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Abstract

WP_Gradient Young measures supported in the set Qo(K) of two
dimensional K-quasiconformal matrices are studied. It is proven that
these Young measures can be generated by gradients of K-quasiregular
mappings. This leads e.g to the 0-1 law for quasiregular W!P-Gradient
Young measures and other quasiregular properties such as higher in-
tegrability.

1 Introduction

In this note we present some applications of quasiregular mappings to the the-
ory of WhP- gradient Young measures. The W'P- gradient Young measures,
in short WHP-GYM’s, can be understood as a generalization of a gradient,
describing for a sequence of functions f; € W'?(Q; R") the limit distribution
of the values attained by their gradients; for details and definitions see Sec-
tion 2. They have appeared as an indispensable tool in studying variational
problems where the functional is not lower semicontinuous.

In many situations GYM’s supported in a given subset £ C M™ ™ the
space of n X m matrices, share the properties of genuine gradient functions
having a.e. value contained in F. Examples of this situation are the so called
two and three matrices problem and the two well problem, see [9]. However,
there are also counterexamples, the canonical one being the Scheffer-Tartar
square example, see the discussion on the four matrices problem in [9].

The class of quasiregular mappings is known to have strong rigidity prop-
erties, with applications also to problems related to Young measures, see
e.g [3], [4], [5], [12] . Therefore it is of interest to understand the relations
between these mappings and the corresponding GYM’s. In this case the
supporting set E above is equal to

Qu(K) = {A € M . ||A|" < K det(A)},
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where 1 < K < oo. Matrices contained in this set are called K-
quasiconformal matrices. Correspondingly for 2 C R", a function f €
WM (4 R™) with Df(2) € Q,(K) a.e. is called K-quasiregular. If f is
also injective then it is called K-quasiconformal.

In the case of Young measures we set accordingly

Definition 1.1. A W'Y-GYM {v,},cq is called K-quasiregular if it is
supported on @Q,(K), that is supp(v,) C Q,(K) for a.e. z € Q.

In this paper we shall study in planar regions gradient Young measures
with support in Qo(K). It is clear that the underlying Sobolev space W1?
affects the qualities of the corresponding Young measure. In particular, in
the theory of two dimensional quasiregular mappings, see [1] [8], regularity

and rigidity results are valid only if p > 2. Hence the same regularity
assumption is made also in this work. The assumed lower bound p > -2£- is

K+1
still weaker than the a priori Sobolev-regularity p = 2 in the definition of a

quasiregular mapping.
The basic result is the following

Theorem 1.2. Suppose that Q C R? is a bounded domain with smooth
boundary. Assume also that p > I?—fl Then a WYP-GYM {v,},cq is sup-
ported in Qo (K) if and only if it can be generated by a sequence of (gradients

of ) K-quasiregular mappings.

Note however, that even if p is large the generating K-quasiregular se-

quence lies in general only in W' for all ¢ < 2%. Furthermore by [7],
Example 5.5.5., the result fails when p < I?—Ifl

Via the theorem quasiregular properties are induced on all gradient Young
measures with support in Q2(K). To illustrate this, recall [8] that the Ja-
cobian of a non-constant quasiregular mapping can vanish only on a set of
measure zero. In the case Young measures we have the following counterpart.

Theorem 1.3. (The 0-1 Law for Quasiregular W'?-GYM ’s.)
Let Q C R? and let {v,},ca be a WHP-gradient Young measure supported in

Q2(K) for some K < 0o. Assume that p > I?—fl Then either
v,({0}) = 0 for almost every z € Q, or

v, = 0y for almost every z € Q).

As a corollary of this fact we recover the result of Sverdk concerning the
three matrices problem.



Corollary 1.4. Let E = {A;, As, A3} C M™™ with rank(A; — A;) > 1 for
i # j. Then every Wh' — GY M {v,},cq supported in E satisfies v, = 4,
for some 1.

Sverdk gave two deep proofs of this fact, see [12] [13] . Recently Ball and
James [3] presented a different proof based on the so-called volume fraction
lemma which also uses quasiregular mappings .

To obtain Corollary 1.4 from Theorem 1.3 we extend one of the methods
of solving the corresponding exact problem. It is shown in [12] that by general
considerations, there is no loss of generality assuming n = m = 2.

Then, since at least two of the determinants det(A4; — A;) have the same
sign, using affine change of variables we are reduced to the case where A; =
0,det(A2) > 0 and det(A3) > 0. In this case, the set E is contained in Q(K)
for some K. Since F is a compact set, we can apply the Zhang Lemma (See
[14], [10]) to infer that any W''-GYM {v,},cq supported in E is in fact a
W1°.GYM. Therefore by Theorem 1.3, the Young measure {v,},cq of the
Corollary satisfies either v, = 04, or {v,},cq is supported in {As, A3}. In
the latter case, repeating the argument, or using the fact that Ay, A3 are not
rank-one connected, we have either v, = d4, or v, = d4,.

For homogeneous gradient Young measures the conclusions of Theorem
1.2 can still be considerably strengthened, to a ”global” version.

Theorem 1.5. Let v be an homogeneous W'P-GYM with support contained
in Qo(K). Assume p > I?—fl Then there are K— quasiconformal mappings
F; : R* = R? such that sequence {DF}|p};en generates v.

Here D = {z : |z| < 1} is the unit disk of R?. Note also the extra
feature of the theorem that the generating sequence consists of gradients of
homeomorphisms of R2.

One of the basic aspects of quasiregularity is the automatically improving
smoothness: We have the exponents

gk <N <Pk
such that if @ ¢ R", ¢ > gk and f € W,29(Q; R") satisfies Df(z) € Qn(K)

oc

for a.e. x then actually f € VV;?(Q, R") for all p < px. When the dimension
n = 2 we have qx = Ig—ﬁ and px = I?—Ifl . In higher dimensions, however,
the exact values of gi, px are not known.

For homogeneous gradient Young measures the above results lead to

Corollary 1.6. Suppose that p > 25 and that v is a homogeneous W'P-

K+1
GYM supported in Qz(K). Then
2K
K-1

/ A[fdv(}) < C(s, K) < 00 Vs <
M2x2



Lastly, quasiregular gradient Young measures appear naturally also in the
study of homogenization of elliptic differential operators. A new approach
to this theory developed in [6] by the second author shows that the so-called
Gly-closure problems are equivalent to the computation of the #-quasiconvex
hulls of sets {K;}", C Q2(K). The above quasiregular results on Young
measures have important applications also in this setup, for details see [6].

2 Quasiregular mappings and Beltrami oper-
ators

We approach Theorem 1.2 by using the Beltrami operators introduced in [2].
These are singular integral operators built on the Beurling transform

1 [ flw)
T =—— | ———dzdy.
TNE) =~ [ ey
As it is well known, for each u € W'#(C) we have Tdu = du. Moreover, T is a
classical Calderon-Zygmund operator with Fourier multiplier £/£. Therefore
T is bounded on LP(C) for each 1 < p < oo, ||T||z2 = 1.

The basic tool for this work is the following result due to Astala, Iwaniec
and Saksman [2]

Theorem 2.1. Let py, us € L®°(C) be such that k = |||p1] + |p2]]|eo < 1.
Denote p=1+1/k and p' =1+ k. Then the Beltrami operator

I — T — pT (1)
and its transpose I — Ty — Ty are invertible on L4(C) for all ¢ € (p', p).

Note that even if T" is C-linear, the Beltrami operators (1) are in general
only R-linear. Also, the above range for the exponents ¢ is the largest pos-
sible; as shown in [2], the conclusion of Theorem 2.1 fails whenever ¢ < p’ or
q2p.

In addition to Beltrami operators we need few basic results on quasicon-
formal mappings. The connections between the operators (1) and quasicon-
formality comes through the Beltrami differential equation

0f(2) = u(2)0f (). (2)

In fact, a I/Vl})f-homeomorphism f in a planar domain is K-quasiconformal
if and only if it satisfies (2) with |u(z)| < ﬁ—:& < 1 a.e. This leads to the fol-
lowing result, fundamental in the theory of planar quasiconformal mappings.

4



Theorem 2.2. (Measurable Riemann mapping theorem)
Let p be measurable function with ||u(z)|| < k < 1 for a.e. z € C. Then

there exists a (unique) quasiconformal homeomorphism F : C — C such that
F(0)=0, F(1)=1 and

OF = u0F a.e. z € C. (3)

For the proof of the theorem see e.g [8], Section V.1 . The ratio u =
OF/OF is called the complex dilatation of the quasiconformal mapping. The
same formula defines the complex dilatation 4 = py for the non-injective
quasiregular mappings, too. Clearly uy = 0 if and only if Of = 0; calculation
of the dilatations of compositions yields then

Proposition 2.3. (see [8], VI.2.2 ) Let Q C C be a domain and suppose f
15 quasireqular in 2. Let F' : C — C be a quasiconformal mapping such that
pr(z) = pp(z) for a.e. z € Q. Then

f(z)=hoF(2), z€Q, (4)
where the function h is complez-analytic in F(SQ).

Combining the proposition with the measurable Riemann mapping theo-
rem we see that in planar domains all quasiregular mappings are of the form
(4).

For the 0 — 1 Law of Theorem 1.3 we will need also quantitative bounds
for the size of the set where the Jacobian derivative of a quasiconformal
mapping is small. The following (sharp) estimate is essentially equivalent to
the results [1] due to the first author.

Theorem 2.4. Let F : C — C be K—quasiconformal with F(0) = 0 and
F(1) = 1. Then there is a constant Ck, depending only on K, such that

{z €D : Jp < t}| < Ot /E=D), (5)

Proof. The inverse function F~! is also a K —quasiconformal mapping fixing
0 and 1. Therefore by Theorem 1.1 in [1], cf. also the invariant formulation
in Corollary 10 of [2], we have

|F~'E| < Cy(K)|E|* (6)

whenever E C F (D). Here the constant C;(K) depends only on K.
In the special case £ = {z € F(D) : Jp-1 > s} we get

SIE| < [ Jps = |F7E| < CUE)IEIK.
E

5



This gives

{z € F(D) : Jp1 > s}| < (Cl(SK))ﬁ. (7)

We can then combine the estimates (6), (7) and obtain

HzeD:Jp <t} = |[FYHwe FD): Jp(F'w) <t}
< C{(K){w e F(D) : Jp—1 > 1/t}|* < Ok t7T

2K

where Cx = Cy(K)x-1. 0O

3 Gradient Young Measures

Oscillating sequences { f; 521 converging weakly but not strongly are inheri-
tent in a number of questions in PDE’s or Calculus of Variations. However,
the weak limit itself hides much of the information on the behavior of the
sequence. Therefore one is lead to embed the sequence into a bigger topo-
logical space, where the limits describe the adequate properties. Formally
this procedure is done using the Young measures. We shall briefly recall the
basis of the theory (for the case of gradients) and list a few basic facts needed
later.

Let 2 be a simply connected domain in R™ with Lipschitz boundary. If
we are given a sequence of Sobolev-functions {f;} € W'?(Q; R™) converging
weakly to an element f € W1P(Q; R™), then the associated gradient Young
measure describes the local oscillations of the gradient sequence {Df;}32, at
points € €). More precisely, each f; defines a mapping

Tj : Q> MMM, Tj(z) = dpji(a) (8)

where M(M"™*™) denotes the Radon measures on the space of nxm matrices
M™*®_ Clearly Tj is weakly measurable so that

Tj € Ly (€, M(M™))

with norm ||T;]] = 1. Using the fact that LS (2, M((M™*™))
Ly (Q, Co(M™*™))* we may assume, retaining to a subsequence when nec-
essary, that the sequence {T;} converges in the weak*-topology towards
an element T € L (2, M(M™*™)). Equivalently, for all ¢ € L'(Q),p €
Co(M™ ™) we have

[a@ewn@— [o6) [ ez ©)

6



where {v,},cq, v, = T(2), is the WP-gradient Young measure associated to
the sequence {f;}.
Collecting these facts we have

Definition 3.1. A family of probability measures {v,},cq is a W'P-gradient
Young measure if there exists a bounded sequence {f;} C W?(Q; R™) such
that the following three properties hold:

1. supp(v,) C M™™ g.e. z € Q.

2. The measures v, depend measurably on z. This means that for every
@ € Co(M™*™) the function

) = [ )

is measurable.

3. For each ¢ € C,(M™*™),

PDHE) =9 = [ e (10)

in L>(Q).

Suppose v is a W'P-GYM . Then if a sequence { f;} is uniformly bounded,
say, in WH1(Q; R™) and if Condition 3. above holds, then we say that the
gradients {Df;} generates v.

There are many different approaches and references for Young measures.
We have followed the one presented in [11] and [9], c.f. also the many refer-
ences there.

The cornerstone for the relations between Young measures and weak lim-
its is the following lemma.

Lemma 3.2. ([11], Theorem 6.2.) Let {v,}.cq be a W'P-GYM generated by
{f;} c W2(Q;R™) and let ¢ : M™™ — R be a continuous function such
that the sequence {(Df;(2))} is weakly convergent in L'(). Then

b(Dfj(z)) = Y(Ndv, in LY(Q)

MnXm



In particular if p > 1, Df(z), the gradient of the weak limit of {f;},
equals the center of mass of v,,

Df(z) = /I\/Inxm Adv, () a.e. z €. (11)

Finally, we will use the fact that in most situations the properties of
Young measures depend on local phenomena. The Lebesgue differentiation
theorem guarantees that this is also the case for GYM’s, see [11] Theorem
8.4. This leads to the following subclass of Gradient Young measures.

Definition 3.3. A W'*-GYM {v,}.cq is said to be homogeneous if there
exists a probability measure v on M™*™ such that

v, =V

for almost every z € (.

4 Proofs of the main theorems.

For the proof of Theorem 1.2 we need some preliminary considerations and
lemmas. We assume that n = 2, that €2 is a planar domain with smooth
boundary and that {v,},cq is a WH-GYM supported in Qq(K,), where
1 < Ky < o0 is fixed.

Let {¢;}52, be a bounded sequence in W'P(; R?) generating v. A basic
fact of the Young measures, see [11] Theorem 8.15, is that we can assume
{|D¢;|P}32, to be equintegrable. Our task is then to find a sequence of
mappings { f; };";1 that are Kj-quasiregular and still generate the same W1?-
GYM v.

Lemma 4.1. Let {v,},cq be a Ky-quasireqgular WYP-GYM and suppose
{D¢;}2, is a generating sequence such that

{IDg;|P}32, is equintegrable in (L. (12)

Let kg = gg:& Then there are measurable functions pi; such that |p;(2)| < ko
a.e. z € Q and

Jim 10¢; — 10¢; Lo (@) = 0. (13)

Proof. For a matrix C € M?2*2 consider its conformal and anticonformal
parts C'y where

_1 " (0 -1
Ci=5(C£JOT, J_<1 ; )
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Using these let us define
Fi, (C) = max{0, |C_| — ko| C4 [}

where |C| denotes the Hilbert-Schmidt norm of C. Clearly Fy,(C) = 0 if and
only if |C_| < ko|C4|. In terms of the operator norm |[|C|| this is equivalent
to ||C||? < Kydet(C). In other words, the kernel of Fy, is precisely Qy(Kj).
Moreover, 0 < Fy (C) < |C?.

In the complex notation |[D¢;(2)]+| = [0¢i(2)], [[Dei(2)]-| = |0¢:(2)|.
Hence for a.e. z we can find complex numbers |u;(z)| < ko such that
Fio(D:(2)) = 1061(2) = 13(2)06:(2) " (14)

The condition (12) implies that also the sequence Fy, (Dqﬁz(z)) is equiinte-
grable. By the Dunford Pettis theorem it has a weakly convergent subse-
quence in L'(2). Thus by means of the lemma 3.2 we can conclude that

lim | Fy, (D@(z))dz - / / Fiy(\)dv,(\)dz = 0
]—)OO (9] (9] MnXm

since for almost every z, the measure v, is supported in the zero set of Fy,.
With (14) this yields the claim. O

Proof of Theorem 1.2.
Suppose {¢;}3° € WH(Q;C) is a sequence generating the W'P-GYM
{v.}.ca as in Lemma 4.1. Since v is also a W-GYM for each ¢ < p,

we may assume that 14 ko < p <14 1/ko where ko = 52—

Let us then consider the function h; = xo(0¢; — p;06;) where p; is as
in (13). According to the Lemma we have ||A;||r»(c) — 0 as j — co. Setting
pi(z) = 0 for z ¢ Q and using Theorem 2.1 we obtain H; € LP(C) with
Hj = (I = pT) " hy.

Now the functions

wi(e) = [ Zam(q (15)

satisfy gwj = Hj; hence 5wj — piO0w; = h; with w; € VVllof(C) In fact,

| Dw;||zecy < Collhyll o) — O (16)

for a constant C); < oo depending only on Kj and p.
Next let us define

fi(2) = ¢;(2) —wi(2), z€ Q.
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Since by (16) we have ||Df; — Dé;||rr0) — 0 when j — oo, the gradients
{Df;};jen and {D¢;} en generate the same Young measure {v,},cq, see [11]
Lemma 6.3. Moreover, by the construction

0fi(z) — uofi(z) =0, z€Q.

This means that each f; is a W'P-solution to the Beltrami equation (2).
Since p > 1+ kg it follows, see [1] or [2], that then necessarily f; € W,.*(Q).
In particular, each element f; of the generating sequence is Ky-quasiregular.

O

In fact, in Theorem 1.2, specific properties of the Young measure v natu-
rally yield more restrictive generating gradients. We mention here two related
interesting examples which can be obtained by similar methods; for details
see [6] where the results are also used for further applications to elliptic
PDE’s.

Remark 4.2.
1. Given a matrix u € CO_(2) with ||u| < k < 1, let

E,={AeM*?: 4 =uA.}.

(naturally we can identify p with the complex dilatation of each A € E|,.)
Suppose fi1, ..., iy € CO_(2) . Then any W'P-GYM supported in U, E,,
is generated by quasiregular gradients such that Df(z) € U, E,, for a.e. 2.

2. The important feature of the sets E,, is that they are unbounded
sets such that det(A — B) > 0 for all A, B € E,,. More generally, we can
consider the following nonlinear situation. Let {E;}"_; be a collection of
unbounded sets such that det(A — B) > 0 for all A,B € E;. Then any
WP-GYM supported in U™, E; can be generated by quasiregular gradients
such that Df(z) € U, E; for a.e. z. The proof uses the invertibility of the
nonlinear Beltrami Operators, see [2]), and the fact that every set E; can
be described as the graph of a k-Lipschitz function ¢ : CO4(2) — CO_(2)
where 0 < k£ < 1, see[15]).

We then turn to the study of homogeneous gradient Young measures.

Proof of Theorem 1.5.

We begin with some preliminary considerations. Given the homogeneous
WP-GYM v with support in Q,(K), Theorem 1.2 gives us a sequence of
K-quasiregular mappings {f;} whose gradients generate v. We can assume

that 255 < p < % and then the proof of the theorem gives

sup [ |Df,(2)Pam() < oo (17)
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We may also assume that f;(0) = 0.
Next, we saw in (11) that

Df;(z) — Adv(X) in LY(Q) (18)
M2>(2
where by homogeneity the right hand side is a constant in z. This fact
will be an essential feature of the argument below. For brevity let us use
the notation A = [\ 2.2 Adv()). Then A € Qy(K) since the limits of K-
quasiregular mappings remain K-quasiregular.

Denote then by u4 the complex dilatation of the linear map A(z), set
pa = 0if A = 0. Consider now the dilatation functions p; where p;(2) =
py; (2) for z € Q and p;(2) = pa for z € C\ Q. By the measurable Riemann
mapping theorem we can find K-quasiconformal mappings F; : C — C fixing
0 and 1, for which pp, (2) = p;(2) for a.e. z € C. Furthermore, according to
Proposition 2.3 we can factor

where the A; is analytic in F;(Q).
We need then the equicontinuity properties of both factors in (19). Firstly,
the mappings F; are quasisymmetric, i.e. [8]

F) - F@)| _ Jy—q
)~ @) = e

for distinct z,y, 2z € C, (20)

where the map vk is an increasing homeomorphism of [0,00) onto itself,
depending only on K. Therefore the family {F}} is normal. Replacing it
by a subsequence we have F; — F uniformly on €2, where F' : C — C is
K-quasiconformal [8] and F'(0) =0, F'(1) = 1. Moreover,

DFj(z) = DF(z) in LP(Q). (21)

Secondly, for the factor h; note that
o 1PN ) / Dhy(Fy2)| i, ()dm(2) <
/ \Dhy(F;2)P| DF,(2)Pdm(2) / DE, () tdm(z)) "

/ IDf,(2)Pdm(2) / DE,(z) dm(2))’ " )
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where ¢ is the conjugate exponent of p. Let B = B(x, R) be a fixed disk
containing . As ¢ < 2% it follows from [1], see also [2] Corollary 11, that

1/
([ 1pF@ram) " < o ROIR@IP < @3
B
with ¢y < 0o independent of j € N. Consequently, by (17) and (23)

sup /Fj(m |Dhj(z)|dm(z) < oo. (24)

jEN

Now the domains Fj(2) converge in the Hausdorff metric to the domain
F(Q) by the uniform convergence (20) . Since h;(0) = 0, one may use e.g.
the mean value theorem with (24) to show that the family {h; : F;(Q2) — C}
is normal. Hence by choosing a further subsequence we can assume h; — h,
h’; — B’ uniformly on compact subsets of F'(2), where h is analytic on F'(€2).
Then h}(Fjz) — h'(Fz) uniformly on compact subsets of Q. It follows that

Df;(z) = D(ho F)(z) in LP(Q). (25)

After these preparations we claim that h(z) = az for some o € C. Here
the assumption that v is a homogeneous measure is of course needed. Indeed,
(18) and (25) show that D(hoF) = A in {2 and so, unless h = 0, the dilatation
pr(z) = pa for z € Q. But for z ¢ Q we have pp(z) = pa by definition.
Therefore up is constant and so F' must be linear by the uniqueness part of
Theorem 2.2. It follows that h, too, must be linear. Moreover, by (25), (18)

aDF = / v (). (26)

To complete the proof of Theorem 1.5 choose a closed disk By C .
Since now h; — o uniformly in Bo, by (19) ||Df; — aDFj|l1p,) — 0.
Therefore, {aDF;} and {Df;} generate in By the same W P-GYM , see [11].
By homogeneity, this measure is v. Making a linear change of variables gives
finally K-quasiconformal mappings ﬁ} : C — C such that Dﬁ‘j|D generate v.
This proves Theorem 1.5. O

Next, we shall prove the 0-1 Law of Theorem 1.3 in the special case of
homogeneous quasiregular Young measures.

Lemma 4.3. Let v be a homogeneous WYP-GYM with support contained
Q2(K). Let p > I?—fl If the center of mass [ygaxe AddV(X) = 0, then v = 4.

On the other hand, if [y a2 Adv(X) # 0, then v({0}) = 0.
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Proof:

Let us use the sequence {F}} from the proof of Theorem 1.5, consisting
of K-quasiconformal mappings fixing 0 and 1. Recall also that F; — F uni-
formly on compact subsets of C, where F' is linear (and K-quasiconformal).
Similarly, let a be the constant as in the proof of Theorem 1.5, so that
{aDFj|p, }52, generates v. We can assume that By C D.

Now, if [yrax2 Addv(X) = 0 then by (26) a = 0 so that v = dy. If we have
Jagzxa Adv(A) # 0 then a # 0. In this case choose a family of cut-off functions
h. € C$°(M?*2) such that h. =1 on B(0,¢), h. = 0 on M?*2\ B(0, 2¢) and
[[7elloo = 1. By (9)

V(B(0,2)) g/Mth(A)dy( ~ lim —/B (aDF;(2))dz

since v, = v for a.e. z.
Theorem 2.4 gives now

v(B(0,¢)| Byl < [{z € By: |DFj|| < 2¢/|al}|
< {zeD:Jy < (2¢/|a))?} < Crae® 1. (27)

Taking the limit ¢ — 0 we obtain v({0}) =0. O

Finally, to prove the non-homogeneous case of the 0-1 Law we only need to
combine the previous results with basic properties of quasiregular mappings.
It is shown e.g. in [7] that if { f;}32, is a sequence of K -quasiregular mappings
with f;(0) = 0 and

S 2K
K+1

sup/Q |Dfi(z)|Pdm(z) < oo,

J

(28)

then a subsequence {f;,} converges uniformly on compact subsets of € to
a K-quasiregular mapping f : @ — C. The second fact needed, see [8]
or use Theorem 2.3, is that the Jacobian derivative of a non-constant K-
quasiregular mapping can vanish only on a set of measure 0.

Proof of Theorem 1.3.

Consider a K-quasiregular W'?-GYM {v,},cq generated by the gradi-
ents of K—quasiregular mappings {f;} as in Theorem 1.2. Let f be the
quasiregular limit function of {f;}; it follows from (11) that

Df(z) = /sz2 Adv,(A) a.e. z € Q. (29)
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By the localization property of GYM’s, see [11] Theorem 7.2, for almost every
z, v, is an homogeneous K-quasiregular GYM. Thus either v,({0}) = 0 or
v, = 0p.

Suppose that there exists a set £ C €2 of positive measure such that for
every z € E we have v, = §y. This implies that D f(z) = 0 for almost every
z € E and hence also the Jacobian vanishes on E. It follows that f must
be constant. Therefore (29) with Lemma 4.3 shows that v, = dy for almost
every z € .0

Remark 4.4. The 0-1 law holds also in higher dimensions for those gradient
Young measures that are generated by quasiregular mappings. Here the proof
is more technical but in spirit the same; it is enough to use localizations at a
point which is bounded away from the branch sets of the generating sequence.
However it is not clear if Theorem 1.2 works as such in higher dimensions
since then the partial differential structure associated with the quasiregular
mappings is highly overdetermined.
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