊆ Γ, and so

modn−1Γ ≥ modn−1Γ′.(5.4)

Since M ′ ⊆ M , we can find balls B(xk, rk) ⊆ Rn−1 such that xk ∈ M ′ for
k ∈ N, M ⊆

⋃
k∈N

B(xk, rk) and
∑∞

k=1 rn−2
k < ε(2R)n−2. Note that the

factor 2 in this last inequality is caused by the requirement xk ∈ M ′ for
k ∈ N. If ε = ε(n) > 0 is small enough, then this implies rk < 1

10R. In
particular, B(0, 1

10R) ∩ B(xk, rk) = ∅ and B(xk, rk) ⊆ B(0, R) for k ∈ N.
Then rn−2

k is comparable to the solid angle under which B(xk, rk) is seen
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from the origin in Rn−1. Assuming ε = ε(n) > 0 is small enough, we have
that

σn−2(N) ≤ 1
2σn−2(∂Bn−2),

where
N = {ζ ∈ ∂Bn−2 : ∃t ≥ 0 : tζ ∈

⋃
k∈N

B(xk, rk)}.

If ζ ∈ ∂Bn \N , then the line segment {tζ : R1 ≤ t ≤ R2} belongs to Γ′. If ρ

is an admissible density for Γ′, then it follows from Hölder’s inequality that∫
Rn−1

ρn−1 dmn−1 ≥
∫

∂Bn−2\N

[∫ R2

R1

ρ(rζ)n−1rn−2 dr

]
dσn−2(ζ)

≥ 1
[log(R2/R1)]n−1

∫
∂Bn−2\N

[∫ R2

R1

ρ(rζ) dr

]n−1

dσn−2(ζ)

≥ 1
2[log 2]n−1

σn−2(∂Bn−2) = c(n) > 0.

The claim follows from this inequality and (5.4).

The following Lemma is Lem. 3.2 from [3].

Lemma 5.3. Suppose ρ : Bn → (0,∞) is a continuous density satisfying
HI(A) and VG(B). There exists a constant C = C(B, n) > 0 with the
following property.

Let E be a nonempty subset of Bn and suppose L ≥ δ > 0. Assume
diamρ(E) ≤ δ and that Γ is a family of curves in Bn so that γ has one end
point in E and lengthρ(γ) ≥ L for every γ ∈ Γ. Then

modn Γ ≤ C

[log(1 + L/δ)]n−1
.

In order to prove the next proposition we need the following result. We
denote by ||f ||Lp = (

∫
∂Bn |f |p dσn−1)1/p the Lp(σn−1)-norm of a measurable

function f : ∂Bn → R.

Lemma 5.4. Suppose n ≥ 2, 1 ≤ p < ∞ and λ ≥ 1. Let {Σi}i∈N be a
collection of spherical balls in ∂Bn and let ai ≥ 0 for i ∈ N. Then∥∥∑

i∈N

aiχλΣi

∥∥
Lp ≤ C(n, p, λ)

∥∥∑
i∈N

aiχΣi

∥∥
Lp

For a proof of a similar result see e.g. [1]. The case p = 1 is easy and the
proof for the case p > 1 is based on Lp-duality and on the boundedness of
the maximal function in Lq, where q is the conjugate exponent of p. These
considerations apply to the setting of Lem. 5.4, since σn−1 is a doubling
measure with respect to the spherical metric.

Proposition 5.5. (Main Modulus Estimate) Suppose ρ : Bn → (0,∞) is a
continuous density satisfying HI(A) and VG(B). If ε ∈ (0, 1

2 ], then there
exists a constant C(n, A, B, ε) > 0 with the following property.

Let z ∈ Bn, E ⊆ C, and Γ be a family of compact curves in ∂Bn. Assume
that
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(a) Sx ⊆ Sz for x ∈ E,

(b) γ ∩ ∂Bn ⊆
⋃

x∈E Sx for γ ∈ Γ,

(c) diam(γ) ≥ ε(1 − |z|) for γ ∈ Γ.

Then

modσ
n−1 Γ ≤ C

rn−1
z

∑
x∈E

rn−1
x .(5.5)

Proof. In the proof the constants of comparability will only depend on A,
B, n, and ε.

A standard covering argument shows that there exists a set E ′ ⊆ E such
that

Sx ∩ Sy = ∅ for x, y ∈ E ′, x �= y,(5.6)

and ⋃
x∈E

Sx ⊆
⋃

x∈E ′
5Sx.(5.7)

By (a)–(c) the density 1
ε(1−|z|)χSz

is admissible for Γ. Hence

modσ
n−1 Γ � 1.(5.8)

Suppose for some x ∈ E ′ the diameter of Bx is comparable to the diameter
of Bz. Then (a) and Lem. 2.1 imply that the hyperbolic distance of Bx and
Bz is controlled. So rx and rz are comparable by property HI(A) of ρ. In
this case (5.5) follows from (5.8). Therefore, we may assume that diam(Bx)
and hence diam(Sx) is small compared to diam(Bz) ≈ 1 − |z| for all x ∈ E ′.
More precisely we assume that

diam(Sx) ≈ diam(6Sx) < ε(1 − |z|) ≤ 1/2 for x ∈ E ′.(5.9)

Now let

ρ̃(ζ) =
1
rz

∑
x∈E ′

ρ(x)χ
6Sx

(ζ), for ζ ∈ ∂Bn.

To see that ρ̃ multiplied with a constant only depending on A, B, n, and ε

is admissible for Γ, we have to show
∫
γ ρ̃(ζ) |dζ| � 1 for γ ∈ Γ. For this note

that γ cannot be contained in any 6Sx, x ∈ E ′, for otherwise by (5.9)

diam(γ) ≤ diam(6Sx) < ε(1 − |z|),

which contradicts (c).
This implies that if γ ∩ 5Sx �= ∅ for some x ∈ E ′, then γ connects 5Sx and

∂Bn \ 6Sx, and so

length(γ ∩ 6Sx) ≥ dist(∂Bn \ 6Sx, 5Sx) � 1 − |x|.

Here we used (5.9) and fact that ε ∈ (0, 1
2 ] which implies that 6Sx is con-

tained in a hemisphere.
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Now if γ ∈ Γ let C′
γ := {x ∈ E ′ : γ ∩ 5Sx �= ∅}. If γ ∈ Γ, then by (b) and

(5.7) we can apply Proposition 4.8 to C′
γ and we obtain∫

γ
ρ̃(x) |dx| =

1
rz

∑
x∈E ′

ρ(x) length(γ ∩ 6Sx)

� 1
rz

∑
x∈C′

γ

ρ(x)(1 − |x|) =
1
rz

∑
x∈C′

γ

rx � 1.
(5.10)

Hence inequality (5.5) follows, since by Lem. 5.4 and (5.6) we have

modσ
n−1 Γ �

∫
∂Bn

ρ̃n−1 dσn−1 =
1

rn−1
z

∥∥∑
x∈E ′

ρ(x)χ
6Sx

∥∥n−1

Ln−1

� 1
rn−1
z

∥∥∑
x∈E ′

ρ(x)χ
Sx

∥∥n−1

Ln−1 =
1

rn−1
z

∑
x∈E ′

ρ(x)n−1σn−1(Sx)

� 1
rn−1
z

∑
x∈E ′

ρ(x)n−1(1 − |x|)n−1 ≤ 1
rn−1
z

∑
x∈E

rn−1
x .

The proof is complete.

Now we can prove Thm. 1.1.

Proof of Thm. 1.1. Suppose n = 2 and assume that for some E ⊆ C we have⋃
x∈E Sx ⊇ ∂ρBn. Prop 4.8 with z = 0 and γ = ∂B2 shows that∑

x∈E
rx ≥ c1r0 = c1ρ(0),

where c1 = c1(A, B) > 0. Hence Φ1,∞
ρ (∂ρB2) ≥ c1ρ(0).

Prop. 3.1 then implies

H1
ρ(∂ρB2) ≥ H1,∞

ρ (∂ρB2) ≥ c2Φ1,∞
ρ (∂ρB2) ≥ c1c2ρ(0) > 0,

where c2 = c2(A, B) > 0. Thus dimρ(∂ρB2) ≥ 1.
If n ≥ 3 and then Lem. 5.2 for x = 0 shows that for the family Γ of all

compact curves γ in ∂Bn with diam(γ) ≥ c3, we have

modσ
n−1 Γ ≥ c4 > 0,(5.11)

where c3 > 0 and c4 = c4(n) > 0. On the other hand, the Main Modulus
Estimate shows that if

⋃
x∈E Sx ⊇ ∂ρBn for some set E ⊆ C, then∑

x∈E
rn−1
x ≥ c5ρ(0)n−1 modσ

n−1 Γ ≥ c6ρ(0)n−1,(5.12)

where c5 = c5(A, B, n) > 0 and c6 = c6(A, B, n) > 0. Hence Φn−1,∞
ρ (∂ρBn) ≥

c6ρ(0)n−1.
Therefore, by Prop. 3.1 we have that

Hn−1
ρ (∂ρBn) ≥ Hn−1,∞

ρ (∂ρBn) ≥ c7Φn−1,∞
ρ (∂ρBn) ≥ c6c7ρ(0)n−1 > 0,

where c7 = c7(A, B, n) > 0. This shows dimρ(∂ρBn) ≥ n − 1.

The proof actually shows the stronger result Hn−1
ρ (∂ρBn) ≥ C(A, B, n)ρ(0)n−1.
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6. The Hanson Conjecture

From now on we will deal with quasiconformal maps f : Bn → Rn.
A homeomorphism f of Bn onto a region Ω ⊆ Rn is called K-quasiconformal

for K ≥ 1 if the following condition is satisfied: If we define

Hf (x) := lim sup
r→0+

max{|f(y) − f(x)| : |y − x| = r}
min{|f(y) − f(x)| : |y − x| = r} ,

then Hf (x) ≤ K for x ∈ Bn.
A quasiconformal map lies in the Sobolev space W 1,n

loc and is differentiable
a.e. in Bn. If the Jacobian determinant of f is denoted by Jf , we define

af (x) =
(

1
mn(Bx)

∫
Bx

Jf dmn

)1/n

for x ∈ Bn.

It can be shown that for a K-quasiconformal map f , the density ρ = af is
positive and continuous and satisfies HI(A) and VG(B) with constants only
depending on n and K (cf. [3, 2.4]). In the following, ρ = af unless otherwise
stated. Moreover, in inequalities like a � b the constants of comparability
are understood to depend only on n and K.

It is convenient to have special notation for the distance of a point to the
boundary of the image region Ω of f . So for x ∈ Ω we let

δΩ(x) = dist(x, ∂Ω).

It follows from the local quasisymmetry of a quasiconformal map (cf. [8,
Sec. 18]) that

rx = ρ(x)(1 − |x|) = af (x)(1 − |x|)
≈ diam(f(Bx)) ≈ δΩ(f(x)) for x ∈ Bn.

(6.1)

The internal metric lΩ and the quasihyperbolic metric kΩ on Ω are for x, y ∈
Ω defined by

lΩ(x, y) = inf length(γ) and kΩ(x, y) = inf
∫

γ

|dz|
δΩ(z)

,

respectively, where the infimum is taken over all curves γ in Ω connecting
x and y. It follows from standard distortion estimates for quasiconformal
mappings that

lΩ(f(x), f(y)) ≈ dρ(x, y) whenever x, y ∈ Bn and dh(x, y) ≥ 1.(6.2)

For ζ ∈ ∂Bn we let f(ζ) be the radial limit limr→1 f(rζ) if it exists. In
this case, f(ζ) ∈ ∂Ω. Since

lengthρ([rζ, ζ)) ≈
∑

{rx : x ∈ C, Bx ∩ [rζ, ζ) �= ∅}

≈
∑

{diam(f(Bx)) : x ∈ C, Bx ∩ [rζ, ζ) �= ∅}
≥ diam

(
f([rζ, ζ))

)
for r ∈ [0, 1), ζ ∈ ∂Bn,

the limit limr→1 f(rζ) exists whenever lengthρ([rζ, ζ)) → 0 for r → 1. In
particular, f(ζ) is defined for ζ ∈ ∂ρBn. So there exists an exceptional set
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E0 ⊆ ∂Bn of vanishing n-capacity such that ∂ρBn ⊆ ∂Bn \ E0 and f(ζ) is
defined for ζ ∈ ∂Bn \ E0.

For M ⊆ ∂Bn we let f(M) ⊆ ∂Ω denote the set {f(ζ) : ζ ∈ (∂Bn \ E0) ∩
M}.

If x = f(ζ) with ζ ∈ ∂ρBn for a boundary point x ∈ ∂Ω, then x is a
rectifiably accessible boundary point of ∂Ω, i.e., there exists a rectifiable
curve γ : [0, 1] → Rn such that γ([0, 1)) ⊆ Ω and γ(1) = x.

Lemma 6.1. Suppose f : Bn → Ω ⊆ Rn is K-quasiconformal, a ∈ ∂Ω,
R > 0, and E = {x ∈ C : f(Bx) ∩ ∂B(a, R) �= ∅}. Then∑

x∈E
rn−1
x ≤ CRn−1,

where C = C(n, K) > 0.

Proof. For each x ∈ E there exists yx ∈ Bx such that |f(yx)− a| = R. Since
1
2(1− |x|) ≤ 1− |yx| ≤ 3

2(1− |x|), we have 1
4Byx ⊆ B(x, (1

2 + 3
16)(1− |x|)) ⊆

3
2Bx. The local quasisymmetry of f implies that there exists c = c(n, K) > 0
such that f(1

4Byx) ⊇ B
(
f(yx), cδΩ(f(yx))

)
. Note that δΩ(f(yx)) ≈ ryx ≈ rx.

On the other hand, δΩ(f(yx)) ≤ |f(yx) − a| = R. Therefore, ∂B(a, R) ∩
B

(
f(yx), cδΩ(f(yx))

)
is a spherical ball on ∂B(a, R) with spherical measure

comparable to cn−1δΩ(f(yx))n−1, i.e.,

σn−1

(
∂B(a, R) ∩ B

(
f(yx), cδΩ(f(yx))

))
≈ δΩ(f(yx))n−1 ≈ rn−1

x .

Note that the balls B
(
f(yx), cδΩ(f(yx))

)
, x ∈ E , have bounded overlap,

because by (2.7)∑
x∈E

χ
B
(
f(yx),cδΩ(f(yx))

) ◦ f ≤
∑
x∈E

χ 1
4
Byx

≤
∑
x∈E

χ 3
2
Bx

≤
∑
x∈C

χ 3
2
Bx

� 1.

Hence∑
x∈E

rn−1
x ≈

∑
x∈E

δΩ(f(yx))n−1 ≈
∑
x∈E

σn−1

(
∂B(a, R) ∩ B

(
f(yx), cδΩ(f(yx))

))

� σn−1(∂B(a, R)) ≈ Rn−1.

Lemma 6.2. Suppose f : Bn → Ω ⊆ Rn is K-quasiconformal and M ⊆
∂ρBn. Then there exist positive constants c1, c2, c3 only depending on n and
K such that

Hn−1,∞(f(M)) ≥ c1Φ̃n−1,δ
ρ (M) for δ > c2 diam(M),

and
Hn−1(f(M)) ≥ c3Φn−1,δ

ρ (M) for δ > 0.

Proof. We may assume diam(M) > 0 for otherwise the right hand sides of
the inequalities to be proved are 0 by an argument similar to the one given
in the beginning of the proof of Lem. 3.2. Then we can find a point z ∈ Bn

such that M ⊆ Sz and 1 − |z| ≈ diam(M).
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Assume the balls B(uk, Rk), k ∈ N, cover f(M) ⊆ ∂Ω. Discarding balls
from the collection if necessary we may assume B(uk, Rk) ∩ f(M) �= ∅. In
this case we may also assume that uk ∈ f(M), since we can shift the center
of each ball to a point in f(M) and increase its radius by a factor 2 if
necessary. In this way the sum

∑
k∈N

Rk
n−1 that we have to bound from

below increases by a factor 2n−1 at most. We now consider two cases.
I. f(Bz) ∩ B(ul, Rl) �= ∅ for some l ∈ N.
Then f(y) ∈ B(ul, Rl) for some y ∈ Bz. It follows that

ry ≈ δ(f(y)) ≤ |f(y) − ul| ≤ Rl.(6.3)

If E is the set of all x ∈ C with Bx ∩ Bz �= ∅, then #E � 1 and rx ≈
rz ≈ ry � Rl for x ∈ E . Moreover, 1 − |x| ≈ 1 − |z| ≈ diam(M) for
x ∈ E , and

⋃
x∈E Bx ⊇ Bz implies

⋃
x∈E Sx ⊇ Sz ⊇ M . This shows that for

δ � diam(M) ∑
k∈N

Rn−1
k ≥ Rn−1

l �
∑
x∈E

rn−1
x ≥ Φ̃n−1,δ

ρ (M).(6.4)

II. f(Bz) ∩ B(uk, Rk) = ∅ for all k ∈ N.
Since Sz ⊇ M , for every ζ ∈ M we can pick a point yζ ∈ [0, ζ) ∩ Bz. Let

E be the set of all x ∈ C such that Bx ∩ [yζ , ζ) �= ∅ for some ζ ∈ M and
f(Bx) ∩ ∂B(uk, Rk) �= ∅ for some k ∈ N. Note that

1 − |x| � 1 − |z| ≈ diam(M) for x ∈ E .(6.5)

Moreover, if ζ ∈ M is arbitrary, then f(ζ) ∈ B(uk, Rk) for some k ∈ N. Since
f(yζ) ∈ f(Bz), the curve f([yζ , ζ]) has its initial point outside B(uk, Rk) and
has its end point in B(uk, Rk). Therefore, there exists a point v ∈ [yζ , ζ)
with |f(v) − uk| = Rk. For some x ∈ C we have v ∈ Bx. Then x ∈ E and
ζ ∈ Sx. This shows

⋃
x∈E Sx ⊇ M.

Lem. 6.1 and (6.5) now imply that for δ � diam(M)∑
k∈N

Rn−1
k �

∑
k∈N

∑
{rn−1

x : x ∈ C, f(Bx) ∩ ∂B(uk, Rk) �= ∅}

≥
∑
x∈E

rn−1
x ≥ Φ̃n−1,δ

ρ (M).
(6.6)

The first statement of the lemma follows from (6.4) and (6.6).
To prove the second statement we start as in the first part of the proof, but

may in addition assume that the radii Rk of the covering balls are smaller
than a given arbitrary positive constant δ > 0. In both cases considered
above we have that

sup
x∈E

rx � sup
l∈N

Rl < δ.

Hence we get the inequalities (6.4) and (6.6) where Φ̃n−1,δ is replaced by
Φn−1,δ. By considering appropriate limits based on these inequalities the
second statement of the lemma follows.

Theorem 6.3. Suppose n ≥ 3 and f : Bn → Ω ⊆ Rn is a K-quasiconformal
map. Then there exist constants ε = ε(n) > 0 and c = c(n, K) > 0 such that
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for every x ∈ Bn and for every set M ⊆ Sx with Hn−2,∞(M) ≤ ε(1−|x|)n−2

we have
Hn−1,∞(f(Sx \ M)) ≥ cδΩ(f(x))n−1.

Corollary 6.4. (Hanson conjecture) Suppose f : Bn → Ω ⊆ Rn is a K-
quasiconformal map. Then

Hn−1,∞(f(Sx)) ≥ cδΩ(f(x))n−1 for x ∈ Bn,

where c = c(n, K) > 0.

Note that in the Corollary we allow the case n = 2.

Proof. Assume first that n ≥ 3. Let N = M∪(∂Bn\∂ρBn). Since dim(∂Bn\
∂ρBn) = 0, we have Hn−2,∞(N) = Hn−2,∞(M). By Lem. 5.2 we can find
ε1 = ε1(n) > 0, c1 > 0, and c2 = c2(n) > 0 with the following property.
If Hn−2,∞(M) ≤ ε(1 − |x|)n−1 and Γ is the family of all compact curves
γ ⊆ Sx \ N with diam(γ) ≥ c1(1 − |x|), then modσ

n−1 Γ ≥ c2. By Lem. 6.2,
for some number δ ≈ (1 − |x|) � diam(Sx \ N) we have that

Hn−1,∞(f(Sx \ M)) ≥ Hn−1,∞(f(Sx \ N)) � Φ̃n−1,δ
ρ (Sx \ N).(6.7)

To estimate the last expression in (6.7), assume E ⊆ C is a set such that⋃
y∈E Sy ⊇ Sx \ N and 1 − |y| ≤ δ for y ∈ E . In order to give a lower bound

for
∑

y∈E rn−1
y , we can make the further assumption Sy ∩ Sx �= ∅ for y ∈ E ,

because we can discard all y ∈ E from E for which Sy ∩ Sx = ∅, without
affecting the inclusion

⋃
y∈E Sy ⊇ Sx \ N .

Since 1− |y| ≤ δ ≈ 1− |x| for y ∈ E , the union
⋃

y∈E Sy is then contained
in a spherical ball with the same center ζ as Sx and a spherical radius not
much larger than the radius of Sx. Therefore, we can find a point z ∈ [0, x]
such that |z − x| � 1− |x| and Sz ⊇

⋃
y∈E Sy. Note that dh(z, x) � 1 and so

rx ≈ rz.

The Main Modulus Estimate now shows∑
y∈E

rn−1
y � rn−1

z ≈ rn−1
x ≈ δΩ(f(x))n−1.

Thus for δ as above we have

Φ̃n−1,δ
ρ (Sx \ N) � δΩ(f(x))n−1.(6.8)

Inequalities (6.7) and (6.8) imply the statement of the theorem for n ≥ 3.
The corollary follows from the theorem for n ≥ 3 by taking M = ∅.

Finally, the corollary in the case n = 2 follows from Prop. 4.8 by the
above reasoning, if for the curve γ in Prop. 4.8 we take a closed arc with
γ ⊆ Sx and diam(γ) ≈ 1 − |x|.

In the statement of the next theorem we use the following notation. If
Ω ⊆ Rn is a region, then BlΩ(y, r) is the ball centered at y with radius r > 0
in the internal metric of Ω, i.e., the set all points z ∈ Ω̄ for which there
exists a curve α : [0, 1] → Rn with α(0) = 0, α(1) = z, α([0, 1)) ⊆ Ω, and
length(α) < r.
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Theorem 6.5. (“Wall” Theorem) Suppose f : Bn → Ω ⊆ Rn is a K-
quasiconformal map. Then

Hn−1,∞(
∂Ω ∩ BlΩ(y, 2δΩ(y))

)
≥ cδΩ(y)n−1 for y ∈ Ω,

where c = c(n, K) > 0.

Note that this theorem implies Thm. 1.3 stated in the introduction, be-
cause BlΩ(y, r) ⊆ B(y, r), whenever y ∈ Ω and r > 0.

Proof. First note that it is enough to show that there exists λ = λ(n, K) > 1
such that

Hn−1,∞(
∂Ω ∩ BlΩ(y, λδΩ(y))

)
� δΩ(y)n−1 for y ∈ Ω.(6.9)

For if (6.9) is true, let y ∈ Ω and z ∈ ∂Ω with |y − z| = δΩ(y). Define
y′ = ty + (1 − t)z, where t = 1/λ ∈ (0, 1). Note that y′ ∈ Ω, δΩ(y′) =
|y′ − z| = tδΩ(y) and BlΩ(y′, λδΩ(y′)) ⊆ BlΩ(y, 2δΩ(y)). Inequality (6.9)
applied to y′ then gives

Hn−1,∞(∂Ω ∩ BlΩ

(
y, 2δΩ(y))

)
≥ Hn−1,∞(∂Ω ∩ BlΩ

(
y′, λδΩ(y′))

)
� δΩ(y′)n−1 ≈ δΩ(y)n−1.

Now assume n ≥ 3. In order to prove (6.9), let x ∈ Bn be the unique
point with y = f(x). For arbitrary s ≥ 1 define Ms to be the set of all
ζ ∈ Sx for which the ρ-length of the hyperbolic geodesic γζ joining x and ζ

is bigger than srx.
We show that for s = s(n, K) sufficiently large, we have

Hn−2,∞(Ms) ≤ ε(1 − |x|)n−2,(6.10)

where ε = ε(n) is the constant of Thm. 6.3. To see this consider the family
Γs of all curves γ in Bn connecting Bx and Ms. If δ = diamρ(Bx), then
δ ≤ c1rx, where c1 = c1(n, K) > 0. By the Gehring-Hayman theorem, there
exists c2 = c2(n, K) such that

lengthρ(γζ) ≤ c2 lengthρ(α)

for any curve α in Bn connecting ζ ∈ Ms and x. It follows that

lengthρ(γ) ≥ srx/c2 − δ ≥ rx(s/c2 − c1) =: Ls for γ ∈ Γs.

In particular, Ls ≥ δ for s ≥ 2c1c2. For these s, Lem. 5.3 then implies

modn Γs ≤
c3

[log(1 + Ls/δ)]n−1
,(6.11)

where c3 = c3(n, K) > 0. On the other hand, by Prop. 5.1

Hn−2,∞(Ms) ≤ c4(1 − |x|)n−2 modn Γs,

where c4 = c4(n, K) > 0. By (6.11) we can choose s0 = s0(n, K) > 0 large
enough so that c4 modn Γs ≤ ε for s ≥ s0. For these s, inequality (6.10) is
true.

Thm. 6.3 and (6.10) now imply that

Hn−1,∞(f(Sx \ Ms)) ≥ c6δΩ(y)n−1,(6.12)

where c6 = c6(n, K) > 0.
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Whenever ζ ∈ Sx \ Ms, the hyperbolic geodesic γζ has ρ-length less or
equal to srx ≈ sδΩ(y). This implies that there exists a curve α : [0, 1] → Rn

such that α(0) = y, α([0, 1)) ⊆ Ω, α(1) = f(ζ) and length(α) < c7sδΩ(y),
where c7 = c7(n, K) > 0. To see this note that the internal Euclidean metric
in Ω is roughly comparable to the ρ-metric.

In particular, if λ = c7s0, then λ only depends on n and K and we have
BlΩ(y, λδΩ(y))∩∂Ω ⊇ f(Sx\Ms0). Inequality (6.9) then follows from (6.12),
and the proof is complete for n ≥ 3.

For n = 2 the proof is elementary and much easier. Let y ∈ Ω, and z ∈ ∂Ω
be a point with |y − z| = δΩ(y). Consider the circles Ct = ∂B(z, tδΩ(y))
for 0 < t ≤ 1. Starting at the unique intersection point of the line segment
(z, y) with Ct and moving along Ct in positive orientation, let zt be the
first point in the boundary of Ω that we hit. Such a point exists, because
otherwise Ct ⊆ Ω would separate the point at infinity from z ∈ Ω, which
is impossible, since the region Ω is simply connected. On the one hand, for
the set M = {zt : 0 < t ≤ 1} we have M ⊆ ∂Ω ∩ BlΩ(y, (1 + 2π)δΩ(y)). On
the other hand, it is easy to see H1,∞(M) ≥ H1,∞((z, y]) = 1

2δΩ(y). The
statement follows.

Remark 6.6. If appropriately formulated, the main results of this section
(Thm. 6.3, Cor. 6.4, and Thm. 6.5) remain true for general continuous den-
sities ρ : Bn → (0,∞) satisfying HI(A) and VG(B).

7. The Riesz-Privalov Theorem in Higher Dimensions

If f : B2 → Ω is a conformal map of the unit disc in the complex plane onto
a Jordan region Ω, then

Λ(∂Ω) = sup
r<1

∫
∂B2

|f ′(rζ)| |dζ| =: ||f ′||1.

Here Λ(∂Ω) is the length of the Jordan curve ∂Ω. This statement is the
classical Riesz-Privalov Theorem. In particular, Λ(∂Ω) < ∞ if and only
if ||f ′||1 < ∞. This statement can easily be generalized for quasiconformal
maps f : B2 → Ω, where Ω is not necessarily a Jordan region (see below).
The generalization of this statement to higher dimensions is not so obvious.
This is the main topic of this section.

If ρ : Bn → (0,∞) is a continuous density, and p ≥ 0, we define the integral
mean

Ip(ρ, t) :=
1

σn−1(∂Bn)

∫
∂Bn

ρ(tζ)p dσn−1(ζ) for 0 ≤ t < 1.

Moreover, set
||ρ||p := sup

t<1
Ip(ρ, t)1/p.

Lemma 7.1. Suppose ρ : Bn → (0,∞) is a continuous density satisfying
HI(A) and VG(B). Then there exist constants c1 = c1(A, n) > 0 and c2 =
c2(A, B, n) > 0 such that
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(a) for p ≥ 0 and 0 ≤ t < 1 we have
1
cp
1

Ip(ρ, t) ≤ (1 − t)n−1−p
∑

{rp
x : x ∈ C, Bx ∩ ∂B(0, t) �= ∅} ≤ cp

1Ip(ρ, t),

(b) In−1(ρ, t) ≤ c2In−1(ρ, s) for p ≥ 0, 0 ≤ t ≤ s < 1.

Statement (b) says that the integral (n− 1)-mean of ρ is essentially non-
decreasing as a function of t.

Proof. (a) This statement follows from[
Ip(ρ, t)(1 − t)

]1/p

≈
[∫

||z|−t|≤ 1
2
(1−t)

ρ(z)p dmn(z)
]1/p

≈
[
(1 − t)n−1−p

∑
x∈C, Bx∩∂B(0,t) 
=∅

rp
x

]1/p

.

To see this use Harnack’s inequality for ρ and note that the set {z ∈ Bn :
||z| − t| ≤ 1

2(1 − t)} is a spherical shell around the sphere ∂B(0, t). The
volume of this shell is comparable to (1− t). The constants of comparability
depend only on A and n.

(b) Here the constants of comparability will depend on A, B, and n.
Let Ct = {x ∈ C : Bx ∩ ∂B(0, t) �= ∅} for 0 ≤ t < 1. For x ∈ Ct let
Cs(x) = {y ∈ Cs : Sy ∩ Sx �= ∅}. Since

⋃
x∈Ct

Sx ⊇ ∂Bn for all 0 ≤ t < 1,
we have

⋃
y∈Cs(x) Sy ⊇ Sx for all 0 ≤ t ≤ s < 1, x ∈ Ct. Note that

diam(Sy) � 1 − s ≤ 1 − t for y ∈ Cs(x). This shows that

diam
( ⋃

y∈Cs(x)

Sy

)
� 1 − t ≈ 1 − |x| for x ∈ Ct.

So whenever x ∈ Ct, by traveling a distance comparable to 1 − t along the
ray [0, x] from x, we can find a point x′ ∈ Bn such that

rx′ ≈ rx and Sx′ ⊇
⋃

y∈Cs(x)

Sy ⊇ Sx.(7.1)

By Lem. 5.2, for each x ∈ Bn there exists a family Γx of compact curves
with γ ⊆ Sx and diam(γ) ≈ 1 − |x| for γ ∈ Γx such that

modσ
n−1 Γx � 1.(7.2)

The Main Modulus Estimate, (7.1), and (7.2) then imply∑
y∈Cs(x)

rn−1
y � rn−1

x for x ∈ Ct.(7.3)

If x1, x2 ∈ Ct and Cs(x1) ∩ Cs(x2) �= ∅, then |x1 − x2| � 1 − t. Since
1 − |x1| ≈ 1 − |x2| ≈ 1 − t, we get dh(x1, x2) � 1. This shows that #{x ∈
Ct : y ∈ Cs(x)} � 1 for all y ∈ Cs.

Hence by (7.3) ∑
x∈Ct

rn−1
x �

∑
x∈Ct

∑
y∈Cs(x)

rn−1
y ≈

∑
y∈Cs

rn−1
y .
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Now this and (a) imply (b).

From now on we will again consider K-quasiconformal maps f : Bn → Ω ⊆
Rn. Unless otherwise stated, ρ = af and all constants of comparability will
depend only on n and K.

Proposition 7.2. Suppose f : Bn → Ω ⊆ Rn is a K-quasiconformal map.
(a) If n = 2, then there exists c1 = c1(K) > 0 such that

||af ||1 ≤ c1H1(∂Ω).

(b) If n ≥ 3, then there exist c2 = c2(n, K) > 0 and ε = ε(n) > 0 such that

||af ||n−1
n−1 ≤ c2Hn−1(f(∂Bn \ M)),

whenever M ⊆ ∂Bn is a Borel set with Hn−2,∞(M ∩Σ(a, r)) ≤ εrn−2 for all
a ∈ ∂Bn, 0 < r ≤ π. In particular, ||af ||n−1

n−1 ≤ c2Hn−1(∂Ω).

Proof. We first prove (b).
Since dim(∂Bn \ ∂ρBn) = 0, we may assume ∂Bn \ ∂ρBn ⊆ M . Lem. 5.2

shows that if M ⊆ ∂Bn has the property that Hn−2,∞(M ∩Σ(a, r)) ≤ εrn−2

for all a ∈ ∂Bn, 0 < r ≤ π, where ε = ε(n) > 0 is sufficiently small, then
the following statement is true. If x ∈ Bn and Γx is the family of all curves
γ ⊆ Sx \ M with diam(γ) ≥ c(1 − |x|), where c > 0, then

modσ
n−1 Γx � 1.(7.4)

Let 0 ≤ t < 1 be arbitrary. As in the proof of Lem. 7.1 let Ct = {x ∈ C :
Bx∩∂B(0, t) �= ∅}. To estimate Φ̃n−1,δ

ρ (∂Bn\M) where ρ = af and δ ≤ 1−t

suppose E ⊆ C is a set such that
⋃

y∈E Sy ⊇ ∂Bn \ M and 1 − |y| ≤ δ for
y ∈ E .

Define E(x) = {y ∈ E : Sy ∩ Sx �= ∅} for x ∈ Ct. Then diam(Sy) ≈
1 − |y| ≤ δ ≤ 1 − t ≈ 1 − |x| whenever x ∈ Ct and y ∈ E(x). As in the proof
of Lem. 7.1 for every x ∈ Ct we can find a point x′ ∈ [0, x] such that

rx′ ≈ rx and Sx′ ⊇
⋃

y∈E(x)

Sy ⊇ Sx \ M.(7.5)

In particular, γ ⊆
⋃

y∈E(x) Sy for every γ ∈ Γx, x ∈ Ct. The Main Modulus
Estimate, (7.4), and (7.5) then imply

rn−1
x �

∑
y∈E(x)

rn−1
y for x ∈ Ct.(7.6)

As in the proof of Lem. 7.1 we have that

#{x ∈ Ct : y ∈ E(x)} � 1 for y ∈ E .

Hence by Lem. 7.1 (a)

In−1(af , t) ≈
∑
x∈Ct

rn−1
x �

∑
x∈Ct

∑
y∈E(x)

rn−1
y �

∑
y∈E

rn−1
y .

The constants involved in this inequality only depend on n and K and not
on t and E . Therefore,

In−1(af , t) � Φ̃n−1,δ
ρ (∂Bn \ M) if δ ≤ 1 − t.(7.7)
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Hence by Lem. 3.3 and Lem. 6.2 we have that

In−1(af , t) � Hn−1(f(∂Bn \ M)) for 0 ≤ t < 1.

From this (b) follows.
The proof of (a) runs along similar lines. In this case the crucial inequality

(7.6) follows from Prop. 4.8 taking for γ some compact curve with γ ⊆ Sx

and diam(γ) ≈ 1 − |x|.

We can now prove the following version of the Riesz-Privalov Theorem
for planar quasiconformal mappings in the unit disc.

Theorem 7.3. Suppose f : B2 → Ω ⊆ R2 is a K-quasiconformal map.
Then

(1/c)||af ||1 ≤ H1(∂Ω) ≤ c||af ||1,
where c = c(K) ≥ 1.

Proof. We have ||af ||1 � H1(∂Ω) by Prop. 7.2. Hence if suffices to show
H1(∂Ω) � ||af ||1. For this purpose let C < H1(∂Ω) be arbitrary. Since
limδ→0 H1,δ(∂Ω) = H1(∂Ω), there exists δ > 0 such that H1,δ(∂Ω) > C and
2δ < diam(∂Ω).

The set M = {f(ζ) : ζ ∈ ∂B2, limr→1 f(rζ) ex.} is dense in ∂Ω. To see
this note first that the set of rectifiably accessible boundary points of Ω is
dense in ∂Ω. For if y ∈ ∂Ω is arbitrary, then there exist points z ∈ Ω arbi-
trarily close to y. If y′ ∈ ∂Ω is a boundary point with |z − y′| = dist(z, ∂Ω),
then [z, y′) ⊆ Ω, so y′ is rectifiably accessible. Moreover, |y′ − y| ≤ 2|z − y|,
and so there are rectifiably accessible boundary points arbitrarily close to y.

Secondly, note that if γ : [0, 1] → R2 is a rectifiable curve with γ([0, 1)) ⊆
Ω and γ(1) ∈ ∂Ω, then limt→1 f−1 ◦ γ(t) ∈ ∂B2 exists. Calling this limit ζ,
it follows that the radial limit of f at ζ exists, and we have f(ζ) = γ(1).

Therefore, the image set of the points of ∂B2 where the radial limit of f

exists contains the rectifiably accessible boundary points of Ω. Hence the
set is dense.

It follows that
⋃

y∈M B(y, δ/5) ⊇ ∂Ω. By a standard covering argument
we can choose a subset N ⊆ M such that the balls B(y, δ/5), y ∈ N , are
pairwise disjoint and

⋃
y∈N B(y, δ) ⊇ ∂Ω. The set N is countable, and since

2δ < diam(∂Ω) we have #N ≥ 2. The definition of H1,δ(∂Ω) shows that

C < H1,δ(∂Ω) ≤
∑
y∈N

δ.

Therefore, we can find l ∈ N with 2 ≤ l ≤ #N such that δl > C, and find
points ζν = eiϑν , 1 ≤ ν ≤ l, where 0 ≤ ϑ1 < . . . < ϑl < 2π, such that
the radial limit f(ζν) = limr→1 f(rζν) exists and |f(ζν) − f(ζν+1)| ≥ 2

5δ for
ν ∈ {1, . . . , l} (we set f(ζl+1) = f(ζ1)).

Now choose t < 1 close enough to 1 such that |f(tζν) − f(tζν+1)| > 1
5δ

and dh(tζν , tζν+1) ≥ 1 for 1 ≤ ν ≤ l. If lΩ is the internal Euclidean metric in
Ω and ρ = af , then dρ(x, y) ≈ lΩ(f(x), f(y)), whenever dh(x, y) ≥ 1. Thus
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we get

C < δl ≤ 5
l∑

ν=1

|f(tζν) − f(tζν+1)| ≤ 5
l∑

ν=1

lΩ(f(tζν), f(tζν+1))

�
l∑

ν=1

dρ(tζν , tζν+1) ≤
l∑

ν=1

∫ ϑν+1

ϑν

ρ(teiϑ) dϑ

=
∫

∂B2

ρ(tζ) dσ1(ζ) = 2πI1(af , t) ≤ 2π||af ||1.

Since this is true for arbitrary C < H1(∂Ω) and the constants involved in
this inequality only depend on K, we get H1(∂Ω) � ||af ||1 as desired.

Lemma 7.4. Suppose f : Bn → Ω ⊆ Rn is a K-quasiconformal map, ζ ∈
∂ρBn, and x ∈ [0, ζ). Then there exists a constant c = c(n, K) > 0 such that

|f(x) − f(ζ)| ≤ c lengthρ([x, ζ)).

Proof. Note that lengthρ([x, ζ)) < ∞ and limr→1 f(rζ) = f(ζ) exists. Let
x0 = x and define xk ∈ [x, ζ) such that xk ∈ [xk−1, ζ) and dh(xk−1, xk) = 1
for k ∈ N. Let ak = lengthρ([xk, xk+1]), k ∈ N0. Then

lΩ(f(xk), f(xk+1)) ≈ dρ(xk, xk+1) � ak for k ∈ N0.

Therefore we can choose a curve γk in Ω joining f(xk) and f(xk+1) such
that length(γk) � ak. Then γ = γ0 ∪ γ1 ∪ . . . is a curve in Ω with initial
point f(x). Moreover length(γ) �

∑∞
k=0 ak = lengthρ([x, ζ)) < ∞. Since

ak → 0, we have diam(γk) → 0 for k → ∞. Since f(xk) → f(ζ) for k → ∞,
the curve γ has the limit f(ζ) as we travel along the curve starting at the
initial point. Hence |f(ζ) − f(x)| ≤ length(γ) � lengthρ([x, ζ)).

Definition 7.5. If Ω ⊆ Rn is a region and λ ≥ 1, then the λ-porous part of
the boundary of Ω is
∂λΩ := {y ∈ ∂Ω :∃ sequence (yl) in Ω s.t.

lim
l→∞

yl = y and |yl − y| ≤ λ dist(yl, ∂Ω) for l ∈ N}.

Note that ∂λ′Ω ⊆ ∂λΩ if λ′ ≤ λ.

Theorem 7.6. Suppose n ≥ 3 and f : Bn → Ω ⊆ Rn is a K-quasiconformal
map. Then there exist λ = λ(n, K) ≥ 1 and c = c(n, K) > 0 such that

||af ||n−1
n−1 ≤ cHn−1(∂λΩ).

Proof. By Prop. 7.2 (b) it suffices to find λ = λ(n, K) ≥ 1 and a set M ⊆
∂Bn such that Hn−2(M) = 0 and f(∂Bn \ M) ⊆ ∂λΩ.

By Thm. 5.2 in [3] we can choose M ⊆ ∂Bn such that Hn−2(M) = 0 and
af (tζ) = ρ(tζ) = o((1 − t)−2/n) as t → 1 for all ζ ∈ ∂Bn \ M .

The proof of Lem. 7.5 in [3] shows that there exists λ1 = λ1(n) ≥ 1 such
that for every ζ ∈ ∂Bn\M there exists a sequence (xl) on [0, ζ) with (xl) → ζ

and lengthρ([xl, ζ)) < λ1rxl
for l ∈ N. Since rxl

≈ δΩ(f(xl)), it follows from
Lem. 7.4 that there exists λ2 = λ2(n, K) > 0 such that

|f(xl) − f(ζ)| ≤ λ2δ(f(xl)) for l ∈ N.(7.8)
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Note that δΩ(f(xl)) ≈ rxl
= ρ(xl)(1 − |xl|) = o((1 − |xl|)1−2/n) as l → ∞.

Therefore, δΩ(f(xl)) → 0 for l → ∞. Hence (7.8) implies f(ζ) ∈ ∂λ2Ω for
all ζ ∈ ∂Bn \ M .

Lemma 7.7. Suppose n ≥ 3 and ρ : Bn → (0,∞) is a continuous density
satisfying HI(A) and VG(B). Then there exist constants L = L(A, B, n) > 0
and C = C(A, B, n) > 0 with the following property.

If F ⊆ C and dρ(x, y) > L(rx + ry) for all x, y ∈ F , x �= y, then∑
x∈F

rn−1
x ≤ C||ρ||n−1

n−1.

Proof. In this proof the constants of comparability will depend only on A,
B, and n.

We may assume that the set F is finite and so F = {y1, . . . , yl}. We
have to show that if L = L(A, B, n) is sufficiently large and the ρ-balls
Ων = Bρ(yν , Lryν ) are pairwise disjoint, then

∑
y∈F rn−1

y � ||ρ||n−1
n−1. We

proceed in several steps.
I. If L ≥ L1(A, B, n) is large enough, then Byν ⊆ Ων , Syν ⊆ R(Ων),

and there exist ζν ∈ Syν such that Ων contains a tail of [0, ζν) for all ν ∈
{1, . . . , l}.

The first statement is clear and the second follows from Lem. 4.6. For the
third statement note that modn Γν � 1, where Γν is the family of curves γ

in Bn connecting Bx and Sx. From Lem. 5.3 it follows that lengthρ(αν) �
ryν for some αν ∈ Γν . If ζν is the end point of αν on Syν , then for some
y′ν ∈ Byν ∩ [0, ζν) we have lengthρ([y′ν , ζν)) � ryν . Since diamρ(Byν ) � ryν it
follows dρ(yν , x) � ryν for all x on the tail [y′ν , ζν) of [0, ζν).

II. Suppose L ≥ L1. For ν, µ ∈ {1, . . . , l}, ν �= µ, we have R(Ων) � R(Ωµ)
or R(Ωµ) � R(Ων) or R(Ων) ∩ R(Ωµ) = ∅.

In view of Lem. 4.1 and Lem. 4.2 it suffices to show that ν �= µ implies
R(Ων) �= R(Ωµ); recall that Ων ∩Ωµ = ∅ provided ν �= µ. If we travel on the
ray [0, yν ] from 0 until we hit one of the sets Ω̄ν or Ω̄µ, we see from the fact
that each boundary point of Ων or Ωµ in Bn is accessible that there exists a
curve α in Bn connecting one of the sets Ων or Ωµ with the origin without
hitting the other one. Assume α connects Ων to 0 and Ωµ∩α = ∅, say. By I.
there exists a point ζ0 ∈ ∂Bn such that Ων contains a tail of [0, ζ0). Since Ων

is connected, any tail of [0, ζ0) can be connected in Ων with the initial point
of α. Since Ων ∩ Ωµ = ∅, we see that any tail of [0, ζ0) can be connected to
0 by a curve that avoids Ωµ. Therefore, ζ0 /∈ R(Ωµ). On the other hand,
ζ0 ∈ R(Ων), since Ων contains a tail of [0, ζ0). Hence R(Ων) �= R(Ωµ).

III. For each ν ∈ {1, . . . , l} we can find points y′ν , y
′′
ν ∈ Bn such that

disth(yν , y
′
ν) � 1, disth(yν , y

′′
ν ) � 1, and

Sy′
ν
⊇ 2Syν ⊇ Syν ⊇ 2Sy′′

ν
.(7.9)

Moreover, we can require

dist(∂Bn \ Syν , Sy′′
ν
) � 1 − |yν | for ν ∈ {1, . . . , l}.(7.10)
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Then

ry′
ν
≈ ryν ≈ ry′′

ν
and 1 − |y′ν | ≈ 1 − |yν | ≈ 1 − |y′′ν |(7.11)

for ν ∈ {1, . . . , l}.
For t ∈ [0, 1), let Ct = {x ∈ C : Bx ∩ ∂B(0, t) �= ∅}. Then by Lem. 7.1

we have that
∑

x∈Ct
rn−1
x ≈ In−1(ρ, t) ≤ ||ρ||n−1

n−1. Note that
⋃

x∈Ct
Sx ⊇ ∂Bn

and diam(Sx) ≈ 1− t for x ∈ Ct. So by (7.9) and (7.10), we can fix s ∈ [0, 1)
sufficiently close to 1 such that Sx∩Syν �= ∅ implies Sx ⊆ Sy′

ν
and Sx∩Sy′′

ν
�= ∅

implies Sx ⊆ Syν for ν ∈ {1, . . . , l}, x ∈ Cs.
We then have

Sy′
ν
⊇

⋃
{Sx : x ∈ Cs, Sx ∩ Syν �= ∅}

⊇
⋃

{Sx : x ∈ Cs, Sx ⊆ Syν} ⊇ Sy′′
ν

for ν ∈ {1, . . . , l}.
(7.12)

IV. For ν ∈ {1, . . . , l} let Eν ⊆ Cs be the set of all x ∈ Cs such that
Sx ⊆ Syν and the set R(Ων) is minimal among the sets R(Ωµ) for which
Sx ⊆ Syµ . Then Eν∩Eµ = ∅ for ν �= µ. For if x ∈ Eν∩Eµ, then Sx ⊆ Syν∩Syµ .
By the minimality of R(Ων) and R(Ωµ), we have R(Ων) ∩ R(Ωµ) = ∅ by II.
But this is impossible since ∅ �= Sx ⊆ Syν ∩ Syµ ⊆ R(Ων) ∩ R(Ωµ) by I.

This shows that
l∑

ν=1

∑
x∈Eν

rn−1
x ≤

∑
x∈Cs

rn−1
x � ||ρ||n−1

n−1.(7.13)

V. We claim that rn−1
yν

�
∑

x∈Eν
rn−1
x for ν ∈ {1, . . . , l} if L = L(A, B, n)

is large enough. By (7.13) this will prove the Lemma.
In order to see that the claim is true, let Eν =

⋃
{Sx : x ∈ Cs \ Eν , Sx ⊆

Syν} and Γ′
ν be the family of all curves in Bn connecting Byν and Eν . By

(7.12) we have

Sy′
ν
⊇

⋃
x∈Eν

Sx ⊇ Sy′′
ν
\ Eν .(7.14)

Suppose ζ ∈ Eν . Then there exists x ∈ Cs \ Eν such that ζ ∈ Sx ⊆ Syν .
This is only possible if there exists µ �= ν such that Sx ⊆ Syµ and R(Ωµ) �
R(Ων). Then ζ ∈ Sx ⊆ Syµ ⊆ R(Ωµ) by I. Since ζ ∈ Syν , there exists
z1 ∈ [0, ζ) ∩ Byν ⊆ [0, ζ) ∩ Ων . We must have [z1, ζ) ∩ Ωµ �= ∅. To see this
note that there exists a curve α connecting Ων and 0 without hitting Ωµ.
The curve α is constructed as in II. by traveling from 0 to a point in Ων until
we first hit Ων or Ωµ. We must first hit Ων by Lem. 4.3. If [z1, ζ) ∩Ωµ = ∅,
then we could connect z1 to the initial point of α in Ων without hitting Ωµ.
Then no tail of [0, ζ) would be separated by Ωµ contradicting ζ ∈ R(Ωµ).
Hence there exists z2 ∈ Ωµ ∩ [z1, ζ).

Then

lengthρ([z1, ζ)) ≥ lengthρ([z1, z2])

≥ dρ(yν , yµ) − dρ(z1, yν) − dρ(z2, yµ)

≥ (L − c1)ryν ,



32 MARIO BONK AND PEKKA KOSKELA

where c1 = c1(A, B, n) > 0 is a constant such that

diamρ(Byν ) ≤ c1ryν for ν ∈ {1, . . . , l}.
If γ is any curve connecting Byν to ζ we obtain from the Gehring-Hayman
Theorem

lengthρ(γ) + diamρ(Byν ) ≥ c2 lengthρ([z1, ζ)),

where c2 = c2(A, B, n) > 0. This shows

lengthρ(γ) ≥ (c2L − c3)ryν for all γ ∈ Γ′
ν , ν ∈ {1, . . . , l},

where c3 = c3(A, B, n) > 0.
Lem. 5.3 shows that modn Γ′

ν is arbitrarily small, when L is large enough.
In particular, we can choose L2 = L2(A, B, n) ≥ L1 such that for L ≥ L2

we have (cf. Lem. 5.2 and Prop. 5.1)

Hn−2,∞(Eν) ≤ c(1 − |y′′ν |)n−2 modn Γ′
ν ≤ ε(1 − |y′′ν |)n−2,

for ν ∈ {1, . . . , l}, where ε = ε(n) > 0 is as in Lem. 5.2 and c as in Prop. 5.1.
Lem. 5.2 then shows that if L ≥ L2, we have modσ

n−1 Γ̃ν � 1, where Γ̃ν is
the family of all curves γ in Sy′′

ν
\ Eν such that diam(γ) � (1 − |y′′ν |). The

Main Modulus Estimate and (7.11) then imply

rn−1
yν

�
∑
x∈Eν

rn−1
x for ν ∈ {1, . . . , l}.

The proof is complete.

Theorem 7.8. Suppose n ≥ 3 and let f : Bn → Ω ⊆ Rn be a K-quasiconformal
map. Then for all λ ≥ 1 there exists c = c(n, K, λ) > 0 such that

Hn−1(∂λΩ) ≤ c||af ||n−1
n−1.(7.15)

Proof. Let C < Hn−1(∂λΩ) be arbitrary. By definition of Hn−1(∂λΩ) there
exists δ > 0 such that C < Hn−1,δ(∂λΩ). By definition of ∂λΩ, for each
z ∈ ∂λΩ we can find a point yz ∈ Ω arbitrarily close to z such that z ∈
B̄(yz, λδΩ(yz)). In particular, we can require that 5λδΩ(yz) ≤ δ for all
z ∈ ∂λΩ. A standard covering argument shows that there exists a set Z ⊆
∂λΩ such that the balls B(yz, λδΩ(yz)) are pairwise disjoint for z ∈ Z, and⋃

z∈Z B(yz, 5λδΩ(yz)) ⊇ ∂λΩ. Note that the set Z is countable. By the
definition of Hn−1,δ(∂λΩ) we have

C < (5λ)n−1
∑
z∈Z

δΩ(yz)n−1.

Choosing a finite subset of Z, we can find points y1, . . . , yl ∈ Ω such that
the balls B(yν , λδΩ(yν)) are pairwise disjoint and

C < (5λ)n−1
l∑

ν=1

δΩ(yν)n−1.(7.16)

Let x′
ν ∈ Bn be the preimage of yν under f ; i.e., yν = f(x′

ν) for ν ∈
{1, . . . , l}.
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If λ ≥ λ1(n, K), then dh(x′
ν , x

′
µ) ≥ 1 for ν �= µ. For if dh(x′

ν , x
′
µ) < 1,

ν �= µ, then the quasihyperbolic distance kΩ(yν , yµ) of yν and yµ is bounded
by a constant c1 = c1(n, K) > 0. Hence

log(λ) ≤ log
( |yµ − yν |

δΩ(yν)

)
≤ k(yν , yµ) ≤ c1,

and so λ < λ1 := exp(c1).
There are points xν ∈ C such that dh(xν , x

′
ν) � 1. Then rxν ≈ rx′

ν
≈

δΩ(yν) and dρ(xν , x
′
ν) � rxν . In particular, there exists a constant c2 =

c2(n, K) > 0 such that dρ(xν , x
′
ν) ≤ c2rxν and (1/c2)rxν ≤ δΩ(yν) ≤ c2rxν

for ν ∈ {1, . . . , l}.
If λ ≥ λ1, then dh(x′

ν , x
′
µ) ≥ 1 for ν �= µ and so lΩ(yν , yµ) ≈ dρ(x′

ν , x
′
µ). In

particular, for some c3 = c3(n, K) > 0 we have lΩ(yν , yµ) ≤ c3dρ(x′
ν , x

′
µ), ν �=

µ. These inequalities and the estimate δΩ(yν) ≥ (1/c2)rxν for all ν show that
for ν �= µ

dρ(xν , xµ) ≥ dρ(x′
ν , x

′
µ) − c2rxν − c2rxµ

≥ 1
c3

lΩ(yν , yµ) − c2rxν − c2rxµ

≥ 1
c3

λ(δΩ(yν) + δΩ(yµ)) − c2rxν − c2rxµ

≥ (
1

c2c3
λ − c2)(rxν + rxµ).

This inequality shows that if λ ≥ λ2(n, K) ≥ λ1, then the points x1, . . . , xl

satisfy the hypothesis of Lem. 7.7. For some constant c4 = c4(n, K) > 0 we
then have

l∑
ν=1

rn−1
xν

≤ c4||af ||n−1
n−1.

This implies

C < (5λ)n−1
l∑

ν=1

δΩ(yν)n−1 ≤ (5c2λ)n−1
l∑

ν=1

rn−1
xν

≤ c4(5c2λ)n−1||af ||n−1
n−1,

provided λ ≥ λ2.

Since C < Hn−1(∂λΩ) was arbitrary we conclude

Hn−1(∂λΩ) ≤ c4(5c2λ)n−1||af ||n−1
n−1, if λ ≥ λ2.

If 1 ≤ λ < λ2, then ∂λΩ ⊆ ∂λ2Ω and so

Hn−1(∂λΩ) ≤ c4(5c2λ2)n−1||af ||n−1
n−1.

The proof is complete.

Note that Thm. 1.4 follows from Thm. 7.6 and Thm. 7.8.

Remark 7.9. Again, appropriate versions of the main results of this section
(Prop. 7.2, Thm. 7.3, Thm. 7.6, and Thm. 7.8) are true for continuous
densities ρ : Bn → (0,∞) satisfying HI(A) and VG(B).
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Example 7.10. The question arises whether Thm. 1.4 may be improved to
a statement similar to Thm. 7.3 valid in higher dimensions.

The answer is in the negative: we will construct an example of a K-
quasiconformal map f : Bn → Ω ⊆ Rn such that Hn−1(∂Ω) = ∞, but
||af ||n−1 < ∞. Not all the details of the construction will be given.

The idea is to find a region Ω ⊆ Rn such that Hn−1(∂λΩ) < ∞ for all
λ ≥ 1, but Hn−1(∂Ω) = ∞, and then show that Ω is the image of Bn under
a quasiconformal map. The region Ω is constructed by putting thin tubes
around a tree T consisting of line segments in Rn.

To outline this construction, let W be the set of all finite words w =
a1 . . . al with letters in the alphabet consisting of −1 and 1. The empty
word e is considered a member of W . If w = a1 . . . al ∈ W \ {e}, we let
w′ = a1 . . . al−1 ∈ W .

Denote by e1, . . . , en the unit vectors in Rn. Suppose we are given a
sequence of numbers (λν) with 1 = λ−1 = λ0 > λ1 > . . . > 0.

Now for w ∈ W \ {e} define the point P (w) ∈ Rn by

P (w) =
l(w)∑
ν=1

λ[ ν−1
n

]

aν

2[ ν−1
n

]+1
eν−n[ ν−1

n
],

where l(w) is the length of w and w = a1 . . . al. Set P (e) = 0.
Moreover, for each w ∈ W with n|l(w) let Q̃(w) and Q(w) be the closed

cubes with center P (w), faces parallel to the coordinate axes, and side-
length equal to 2λl(w)/n−1 · 1

2l(w)/n−1 and 2λl(w)/n · 1
2l(w)/n , respectively. Then

Q̃(e) = Q(e) = [−1, 1]n and it can be shown by induction that for w ∈
W, n|l(w), the points P (wb1 . . . bn), b1, . . . , bn ∈ {−1, 1} are the centers of
the cubes which arise by decomposing the cube Q(w) into 2n subcubes
by using the n hyperplanes perpendicular to the coordinate axes which
pass through the center P (w) of Q(w). These subcubes are the cubes
Q̃(wb1 . . . bn), b1, . . . , bn ∈ {−1, 1}. The cubes Q(wb1 . . . bn) are then ob-
tained from Q̃(wb1 . . . bn) by shrinking with the factor λl(w)/n+1/λl(w)/n

which is less than 1 by assumption.
If

Ml =
⋃

{Q(w) : w ∈ W, l(w) = ln} for l ∈ N0,

then M0 = [−1, 1]n ⊇ M1 ⊇ . . . . It is obvious that the set F of all limit
points of {P (w) : w ∈ W} is F =

⋂
l∈N0

Ml. Moreover, mn(Ml) = 2nλn
l , and

thus mn(F ) = 2n liml→∞ λn
l = (2λ)n, where λ = liml→∞ λl. For w ∈ W let

S(w) be the closed line segment [P (w1), P (w − 1)]. Then T =
⋃

w∈W S(w)
is a regular 3-tree with vertices P (w), w ∈ W \ {e}.

We have S(w1)∩S(w2) �= ∅ if and only if w1 = w2 or w′
1 = w2 or w′

2 = w1.
If none of these equalities holds, then

dist(S(w1), S(w2)) ≥
[
λ[ k−1

n
] − λ[ k−1

n
]+1

]
· 1

2[ k−1
n

]+1
,

where k ∈ N0 is the largest integer such that for the words w1 = a1 . . . al1

and w2 = b1 . . . bl2 we have aν = bν for ν ∈ {1, . . . , k}.
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For w ∈ W define thin tubes by

C(w) =
⋃

x∈S(w)

B

(
x, λl(w)/n ·

δl(w)

2l(w)/n

)
,

where (δν) is a sequence of numbers in (0, 1). Put Ω =
⋃

w∈W C(w).
It can be shown that if (δν) decreases to 0 sufficiently fast, then there exists

a K-quasiconformal map f : Bn → Ω. The dilatation K will be independent
of the choice of (λν) and (δν).

The map f : Bn → Ω can be constructed inductively as follows. There
exists a map f0 : Bn → C(e), which is K-quasiconformal with K indepen-
dent of δ0. The map f0 is then modified near the preimage of the points
where S(−1) and S(1) penetrate C(e). In this manner, we obtain a K-
quasiconformal map f1 : Bn → C(e) ∪ C(−1) ∪ C(1) with fixed K. Contin-
uing in this manner and passing to the limit we obtain a K-quasiconformal
map f : Bn → Ω (see [5, Sec. 4] and [10, Sec. 10] for the necessary details).
Obviously,

∂Ω ⊆ F ∪
⋃

w∈W

∂C(w).

This implies
∂Ω \ F ⊆ ∂λΩ for λ ≥ 1.

On the other hand, F ⊆ ∂Ω, but F ∩ ∂λΩ = ∅ for λ ≥ 1 if (δν) → 0.
By Thm. 1.4 we have for some λ ≥ 1

||af ||n−1
n−1 ≈ Hn−1(∂λΩ) ≤ Hn−1(

⋃
w∈W

∂C(w))

≤
∑

w∈W

Hn−1(∂C(w)) �
∞∑
l=0

δn−1
l 2n < ∞,

if (δν) decreases to 0 fast enough.
On the other hand, if we choose (λν) such that λ = limν→∞ λν > 0, then

mn(F ) > 0 and so Hn−1(∂Ω) ≥ Hn−1(F ) = ∞.
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