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Abstract. In this paper we prove rather precise results on density properties of the
Riesz capacities in RN and the analytic capacity γ+ in R2.

§1. Introduction and main results

Let Mh be the Hausdorff content, generated by a non-decreasing continuous
function h : [0,+∞) → [0,+∞), h(t) > 0 for t > 0, h(0) = 0. That is, for a set E
in RN (N ∈ N = {1, 2, . . . })

Mh(E) = inf
{ +∞∑

j=1

h
(
d(Ej)

) ∣∣∣∣ E ⊂
+∞⋃

j=1

Ej

}
,

where d(E) denotes the diameter of E.
The next result follows readily from [F, 2.10.17(3)].

Theorem A. For each set E ⊂ RN with Mh(E) > 0

lim sup
δ→0

Mh

(
E ∩ B(a, δ)

)

h(δ)
≥ 1

for Mh-almost all a ∈ E.

Here B(a, δ) is an open ball in RN , centered at a ∈ RN and having radius δ > 0
(B(a, δ) is the corresponding closed ball).

For a reasonable h, h(δ) is comparable to Mh

(
B(a, δ)

)
.

To our knowledge the failure of analogous density properties for Riesz capacities
Cs in RN and (positive) analytic capacity γ+ in R2, which follows from our results
below, was not noticed and discussed before (in [M1] such a failure was proved for
the integralgeometric measure I1

1 in RN ). Shortly speaking, we are interested in the
following more precise natural question: given a capacity C, as mentioned above,
for which “density functions” h there is a compact set E such that C

(
E∩B(a, δ)

)
is

comparable to h(δ), as δ tends to zero, for all a ∈ E0 with C(E0) > 0? Theorems 1
and 2 give rather precise answers to this question.
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Let M+(E), E ⊂ RN , be the set of all finite positive Borel measures µ with
compact support, supp(µ), contained in E. For µ ∈ M+(R2) the Cauchy transform
µ̂ is defined as

µ̂(z) =
∫

dµ(ζ)
z − ζ

, z ∈ C.

For µ ∈ M+(RN ) and s ∈ (0,N) the s-Riesz transform of µ is

Us
µ(x) =

∫
dµ(y)

|x − y|s
, x ∈ RN .

It is easily seen (by Fubini theorem) that µ̂(z) (respectively Us
µ(x)) exists (the

corresponding integrals converge absolutely) almost everywhere with respect to the
Lebesgue measure L(2) in R2 (respectively, to the Lebesgue measure L(N) in RN ),
and, moreover, µ̂ ∈ L1,loc(L(2)) (respectively, Us

µ ∈ L1,loc(L(N))). We denote by
‖ · ‖ the L∞(L(N))-norm (on all of RN ).

For bounded sets E in R2 and F in RN define

γ+(E) = sup{µ(E) | µ ∈ A+(E)},

Cs(F ) = sup{µ(F ) | µ ∈ As(F )},

where A+(E) (respectively, As(F )) consists of all measures µ ∈ M+(E) (respec-
tively, µ ∈ M+(F )) such that ‖µ̂‖ ≤ 1 (respectively, ‖Us

µ‖ ≤ 1).
It is easily seen that γ+

(
B(a, δ)

)
= δ and that Cs

(
B(a, δ)

)
= Cs

(
B(0, 1)

)
· δs.

Theorem 1. Let N ∈ N and s ∈ (0,N ).
(a) Let X be a compact set in RN with Cs(X) > 0. If h satisfies the property

(1)
∫ 1

0

h(t) dt

ts+1 < +∞,

then for Cs-almost all a ∈ X one has

(2) lim sup
δ→0

Cs

(
B(a, δ) ∩ X

)

h(δ)
= +∞.

(b) Let h be such that

(3)
∫ 1

0

h(t) dt

ts+1 = +∞.

Suppose that for some c > 0 one has ch(t) ≤ ts, t ≥ 0, and the function g(r) =
h(r) exp

(
−

∫ 1
r

ch(t) dt
ts+1

)
, r ≥ 0, satisfies

(4)
g−1(2−(j+1)N )

g−1(2−jN )
∈ [ε, 1/2)

for some ε ∈ (0, 1/2) and all j big enough, then there is a Cantor set X1 with
conditions

(5) A1 h(δ) ≤ Cs

(
B(a, δ) ∩ X1

)
≤ A2 h(δ)

for all a ∈ X1, δ ∈ (0, 1) and some 0 < A1 < A2 < +∞, depending only on
N, s, h, c.



ON DENSITY PROPERTIES OF THE RIESZ CAPACITIES... 3

Theorem 2. (a) Let X be a compact set in R2 with γ+(X) > 0. If h satisfies

(6)
∫ 1

0

h2(t)dt

t3
< +∞,

then for γ+-almost all a ∈ X one has

(7) lim sup
δ→0

γ+
(
B(a, δ) ∩ X

)

h(δ)
= +∞.

(b) Let

(8)
∫ 1

0

h2(t)
t3

dt = +∞.

Suppose that for some c > 0 one has ch2(t) ≤ t2, t ≥ 0, and the function

g(r) = h(r) exp
(

−
∫ 1

r

ch2(t)dt

2t3

)
, r ≥ 0,

satisfies the properties

(9)
g−1(4−j−1)
g−1(4−j)

∈ [ε, 1/2)

for some ε ∈ (0, 1/2) and all j big enough. Then there exists a Cantor set X1 in
R2 with

(10) A1 h(δ) ≤ γ+
(
B(a, δ) ∩ X1

)
≤ A2 h(δ)

for all a ∈ X1, δ ∈ (0, 1) and some 0 < A1 < A2 < +∞, depending only on h, c.

The conditions ch(t) ≤ ts and ch2(t) ≤ t2 in the parts (b) of Theorems 1 and 2
in context of (5) and (10) are quite natural. It will be clear from the proofs that
conditions (4) and (9) on the function g are in some sense precise. These conditions
are satisfied by all “reasonable” g (or h, cf. §3).

In §3 we give concrete examples of the functions h and discuss some other prop-
erties of densities. We also obtain several “partial” results on the densities of γ+
and α+ in RN , N ≥ 2.

The proof of Theorem 1 can be generalized to give similar results for capacities
related to general kernels K with mild regularity conditions. The integral in (1) is
then replaced by

∫ 1
0 h(t) K ′(t) dt. For example, K(t) could be − log t.

§2. Proofs

Proof of Theorem 1.
(a) Let X , s, h satisfy the conditions (a) in Theorem 1. It is enough to find at

least one point a ∈ X with conditon (2). In fact, if (2) does not hold Cs-almost
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everywhere in X , we can find a compact subset Y of X such that Cs(Y ) > 0, but
(2) with X replaced by Y fails for all a ∈ Y .

Take a measure µ ∈ As(X) with ‖µ‖ :=
∫

dµ > 0. If there exists a ∈ X with

lim sup
δ→0

µ
(
B(a, δ)

)

h(δ)
= +∞

then for this a we also have (2), because for each δ > 0 there is η ∈ (0, δ) with
µ
(
B(a, η)

)
≥ µ

(
B(a, δ)

)
/2 and so, since µ |B(a,η)∈ As

(
X ∩ B(a, δ)

)
, we get

Cs

(
B(a, δ) ∩ X

)
≥ µ

(
B(a, δ)

)
/2.

Suppose now that for each a ∈ supp(µ)

(11) lim sup
δ→0

µ
(
B(a, δ)

)

h(δ)
< +∞.

We claim that Mh(X) > 0. In fact, suppose, by contradiction, that Mh(X) = 0.
Then one can find balls B1, . . . , BJ such that X ⊂

⋃J
j=1 Bj and

J∑

j=1

µ(Bj) ≥ ‖µ‖ >
J∑

j=1

h(2δj),

where 2δj = d(Bj), so that for some j (say j = 1) we have µ(B1) > h(2δ1). Take
now X1 = X ∩ B1 and r1 = δ1, then for each a1 ∈ X1 we can write

µ
(
X ∩ B(a1, 2r1)

)
≥ µ

(
X1 ∩ B(a1, 2r1)

)
≥ µ(B1) > h(2r1).

Put µ1 = µ |X1 and, by induction (since Mh(X1) = 0), find compact sets {Xn}∞
n=1

(Xn ⊂ Xn−1, n ≥ 2) and {rn}∞
n=1 (0 < rn < rn−1, n ≥ 2) such that for each

an ∈ Xn one has µ
(
Xn ∩ B(an, 2rn)

)
> nh(2rn). For any point a ∈

⋂∞
n=1 Xn 6= ∅,

clearly,

lim sup
δ→0

µ
(
X ∩ B(a, δ)

)

h(δ)
= +∞,

which contradicts (11) and proves the claim.
Now, since Mh(X) > 0, by Theorem A we can find a ∈ X and a sequence

{δn}∞
n=1, δn ↘ 0 as n ↗ +∞ such that for each n

Mh

(
B(a, δn) ∩ X

)
≥ h(δn)/2.

By Frostman’s lemma [C, p. 7], for each n there exists a measure σn ∈ M+
(
X ∩

B(a, δn)
)

such that for any ball B(x, r) one has σn

(
B(x, r)

)
≤ h(r) and

σn

(
X ∩ B(a, δn)

)
≥ A1 Mh

(
X ∩ B(a, δn)

)
≥ A1

2
h(δn),

where A1 > 0 depends only on N .
We shall prove the following known fact for completeness.
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Lemma 1. Let K be a compact set in RN , σ ∈ M+(K) and σ
(
B(x, δ)

)
≤ h(δ) for

any x ∈ RN and δ > 0. Then

‖Us
σ‖ ≤ A

∫ 2d

0

h(t) dt

ts+1 ,

where d = d(K), A = A(s) ∈ (0,+∞).

Proof. Fix any x ∈ RN . Then

Us
σ(x) ≤

∫

B(a,d)

dσ(y)
|x − y|s

+
‖σ‖
ds

≤
∫ +∞

0
σ

{
y

∣∣∣∣
1

|x − y|s
> t, |x − y| < d

}
dt +

h(d)
ds

=
∫ +∞

t0

σ

(
B

(
x,

(1
t

)s
))

dt +
∫ t0

0
σ
(
B(x, d)

)
dt +

h(d)
ds

,

where t0 = d−s. Put τ = (1/t)1/s, then

Us
σ(x) ≤ s

∫ d

0

h(τ) dτ

τ1+s
+

2h(d)
ds

≤ A

∫ 2d

0

h(t)dt

t1+s
. ¤

By Lemma 1 and (1),

‖Us
σn

‖ ≤ A

∫ 2δn

0

h(t)dt

ts+1 =: εn → 0 as n → +∞.

The measure σn/εn is in As

(
X ∩ B(a, δn)

)
, which gives

Cs

(
B(a, δn) ∩ X

)
≥ A1 h(δn)

2εn

and, consequently, (2). In fact, from continuity of h one can find ηn > 0 such that
h(δn + ηn) ≤ 2h(δn) and therefore

Cs

(
B(a, δn + ηn) ∩ X

)
≥

A1 h(δn + ηn)
4εn

.

Actually, it is proved that

lim sup
δ→0

Cs

(
B(a, δ) ∩ X

)

h(δ)/ε(δ)
> 0,

where ε(δ) =
∫ 2δ

0
h(t) dt
ts+1 .

(b) We shall construct the set X1 with conditions (5) using estimates of Cs for
Cantor sets (see [E, §1]).

Let h, c and g satisfy conditions in (b) of Theorem 1. We claim that the function
g is continuous, (strictly) increasing and, moreover,

∫ 1
0

g(t) dt
ts+1 < +∞.
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Only the last property needs additional explanations. Since
(
g(t)/h(t)

)′ =
cg(t)/ts+1 for all t > 0, we have

∫ 1

r

g(t) dt

ts+1 =
g(t)
ch(t)

∣∣∣∣
1

r

.

But by (3), g(t)/h(t) = exp
(

−
∫ 1
r

ch(t) dt
ts+1

)
→ 0 as r → 0, which gives

∫ 1
0

g(t) dt
ts+1 =

g(1)
ch(1) = 1/c < +∞ as claimed. Moreover,

(12)
∫ r

0

g(t) dt

ts+1 =
g(r)
ch(r)

, r > 0.

The property (4) means precisely that we can construct an N -dimensional Cantor
set X1 with parameters

{
lj = g−1(2−Nj)

}∞
j=j1

satisfying lj+1/lj ∈ [ε, 1/2), j ≥ j1 ∈
N.

We are not going to repeat the construction of Cantor sets (see [E, §1]), we just
say that on the n-th step (n ≥ j1) of the construction we get 2Nn congruent closed
cubes {Qm

n }2Nn

m=1 with side length ln, so that

X1 =
∞⋂

n=j1

( 2Nn⋃

m=1

Qm
n

)
.

In particular, for each n ≥ j1, one has

X1 =
2Nn⋃

m=1

Xm
n ,

where Xm
n are congruent Cantor sets with parameters {lj}∞

j=n (Xm
n ⊂ Qm

n ).
One also notes that g satisfies the so-called doubling property

(13) g(2r) ≤ A0 g(r)

for all r ∈ (0, lj1+1) with constant A0 = 22N , which follows from (4). Also h
satisfies doubling condition, since, from the inequality h(t) ≤ ts (required in (b))
one obtains
h(2r)
h(r)

=
g(2r)
g(r)

exp
(∫ 2r

r

ch(t) dt

ts+1

)
≤ 22N exp

(∫ 2r

r

dt

t

)
≤ 22N+1, r ∈ (0, lj1+1).

In what follows the expression f1 ³ f2 means that there exists a constant A ∈
(1,+∞), depending only on N , s, h, c (in context of γ+ the constant A can depend
only on h and c), such that A−1 f1 ≤ f2 ≤ A f1 for all values of parameters in f1
and f2. Finally, by [E, Corollary 1.1] we get (recall that g(lj) = 2−Nj):

Cs(Xm
n ) ³

( ∞∑

j=0

2−Nj(lj+n)−s

)−1

=
( ∞∑

j=n

2−Nj 2Nn(lj)−s

)−1

= g(ln)
( ∞∑

j=n

g(lj)
lsj

)−1

³ g(ln)
(∫ ln

0

g(t)dt

ts+1

)−1

³ h(ln),

where we used (12) and the doubling property (13). To obtain (5) it suffices to
invoke the doubling property of h and the inequalities ln+1 ≥ ε ln, n ≥ j1. ¤
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Proof of Theorem 2.
It is quite similar to that of Theorem 1, except that we need also a characteri-

zation of γ+ in terms of the so-called curvature of a measure [T1]. Till the end of
§2 A, A1, . . . are some positive constants depending only on h.

(a) Again, it is enough to check that (7) holds for at least one point a ∈ X . Take
a measure µ ∈ A+(X), ‖µ‖ > 0. Suppose that there is a point a ∈ supp(µ) ⊂ X
with

lim sup
δ→0

µ
(
B(a, δ) ∩ X

)

h(δ)
= +∞.

We claim that also

lim sup
δ→0

γ+
(
B(a, δ) ∩ X

)

h(δ)
= +∞.

For h, satisfying doubling condition (see (13)), it would be enough to check that

γ+
(
B(a, 2δ) ∩ X

)
≥ Aµ

(
B(a, δ) ∩ X

)
.

Take ϕ ∈ C∞
0

(
B(a, 2δ)

)
, 0 ≤ ϕ ≤ 1, ϕ = 1 in B(a, δ) and ‖∂ϕ‖ ≤ A1

δ
. Put µ1 = ϕµ.

By [V, Ch. II, §3],

‖µ̂1‖ ≤ A2 δ ‖∂ϕ‖ ‖µ̂‖ ≤ A1A2 = A−1
3 .

Hence, A3 µ1 ∈ A+
(
B(a, 2δ) ∩ X

)
, which gives

γ+
(
B(a, 2δ) ∩ X

)
≥ A3 ‖µ1‖ ≥ A3 µ

(
B(a, δ) ∩ X

)
,

as desired.
For a general h we apply [MPV, Lemma 3.3] (the case N = 2), which gives for

each B(a, δ):
γ+

(
B(a, δ) ∩ X

)
≥ A3 µ

(
B(a, δ) ∩ X

)

with some absolute constant A3 ∈ (0, 1).
It now remains to consider the case when for any a ∈ X one has

lim sup
δ→0

µ
(
B(a, δ) ∩ X

)

h(δ)
< +∞.

As it was already shown in the proof of Theorem 1, we then get Mh(X) > 0. By
Theorem A there exists a ∈ X with

lim sup
δ→0

Mh

(
B(a, δ) ∩ X

)

h(δ)
≥ 1,

and then we can choose {δn}∞
n=1 ⊂ (0, 1), δn ↘ 0 as n ↗ +∞, such that

Mh

(
B(a, δn) ∩ X

)
≥ h(δn)/2, n ≥ 1.

Fix n ≥ 1 and put hn(t) = h(t) for t ∈ [0, δn] and hn(t) = h(δn) for t ≥ δn.
By Frostman’s lemma we can find σn ∈ M+(Xn), Xn = B(a, δn) ∩ X , such that
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σn

(
B(z, δ)

)
≤ hn(δ) (hence also σn

(
B(z, δ)

)
≤ hn(δ)

)
for all z ∈ R2, δ > 0, and,

moreover,

‖σn‖ = σn(Xn) ≥ A Mhn(Xn) ≥ A

2
h(δn).

Recall, that the curvature c2(σ) of a measure σ ∈ M+(R2) is defined by

c2(σ) =
∫∫∫ (

R(x, y, z)
)−2

dσ(x) dσ(y)dσ(z),

where R(x, y, z) is the radius of the circle passing through x, y and z.
Tolsa [T1, Theorem 5.1 and (59)] showed that

γ+(K) ³ sup
{
‖σ‖ | σ ∈ M+(K), σ

(
B(z, r)

)
≤ r for all(14)

z ∈ C and r > 0, and c2(σ) ≤ ‖σ‖
}
.

Though our definition of γ+ is slightly different from that of [T1], we can use
this result for K having zero Lebesgue measure (for which it is the same). We shall
apply this result in order to obtain the corresponding lower estimate of γ+, using
the properties of measures σn. By Theorem 2.2 of [M2] we have:

c2(σn) ≤ 12 ‖σn‖
∫ +∞

0
t−3 h2

n(t) dt(15)

≤ 12 ‖σn‖
( ∫ δn

0
t−3 h2

n(t)dt + h2
n(δn)

∫ +∞

δn

t−3 dt

)

≤ 12 ‖σn‖
( ∫ δn

0
t−3 h2

n(t)dt + h2
n(δn)/2δ2

n

)

≤ A1 ‖σn‖
∫ 2δn

0
t−3 h2(t) dt =: εn ‖σn‖,

where εn → 0 as n → +∞ by (6).
Since, evidently, c2(λσ) = λ3 c2(σ) for any λ > 0 and σ ∈ M+(R2), we have for

the measure µn = λn σn with λn = 1/
√

εn that c2(µn) ≤ ‖µn‖. We now have to
show that

(16) µn

(
B(z, δ)

)
≤ A2 · δ

for all z ∈ R2 and δ > 0. To prove this consider 2 cases. The first is δ ≥ δn. Then,
since supp(µn) ⊂ B(a, δn), we can write

µn

(
B(z, δ)

)
≤ µn

(
B(a, δn)

)
≤ σn

(
B(a, δn)

)
/
√

εn

≤ h(δn)
(

A1

∫ 2δn

δn

t−3 h2(t) dt

)−1/2

≤ A2 h(δn)
(
h2(δn)/δ2

n

)−1/2 = A2 δn ≤ A2 δ.
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The second case is δ ∈ (0, δn). Here we have

µn

(
B(z, δ)

)
≤

σn

(
B(z, δ)

)
√

εn
≤ h(δ)

(
A1

∫ 2δ

δ

h2(t)
t3

dt

)−1/2

≤ A2 h(δ)
(

h2(δ)
δ2

)−1/2

= A2 δ.

Finally (assuming that A2 ≥ 1), the measure νn = µn/A2 satisfies c2(νn) ≤ ‖νn‖
and νn

(
B(z, δ)

)
≤ δ for all B(z, δ). Therefore, by (14), γ+(Xn) ≥ A3 ‖νn‖ ≥

A4 h(δn)/
√

εn, which gives (7) since h is continuous. Again, it was really proved
that

lim sup
δ→0

γ+
(
B(a, δ) ∩ X

)

h(δ)/
√

ε(δ)
> 0,

where ε(δ) =
∫ 2δ

0 t−3 h2(t) dt. Recall, that here we could use (14) only whenever
L(2)(X) = 0. If L(2)(X) > 0 then, since clearly h(r)/r → 0 as r → 0, the property
(7) can be easily obtained from the following analog (in fact a corollary) of Vitushkin
result on instability of analytic capacity [V, Ch. VI, §1]. Put L = L(2).

Proposition 1. Let E be any L-measurable set in R2, L(E) > 0. Then for each
L-density point a of E (and therefore L-a.e. on E) one has

lim
δ→0

γ+
(
B(a, δ) ∩ E

)

δ
= 1.

Proof. The corresponding proof in [V, pp. 188–192] is given for capacity α and for
some more precise result (Theorem 1, p. 190). It also works for γ+, but for the
reader’s convenience we choose to present here its considerably simplified version.

Let a be any L-density point of E. Fix any ε ∈ (0, 1). There is δε > 0 such that
for each δ ∈ (0, δε) one can find a compact set Kδ in E ∩ B(a, δ) with L(Kδ) ≥
(1 − ε2) πδ2. Put Ωδ = B(a, δ) \ Kδ, µ = L

∣∣
B(a,δ), ν = L

∣∣
Ωδ

, σ = L
∣∣
Kδ

. It can be
easily checked that µ̂(z) = π(z−a) in B(a, δ) and µ̂(z) = πδ2/(z−a) in R2\B(a, δ),
so that ‖µ̂‖ = πδ. On the other hand, ‖ν̂‖ ≤ 2πεδ. In fact, fix any z ∈ R2 and let
% ∈ (0, εδ] be such that L(Ωδ) = π%2 = L

(
B(z, %)

)
. Then

|ν̂(z)| ≤
∫

Ωδ

dL(ζ)
|ζ − z|

≤
∫

B(a,%)

dL(ζ)
|ζ − z|

=
∫ 2π

0

∫ %

0

r dz dϕ

r
= 2π%,

as desired. Therefore,

‖σ̂‖ ≤ ‖µ̂‖ + ‖ν̂‖ ≤ πδ(1 + 2ε).

Since σ
(
πδ(1 + 2ε)

)−1 ∈ A+(Kδ), we get

γ+
(
E ∩ B(a, δ)

)
≥ γ+(Kδ) ≥ πδ2(1 − ε2)

(
πδ(1 + 2ε)

)−1 = δ
(
1 + O(ε)

)
.
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It remains to recall now that γ+
(
B(a, δ) ∩ E

)
≤ γ+

(
B(a, δ)

)
= δ.

(b) Let h, c and g satisfy conditions in (b) of Theorem 2. The function g(r) =
h(r) exp

(
−

∫ 1
r

ch2(t)
2t3 dt

)
satisfies g(r) = o

(
h(r)

)
as r → 0 (see (8)) and g is strictly

increasing. Moreover,

(( g(r)
h(r)

)2)′
= exp

(
−

∫ 1

r

ch2(t)
t3

)
ch2(r)

r3 =
cg2(r)

r3 .

Thence,
∫ 1

r
t−3 g2(t)dt = g2(t)/ch2(t)

∣∣1
r
, which gives

∫ 1

0
t−3 g2(t)dt =

g2(1)
ch2(1)

=
1
c

< +∞

and

(17)
∫ r

0

g2(t) dt

t3
=

g2(r)
ch2(r)

.

The conditions (9) allow us to construct a 2-dimensional Cantor set X1 with pa-
rameters {lj = g−1(4−j)}∞

j=j1
, where εlj ≤ lj+1 < lj/2 (j ≥ j1 ∈ N). We use again

the notation Xm
n from the proof of Theorem 1 and the same way we prove that g

and h satisfy doubling properties (13) with constants A0 = 16 and 32 respectively
(we apply the condition h(t) ≤ t and consider (13) only for r ∈ (0, lj1+1)). In order
to apply (14) again, we need to verify that L(2)(X1) ≡ L(X1) = 0. In fact, if, by
contradiction, L(X1) > 0 then, clearly, limn→∞ ln+1/ln = 1/2. ¿From this we have
(as ch2(t) ≤ t2):

h(lj+1)
h(lj)

=
g(lj+1)
g(lj)

exp
(∫ lj

lj+1

ch2(t)dt

2t3

)

≤ 1
4

(
exp

(∫ 2lj+1

lj+1

dt

2t
+ o

j→∞
(1)

))
=

√
2

4
(
1 + o

j→∞
(1)

)
,

which leads to a contradiction with (8).
Set µ = Hg

∣∣
X1

, where Hg is the g-Hausdorff measure. The main property of µ

is that (see[G])

(18) A1 g(r) ≤ µ
(
B(z, r)

)
≤ A2 g(r)

for each z ∈ X1 and r ∈ (0, lj1) (all appearing Aj are positive and depend only on
g).

It remains to prove that for all n ≥ j1 and m = 1, . . . , 4n

(19) A3 h(ln) ≤ γ+(Xm
n ) ≤ A4 h(ln).

The left inequality in (19) can be proved following part (a) of the present proof.
Concretely, fix n and m, and let σn = µ

∣∣
Xm

n
. As in (15) and (16), using doubling

conditions of g, we get

c2(σn) ≤ A5 ‖σn‖
∫ ln

0
t−3 g2(t) dt =: εn ‖σn‖,
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so that for µn = σn/
√

εn one has

c2(µn) ≤ ‖µn‖ and µn

(
B(z, δ)

)
≤ A6 δ

(A6 > 1) for all z and δ > 0. From (14) and (18),

γ+(Xm
n ) ≥ ‖µn‖/A6 ³

g(ln)
√

εn
³ h(ln)

(see (17)). And that is it.
To prove the right inequality in (19) we need one more result of Tolsa. In [T2]

it is proved (Theorem 1), that for each σ ∈ M+(R2) one has

(20) γ+
(
{z | cσ(z) ≥ t}

)
≤ A7

‖σ‖
t

, t > 0,

where

cσ(z) =
(∫∫

dσ(x)dσ(y)
R2(z, x, y)

)1/2

,

and A7 > 0 is an absolute constant.
For σn as just above, the same way as in [M2, Theorem 2.3], we get for all

z ∈ Km
n :

(
cσn(z)

)2 ≥ A8

∫ ln

0
t−3 g2(t) dt =: A9 εn.

Applying (20) to σ = σn and t =
√

A9 εn completes the proof of Theorem 2. ¤

§3. Examples. Partial results for γ+ and α+ in RN

For p > 0, q ≥ 0 define

hp,q(t) = tp/| log t|q, t ∈ (0, e−1), hpq(0) = 0,

hp,q(t) = e−p, t ≥ e−1.

It can be easily checked that all h(t) = hp,q(t) with p > s, q ≥ 0 and all h(t) =
hs,q(t) with q > 1 satisfy the part (a) of Theorem 1. All functions h(t) = hs,q with
q ∈ [0, 1] satisfy part (b) of Theorem 1 (take c < min{1,N − s}).

The functions hp,q with p > 1, q ≥ 0 and h1,q, q > 1/2 satisfy part (a) of
Theorem 2, and the functions h1,q, q ∈ [0, 1/2] satisfy part (b) of this theorem
(take c < 1).

Theorems 1 and 2 can be applied even for a wider class of functions h, namely
for the functions

h(t) = tp | log t|−q1 | log | log t||−q2 . . . , p > 0, qj ≥ 0

(finite product). From this we have
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Corollary 1. Let N ∈ N, s ∈ (0,N ).
(a) If X is a compact set in RN with Cs(X) > 0, and q > 1, then for Cs-almost

all a ∈ X one has

lim sup
δ→0

Cs

(
B(a, δ) ∩ X

)

δs/| log δ|q
= +∞.

(b) For each q ∈ [0, 1] there exists a Cantor set X1 in RN and A1 > 0, A2 > A1
depending only on N , s, q, such that for each a ∈ X1 and δ ∈ (0, e−1) one has

A1 δs/| log δ|q ≤ Cs

(
X1 ∩ B(a, δ)

)
≤ A2 δs/| log δ|q.

Corollary 2. (a) For each compact set X in R2 with γ+(X) > 0 and each q > 1/2
one has

lim sup
δ→0

γ+
(
X ∩ B(a, δ)

)

δ/| log δ|q
= +∞

for γ+-almost all a ∈ X .
(b) For each q ∈ [0, 1/2] there exists a Cantor set X1 in R2 such that for each

a ∈ X1 and δ ∈ (0, e−1) one has

A1 δ/| log δ|q ≤ γ+
(
X ∩ B(a, δ)

)
≤ A2 δ/| log δ|q

with A1 > 0, A2 > A1 depending only on q.

Remark 1. ¿From Corollaries 1 and 2 (parts (b)) it follows (at least for functions
h from the class {hp,q}p>0,q≥0) that for h, satisfying the requirements of the parts
(b) of Theorems 1 and 2 respectively, one can find compact sets X0 and X∞ in RN

(respectively in R2) such that Cs(X0) > 0, Cs(X∞) > 0 and

lim
δ→0

Cs

(
B(a, δ) ∩ X0

)

h(δ)
= 0, x ∈ X0,

lim
δ→0

Cs

(
B(a, δ) ∩ X∞

)

h(δ)
= +∞, x ∈ X∞

(
respectively, γ+(X0) > 0, γ+(X∞) > 0 and

lim
δ→0

γ+
(
B(a, δ) ∩ X0

)

h(δ)
= 0, x ∈ X0,

lim
δ→0

γ+
(
B(a, δ) ∩ X∞

)

h(δ)
= +∞, x ∈ X∞

)
.

In the cases, when the corresponding limits are +∞ we, clearly, need to require in
addition that h(t) = o(ts) (h(t) = o(t) respectively) as t → 0.

We propose also the following precisions to the parts (a) of Theorems 1 and 2.
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Corollary 3. (i) Suppose that h satisfies property (1) of Theorem 1 and that for
some α, 0 < α < N ,

(21) lim
t→0

h(t)
tα

= +∞.

Then there exists a Cantor-type set X in RN with Cs(X) > 0 (and so (2) holds),
but

lim inf
δ→0

Cs

(
B(a, δ) ∩ X

)

h(δ)
= 0

for all a ∈ X.
(ii) Let h satisfy property (6) of Theorem 2 and for some α, 0 < α < 2,

(22) lim
t→0

h(t)
tα

= +∞.

Then there is a Cantor-type set X in R2 with γ+(X) > 0 (so (7) holds), but for all
a ∈ X,

lim inf
δ→0

γ+
(
B(a, δ) ∩ X

)

h(δ)
= 0.

Proof. (i) We perform the following Cantor construction. Let Q0 be a closed cube
in Rn with side-length 1 = d0. Let n1 ∈ N with n1 > 1 and partition Q0 into
subcubes P1,1, . . . , P1,nN

1
of side-length 1/n1. Let 0 < d1 < 1/n1 and let Q1,i be

the closed subcube of P1,i with the same center as P1,i and side-length d1. We
perform the same operation inside each Q1,i with parameters n2 ∈ N, n2 > 1, and
0 < d2 < d1/n2. Thus we obtain altogether (n1 n2)N closed cubes with side-length
d2. We continue this process and set

X =
∞⋂

k=1

(n1...nk)N⋃

i=1

Qk,i,

where Qk,i has side-length dk with 0 < dk < dk−1/nk.
Let s < τ < N such that α < sN/τ and choose nk and dk so that

(23) nN
k dτ

k = dτ
k−1.

Then 0 < Hϕ(X) < ∞, ϕ(t) = tτ , and so Cs(X) > 0. We also choose nk such that
nk → ∞ from which one easily checks that for sufficiently large k,

(
B(x, dk−1/2nk) \ B(x,Ndk)

)
∩ X = ∅

for all x ∈ X. Thus

Cs

(
B(x, dk−1/2nk) ∩ X

)
= Cs

(
B(x, Ndk) ∩ X

)
≤ A1 ds

k.
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Hence it is enough to check that we can choose dk so that ds
k/h(dk−1/2nk) → 0 as

k → ∞. But by (23),

(24)
ds

k

h(dk−1/2nk)
= ds−α

k−1 2α n
α−sN/τ
k

(dk−1/2nk)α

h(dk−1/2nk)
.

After fixing dk−1 we are free to choose nk as large as we want. Since α− sN/τ < 0,
we can make right hand side of (24) to tend to zero by (21).

The proof of (ii) is similar. ¤
Finally, we discuss the corresponding density properties of capacities γ+ and α+

in RN , N ≥ 2.
For a bounded set E in RN , N ≥ 2, define

γ+,N (E) = sup {µ(E) | µ ∈ M+(E), ‖|∇ΦN ∗ µ|‖ ≤ 1
}
,

α+,N (E) = sup
{
µ(E) | µ ∈ M+(E), ‖|∇ΦN ∗ µ|‖ ≤ 1, ΦN ∗ µ ∈ C1(RN )

}
,

where ΦN (x) is the standard fundamental solution for the Laplace equation in RN

(see [MP] and [MPV]). It can be easily checked that γ+,2 = 2πγ+.
¿From Egoroff’s theorem it follows, that

Cs(F ) = sup
{

µ(F ) | µ ∈ As(F ) and
∫

B(x,r)

dµ(y)
|x − y|s

→ 0

as r → 0 uniformly for x ∈ supp(µ)
}

(see [C, pp. 15–16]).
¿From this (taking s = N − 1) we have for each N ≥ 2 that

(25) γ+,N(F ) ≥ α+,N (F ) ≥ AN CN−1(F ),

AN > 0 depends only on N .
Theorem 1 (a) and (25) give

Corollary 4. Let X be a compact set in RN with γ+,N (X) > 0 and suppose that
h (as in §1) satisfies

∫ 1
0

h(t) dt
tN < +∞. Then for γ+,N -almost all a ∈ X one has:

(26) lim sup
δ→0

γ+,N

(
B(a, δ) ∩ X

)

h(δ)
= +∞.

The analogous result holds also for α+,N -capacity.

Proof. As before, it is enough to prove (26) for at least one point a ∈ X. Take
µ ∈ M+(X) with ‖|∇ΦN ∗ µ|‖ ≤ 1 (for α+,N in addition we require continuity of
∇Φn ∗ µ). If there is a ∈ X with

(27) lim sup
δ→0

µ
(
B(a, δ) ∩ X

)

h(δ)
= +∞,

then (26) also holds by [MPV, Lemma 3.3], which gives γ+,N

(
B(a, δ) ∩ X

)
≥

Aµ
(
B(a, δ) ∩ X

)
for some A = A(N ) > 0 (for the case α+,N we apply [MPV,

Lemma 5.4]. If (27) fails for all a ∈ X then we get Mh(X) > 0 and therefore (2)
with s = N − 1 for some a ∈ X. It suffices to invoke (25).

We shall need the following
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Theorem 3. Let r and δ be positive numbers, EN ⊂ B(0, r) in RN (N ≥ 2) and
EN+1 = EN × [0, δ] ⊂ RN+1. Then

A−1 δ γ+,N (EN )
max{1, (r/δ)2}

≤ γ+,N+1(EN+1) ≤ A max{δ, r} γ+,N(EN ),

A−1 δ α+,N (EN )
max{1, (r/δ)2} ≤ α+,N+1(EN+1) ≤ A max{δ, r} α+,N (EN ),

with A > 1 depending only on N .

The proof of Theorem 3 is analogous to that of [MP, Theorem 3.1].

Corollary 5. Let h satisfy conditions (b) of Theorem 2. Then for each N ≥ 3
there exists a compact set XN in RN such that for each a ∈ XN one has

A1 δN−2 h(δ) ≤ γ+,N

(
B(a, δ) ∩ XN

)
≤ A2 δN−2 h(δ)

with A1 > 0 and A2 > A1 depending only on N and h.

Proof. It is enough to take the corresponding X1 from Theorem 2 (b) and set
XN = X1 × [0, 1]N−2. Theorem 3 and induction give the result. ¤

Therefore, here we have a gap for γ+,N and α+,N in the sense that we do not have
such complete results as in Theorems 1 and 2. Particularly, in the class of densities
{tN−1/| log t|q}, neither positive results nor counterexamples for q ∈ (1/2, 1] for
γ+,N and for q ∈ (0, 1] for α+,N -capacity, N ≥ 3.

We close this paper with the following

Proposition 2. Let h, c > 0 and g(r) = h(r) exp
(

−
∫ 1
r

ch2(t) dt
2t3

)
satisfy conditions

(9) and ch2(t) ≤ t2, t ≥ 0. Suppose that there exists some compact set X in R2

and Y ⊂ X with γ+(Y ) > 0 such that γ+
(
B(y, δ) ∩ X

)
³ h(δ) as δ → 0 for each

y ∈ Y . Then there is a compact set X1 with properties (10) for each a ∈ X1 and
δ ∈ (0, 1).

Proof. This h cannot satisfy condition (6), so that it satisfies (8) and then (b) of
Theorem 2 applies. ¤

The analogous result holds for Cs-capacities.
One can construct such a compact set X, for which there exist countably many

pairwise uncomparable functions hj , satisfying Proposition 2 (they can be functions
{t/| log t|qj}, 0 ≤ q1 < q2 · · · < · · · ≤ 1/2).
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