ON DENSITY PROPERTIES OF THE RIESZ CAPACITIES AND THE ANALYTIC CAPACITY γ_+

Pertti Mattila and Petr V. Paramonov †

ABSTRACT. In this paper we prove rather precise results on density properties of the Riesz capacities in \mathbf{R}^N and the analytic capacity γ_+ in \mathbf{R}^2 .

§1. INTRODUCTION AND MAIN RESULTS

Let M_h be the Hausdorff content, generated by a non-decreasing continuous function $h: [0, +\infty) \to [0, +\infty), h(t) > 0$ for t > 0, h(0) = 0. That is, for a set Ein \mathbf{R}^N $(N \in \mathbf{N} = \{1, 2, ...\})$

$$M_h(E) = \inf \left\{ \sum_{j=1}^{+\infty} h(d(E_j)) \mid E \subset \bigcup_{j=1}^{+\infty} E_j \right\},\$$

where d(E) denotes the diameter of E.

The next result follows readily from [F, 2.10.17(3)].

Theorem A. For each set $E \subset \mathbf{R}^N$ with $M_h(E) > 0$

$$\limsup_{\delta \to 0} \frac{M_h(E \cap B(a, \delta))}{h(\delta)} \ge 1$$

for M_h -almost all $a \in E$.

Here $B(a, \delta)$ is an open ball in \mathbb{R}^N , centered at $a \in \mathbb{R}^N$ and having radius $\delta > 0$ $(\overline{B}(a, \delta)$ is the corresponding closed ball).

For a reasonable $h, h(\delta)$ is comparable to $M_h(B(a, \delta))$.

To our knowledge the failure of analogous density properties for Riesz capacities C_s in \mathbf{R}^N and (positive) analytic capacity γ_+ in \mathbf{R}^2 , which follows from our results below, was not noticed and discussed before (in [M1] such a failure was proved for the integralgeometric measure I_1^1 in \mathbf{R}^N). Shortly speaking, we are interested in the following more precise natural question: given a capacity C, as mentioned above, for which "density functions" h there is a compact set E such that $C(E \cap B(a, \delta))$ is comparable to $h(\delta)$, as δ tends to zero, for all $a \in E_0$ with $C(E_0) > 0$? Theorems 1 and 2 give rather precise answers to this question.

¹⁹⁹¹ Mathematics Subject Classification. 30C85, 31B15.

 $[\]dagger Supported$ by the grants: RFFR No.00-01-00618 and RFFR No.00-15-96008 and the Academy of Finland.

Let $M_+(E)$, $E \subset \mathbf{R}^N$, be the set of all finite positive Borel measures μ with compact support, $\operatorname{supp}(\mu)$, contained in E. For $\mu \in M_+(\mathbf{R}^2)$ the Cauchy transform $\hat{\mu}$ is defined as

$$\widehat{\mu}(z) = \int \frac{d\mu(\zeta)}{z-\zeta}, \quad z \in \mathbf{C}.$$

For $\mu \in M_+(\mathbf{R}^N)$ and $s \in (0, N)$ the s-Riesz transform of μ is

$$U^s_{\mu}(x) = \int \frac{d\mu(y)}{|x-y|^s}, \quad x \in \mathbf{R}^N.$$

It is easily seen (by Fubini theorem) that $\hat{\mu}(z)$ (respectively $U^s_{\mu}(x)$) exists (the corresponding integrals converge absolutely) almost everywhere with respect to the Lebesgue measure $\mathcal{L}_{(2)}$ in \mathbf{R}^2 (respectively, to the Lebesgue measure $\mathcal{L}_{(N)}$ in \mathbf{R}^N), and, moreover, $\hat{\mu} \in L_{1,\text{loc}}(\mathcal{L}_{(2)})$ (respectively, $U^s_{\mu} \in L_{1,\text{loc}}(\mathcal{L}_{(N)})$). We denote by $\|\cdot\|$ the $L_{\infty}(\mathcal{L}_{(N)})$ -norm (on all of \mathbf{R}^N).

For bounded sets E in \mathbf{R}^2 and F in \mathbf{R}^N define

$$\gamma_+(E) = \sup\{\mu(E) \mid \mu \in \mathcal{A}_+(E)\},\$$
$$C_s(F) = \sup\{\mu(F) \mid \mu \in \mathcal{A}_s(F)\},\$$

where $\mathcal{A}_+(E)$ (respectively, $\mathcal{A}_s(F)$) consists of all measures $\mu \in M_+(E)$ (respectively, $\mu \in M_+(F)$) such that $\|\hat{\mu}\| \leq 1$ (respectively, $\|U_{\mu}^s\| \leq 1$).

It is easily seen that $\gamma_+(B(a,\delta)) = \delta$ and that $C_s(B(a,\delta)) = C_s(B(0,1)) \cdot \delta^s$.

Theorem 1. Let $N \in \mathbb{N}$ and $s \in (0, N)$.

(a) Let X be a compact set in \mathbf{R}^N with $C_s(X) > 0$. If h satisfies the property

(1)
$$\int_{0}^{1} \frac{h(t) dt}{t^{s+1}} < +\infty$$

then for C_s -almost all $a \in X$ one has

(2)
$$\limsup_{\delta \to 0} \frac{C_s(B(a,\delta) \cap X)}{h(\delta)} = +\infty.$$

(b) Let h be such that

(3)
$$\int_{0}^{1} \frac{h(t) dt}{t^{s+1}} = +\infty$$

Suppose that for some c > 0 one has $ch(t) \le t^s$, $t \ge 0$, and the function $g(r) = h(r) \exp\left(-\int_r^1 \frac{ch(t) dt}{t^{s+1}}\right)$, $r \ge 0$, satisfies

(4)
$$\frac{g^{-1}(2^{-(j+1)N})}{g^{-1}(2^{-jN})} \in [\varepsilon, 1/2)$$

for some $\varepsilon \in (0, 1/2)$ and all j big enough, then there is a Cantor set X_1 with conditions

(5)
$$A_1 h(\delta) \le C_s \left(B(a,\delta) \cap X_1 \right) \le A_2 h(\delta)$$

for all $a \in X_1$, $\delta \in (0,1)$ and some $0 < A_1 < A_2 < +\infty$, depending only on N, s, h, c.

Theorem 2. (a) Let X be a compact set in \mathbb{R}^2 with $\gamma_+(X) > 0$. If h satisfies

(6)
$$\int_{0}^{1} \frac{h^{2}(t) dt}{t^{3}} < +\infty,$$

then for γ_+ -almost all $a \in X$ one has

(7)
$$\limsup_{\delta \to 0} \frac{\gamma_+ \left(B(a,\delta) \cap X \right)}{h(\delta)} = +\infty.$$

(b) Let

(8)
$$\int_0^1 \frac{h^2(t)}{t^3} dt = +\infty.$$

Suppose that for some c > 0 one has $ch^2(t) \le t^2$, $t \ge 0$, and the function

$$g(r) = h(r) \exp\left(-\int_{r}^{1} \frac{ch^{2}(t) dt}{2t^{3}}\right), \quad r \ge 0,$$

satisfies the properties

(9)
$$\frac{g^{-1}(4^{-j-1})}{g^{-1}(4^{-j})} \in [\varepsilon, 1/2)$$

for some $\varepsilon \in (0, 1/2)$ and all j big enough. Then there exists a Cantor set X_1 in \mathbf{R}^2 with

(10)
$$A_1 h(\delta) \le \gamma_+ (B(a,\delta) \cap X_1) \le A_2 h(\delta)$$

for all $a \in X_1$, $\delta \in (0,1)$ and some $0 < A_1 < A_2 < +\infty$, depending only on h, c.

The conditions $ch(t) \leq t^s$ and $ch^2(t) \leq t^2$ in the parts (b) of Theorems 1 and 2 in context of (5) and (10) are quite natural. It will be clear from the proofs that conditions (4) and (9) on the function g are in some sense precise. These conditions are satisfied by all "reasonable" g (or h, cf. §3).

In §3 we give concrete examples of the functions h and discuss some other properties of densities. We also obtain several "partial" results on the densities of γ_+ and α_+ in \mathbf{R}^N , $N \ge 2$.

The proof of Theorem 1 can be generalized to give similar results for capacities related to general kernels K with mild regularity conditions. The integral in (1) is then replaced by $\int_0^1 h(t) K'(t) dt$. For example, K(t) could be $-\log t$.

$\S2.$ Proofs

Proof of Theorem 1.

(a) Let X, s, h satisfy the conditions (a) in Theorem 1. It is enough to find at least one point $a \in X$ with conditon (2). In fact, if (2) does not hold C_s -almost

everywhere in X, we can find a compact subset Y of X such that $C_s(Y) > 0$, but (2) with X replaced by Y fails for all $a \in Y$.

Take a measure $\mu \in \mathcal{A}_s(X)$ with $\|\mu\| := \int d\mu > 0$. If there exists $a \in X$ with

$$\limsup_{\delta \to 0} \frac{\mu(B(a,\delta))}{h(\delta)} = +\infty$$

then for this *a* we also have (2), because for each $\delta > 0$ there is $\eta \in (0, \delta)$ with $\mu(\overline{B}(a,\eta)) \ge \mu(B(a,\delta))/2$ and so, since $\mu \mid_{\overline{B}(a,\eta)} \in \mathcal{A}_s(X \cap B(a,\delta))$, we get

$$C_s(B(a,\delta) \cap X) \ge \mu(B(a,\delta))/2$$

Suppose now that for each $a \in \text{supp}(\mu)$

(11)
$$\limsup_{\delta \to 0} \frac{\mu(B(a,\delta))}{h(\delta)} < +\infty.$$

We claim that $M_h(X) > 0$. In fact, suppose, by contradiction, that $M_h(X) = 0$. Then one can find balls B_1, \ldots, B_J such that $X \subset \bigcup_{j=1}^J B_j$ and

$$\sum_{j=1}^{J} \mu(B_j) \ge \|\mu\| > \sum_{j=1}^{J} h(2\delta_j),$$

where $2\delta_j = d(B_j)$, so that for some j (say j = 1) we have $\mu(B_1) > h(2\delta_1)$. Take now $X_1 = X \cap \overline{B}_1$ and $r_1 = \delta_1$, then for each $a_1 \in X_1$ we can write

$$\mu(X \cap B(a_1, 2r_1)) \ge \mu(X_1 \cap B(a_1, 2r_1)) \ge \mu(B_1) > h(2r_1).$$

Put $\mu_1 = \mu |_{X_1}$ and, by induction (since $M_h(X_1) = 0$), find compact sets $\{X_n\}_{n=1}^{\infty}$ $(X_n \subset X_{n-1}, n \ge 2)$ and $\{r_n\}_{n=1}^{\infty}$ $(0 < r_n < r_{n-1}, n \ge 2)$ such that for each $a_n \in X_n$ one has $\mu(X_n \cap B(a_n, 2r_n)) > nh(2r_n)$. For any point $a \in \bigcap_{n=1}^{\infty} X_n \neq \emptyset$, clearly,

$$\limsup_{\delta \to 0} \frac{\mu(X \cap B(a, \delta))}{h(\delta)} = +\infty,$$

which contradicts (11) and proves the claim.

Now, since $M_h(X) > 0$, by Theorem A we can find $a \in X$ and a sequence $\{\delta_n\}_{n=1}^{\infty}, \delta_n \searrow 0$ as $n \nearrow +\infty$ such that for each n

$$M_h(B(a,\delta_n)\cap X) \ge h(\delta_n)/2.$$

By Frostman's lemma [C, p. 7], for each *n* there exists a measure $\sigma_n \in M_+(X \cap \overline{B}(a, \delta_n))$ such that for any ball B(x, r) one has $\sigma_n(B(x, r)) \leq h(r)$ and

$$\sigma_n \left(X \cap \overline{B}(a, \delta_n) \right) \ge A_1 M_h \left(X \cap \overline{B}(a, \delta_n) \right) \ge \frac{A_1}{2} h(\delta_n),$$

where $A_1 > 0$ depends only on N.

We shall prove the following known fact for completeness.

Lemma 1. Let K be a compact set in \mathbb{R}^N , $\sigma \in M_+(K)$ and $\sigma(B(x, \delta)) \leq h(\delta)$ for any $x \in \mathbf{R}^N$ and $\delta > 0$. Then

$$||U_{\sigma}^{s}|| \le A \int_{0}^{2d} \frac{h(t) dt}{t^{s+1}},$$

where $d = d(K), A = A(s) \in (0, +\infty).$

Proof. Fix any $x \in \mathbf{R}^N$. Then

$$\begin{aligned} U_{\sigma}^{s}(x) &\leq \int_{B(a,d)} \frac{d\sigma(y)}{|x-y|^{s}} + \frac{\|\sigma\|}{d^{s}} \leq \int_{0}^{+\infty} \sigma\left\{y \mid \frac{1}{|x-y|^{s}} > t, \ |x-y| < d\right\} dt + \frac{h(d)}{d^{s}} \\ &= \int_{t_{0}}^{+\infty} \sigma\left(B\left(x, \left(\frac{1}{t}\right)^{s}\right)\right) dt + \int_{0}^{t_{0}} \sigma\left(B(x,d)\right) dt + \frac{h(d)}{d^{s}}, \end{aligned}$$

where $t_0 = d^{-s}$. Put $\tau = (1/t)^{1/s}$, then

$$U_{\sigma}^{s}(x) \le s \int_{0}^{d} \frac{h(\tau) \, d\tau}{\tau^{1+s}} + \frac{2h(d)}{d^{s}} \le A \int_{0}^{2d} \frac{h(t) \, dt}{t^{1+s}}. \quad \Box$$

By Lemma 1 and (1),

$$\|U_{\sigma_n}^s\| \le A \int_0^{2\delta_n} \frac{h(t) \, dt}{t^{s+1}} =: \varepsilon_n \to 0 \quad \text{as } n \to +\infty.$$

The measure σ_n / ε_n is in $\mathcal{A}_s (X \cap \overline{B}(a, \delta_n))$, which gives

$$C_s(\overline{B}(a,\delta_n)\cap X) \ge \frac{A_1h(\delta_n)}{2\varepsilon_n}$$

and, consequently, (2). In fact, from continuity of h one can find $\eta_n > 0$ such that $h(\delta_n + \eta_n) \le 2h(\delta_n)$ and therefore

$$C_s(B(a,\delta_n+\eta_n)\cap X) \ge \frac{A_1h(\delta_n+\eta_n)}{4\varepsilon_n}.$$

Actually, it is proved that

$$\limsup_{\delta \to 0} \frac{C_s (B(a, \delta) \cap X)}{h(\delta) / \varepsilon(\delta)} > 0,$$

where $\varepsilon(\delta) = \int_0^{2\delta} \frac{h(t) dt}{t^{s+1}}$. (b) We shall construct the set X_1 with conditions (5) using estimates of C_s for Cantor sets (see $[E, \S1]$).

Let h, c and g satisfy conditions in (b) of Theorem 1. We claim that the function g is continuous, (strictly) increasing and, moreover, $\int_0^1 \frac{g(t) dt}{t^{s+1}} < +\infty$.

Only the last property needs additional explanations. Since $(g(t)/h(t))' = cg(t)/t^{s+1}$ for all t > 0, we have

$$\int_r^1 \frac{g(t)\,dt}{t^{s+1}} = \frac{g(t)}{ch(t)} \,\Big|_r^1.$$

But by (3), $g(t)/h(t) = \exp\left(-\int_r^1 \frac{ch(t) dt}{t^{s+1}}\right) \to 0$ as $r \to 0$, which gives $\int_0^1 \frac{g(t) dt}{t^{s+1}} = \frac{g(1)}{ch(1)} = 1/c < +\infty$ as claimed. Moreover,

(12)
$$\int_0^r \frac{g(t) dt}{t^{s+1}} = \frac{g(r)}{ch(r)}, \quad r > 0.$$

The property (4) means precisely that we can construct an N-dimensional Cantor set X_1 with parameters $\{l_j = g^{-1}(2^{-Nj})\}_{j=j_1}^{\infty}$ satisfying $l_{j+1}/l_j \in [\varepsilon, 1/2), j \ge j_1 \in \mathbb{N}$.

We are not going to repeat the construction of Cantor sets (see [E, §1]), we just say that on the *n*-th step $(n \ge j_1)$ of the construction we get 2^{Nn} congruent closed cubes $\{Q_n^m\}_{m=1}^{2^{Nn}}$ with side length l_n , so that

$$X_1 = \bigcap_{n=j_1}^{\infty} \left(\bigcup_{m=1}^{2^{Nn}} Q_n^m\right).$$

In particular, for each $n \ge j_1$, one has

$$X_1 = \bigcup_{m=1}^{2^{Nn}} X_n^m,$$

where X_n^m are congruent Cantor sets with parameters $\{l_j\}_{j=n}^{\infty} (X_n^m \subset Q_n^m)$.

One also notes that g satisfies the so-called doubling property

(13)
$$g(2r) \le A_0 g(r)$$

for all $r \in (0, l_{j_1+1})$ with constant $A_0 = 2^{2N}$, which follows from (4). Also h satisfies doubling condition, since, from the inequality $h(t) \leq t^s$ (required in (b)) one obtains

$$\frac{h(2r)}{h(r)} = \frac{g(2r)}{g(r)} \exp\left(\int_{r}^{2r} \frac{ch(t)\,dt}{t^{s+1}}\right) \le 2^{2N} \exp\left(\int_{r}^{2r} \frac{dt}{t}\right) \le 2^{2N+1}, \quad r \in (0, l_{j_1+1}).$$

In what follows the expression $f_1 \simeq f_2$ means that there exists a constant $A \in (1, +\infty)$, depending only on N, s, h, c (in context of γ_+ the constant A can depend only on h and c), such that $A^{-1} f_1 \leq f_2 \leq A f_1$ for all values of parameters in f_1 and f_2 . Finally, by [E, Corollary 1.1] we get (recall that $g(l_j) = 2^{-Nj}$):

$$C_s(X_n^m) \asymp \left(\sum_{j=0}^{\infty} 2^{-Nj} (l_{j+n})^{-s}\right)^{-1} = \left(\sum_{j=n}^{\infty} 2^{-Nj} 2^{Nn} (l_j)^{-s}\right)^{-1}$$
$$= g(l_n) \left(\sum_{j=n}^{\infty} \frac{g(l_j)}{l_j^s}\right)^{-1} \asymp g(l_n) \left(\int_0^{l_n} \frac{g(t) dt}{t^{s+1}}\right)^{-1} \asymp h(l_n),$$

where we used (12) and the doubling property (13). To obtain (5) it suffices to invoke the doubling property of h and the inequalities $l_{n+1} \ge \varepsilon l_n$, $n \ge j_1$. \Box

Proof of Theorem 2.

It is quite similar to that of Theorem 1, except that we need also a characterization of γ_+ in terms of the so-called curvature of a measure [T1]. Till the end of §2 A, A_1, \ldots are some positive constants depending only on h.

(a) Again, it is enough to check that (7) holds for at least one point $a \in X$. Take a measure $\mu \in \mathcal{A}_+(X)$, $\|\mu\| > 0$. Suppose that there is a point $a \in \operatorname{supp}(\mu) \subset X$ with

$$\limsup_{\delta \to 0} \frac{\mu (B(a, \delta) \cap X)}{h(\delta)} = +\infty.$$

We claim that also

$$\limsup_{\delta \to 0} \frac{\gamma_+ (B(a, \delta) \cap X)}{h(\delta)} = +\infty.$$

For h, satisfying doubling condition (see (13)), it would be enough to check that

$$\gamma_+(B(a,2\delta)\cap X) \ge A\mu(B(a,\delta)\cap X).$$

Take $\varphi \in C_0^{\infty}(B(a, 2\delta))$, $0 \le \varphi \le 1$, $\varphi = 1$ in $B(a, \delta)$ and $\|\overline{\partial}\varphi\| \le \frac{A_1}{\delta}$. Put $\mu_1 = \varphi \mu$. By [V, Ch. II, §3],

$$\|\widehat{\mu}_1\| \le A_2 \,\delta \,\|\overline{\partial}\varphi\| \,\|\widehat{\mu}\| \le A_1 A_2 = A_3^{-1}.$$

Hence, $A_3 \mu_1 \in \mathcal{A}_+(B(a, 2\delta) \cap X)$, which gives

$$\gamma_+ \big(B(a, 2\delta) \cap X \big) \ge A_3 \, \|\mu_1\| \ge A_3 \, \mu \big(B(a, \delta) \cap X \big),$$

as desired.

For a general h we apply [MPV, Lemma 3.3] (the case N = 2), which gives for each $B(a, \delta)$:

$$\gamma_+(B(a,\delta)\cap X) \ge A_3\,\mu(B(a,\delta)\cap X)$$

with some absolute constant $A_3 \in (0, 1)$.

It now remains to consider the case when for any $a \in X$ one has

$$\limsup_{\delta \to 0} \frac{\mu \left(B(a,\delta) \cap X \right)}{h(\delta)} < +\infty.$$

As it was already shown in the proof of Theorem 1, we then get $M_h(X) > 0$. By Theorem A there exists $a \in X$ with

$$\limsup_{\delta \to 0} \frac{M_h(B(a,\delta) \cap X)}{h(\delta)} \ge 1,$$

and then we can choose $\{\delta_n\}_{n=1}^{\infty} \subset (0,1), \ \delta_n \searrow 0$ as $n \nearrow +\infty$, such that

$$M_h(B(a,\delta_n) \cap X) \ge h(\delta_n)/2, \quad n \ge 1.$$

Fix $n \ge 1$ and put $h_n(t) = h(t)$ for $t \in [0, \delta_n]$ and $h_n(t) = h(\delta_n)$ for $t \ge \delta_n$. By Frostman's lemma we can find $\sigma_n \in M_+(X_n), X_n = \overline{B}(a, \delta_n) \cap X$, such that $\sigma_n(B(z,\delta)) \leq h_n(\delta)$ (hence also $\sigma_n(\overline{B}(z,\delta)) \leq h_n(\delta)$) for all $z \in \mathbf{R}^2$, $\delta > 0$, and, moreover,

$$\|\sigma_n\| = \sigma_n(X_n) \ge A M_{h_n}(X_n) \ge \frac{A}{2} h(\delta_n).$$

Recall, that the curvature $c^2(\sigma)$ of a measure $\sigma \in M_+(\mathbf{R}^2)$ is defined by

$$c^{2}(\sigma) = \iiint \left(R(x, y, z) \right)^{-2} d\sigma(x) \, d\sigma(y) \, d\sigma(z),$$

where R(x, y, z) is the radius of the circle passing through x, y and z.

Tolsa [T1, Theorem 5.1 and (59)] showed that

(14)
$$\gamma_{+}(K) \asymp \sup \left\{ \|\sigma\| \mid \sigma \in M_{+}(K), \sigma(B(z,r)) \leq r \text{ for all} \\ z \in \mathbf{C} \text{ and } r > 0, \text{ and } c^{2}(\sigma) \leq \|\sigma\| \right\}.$$

Though our definition of γ_+ is slightly different from that of [T1], we can use this result for K having zero Lebesgue measure (for which it is the same). We shall apply this result in order to obtain the corresponding lower estimate of γ_+ , using the properties of measures σ_n . By Theorem 2.2 of [M2] we have:

(15)
$$c^{2}(\sigma_{n}) \leq 12 \|\sigma_{n}\| \int_{0}^{+\infty} t^{-3} h_{n}^{2}(t) dt$$
$$\leq 12 \|\sigma_{n}\| \left(\int_{0}^{\delta_{n}} t^{-3} h_{n}^{2}(t) dt + h_{n}^{2}(\delta_{n}) \int_{\delta_{n}}^{+\infty} t^{-3} dt \right)$$
$$\leq 12 \|\sigma_{n}\| \left(\int_{0}^{\delta_{n}} t^{-3} h_{n}^{2}(t) dt + h_{n}^{2}(\delta_{n})/2\delta_{n}^{2} \right)$$
$$\leq A_{1} \|\sigma_{n}\| \int_{0}^{2\delta_{n}} t^{-3} h^{2}(t) dt =: \varepsilon_{n} \|\sigma_{n}\|,$$

where $\varepsilon_n \to 0$ as $n \to +\infty$ by (6).

Since, evidently, $c^2(\lambda\sigma) = \lambda^3 c^2(\sigma)$ for any $\lambda > 0$ and $\sigma \in M_+(\mathbf{R}^2)$, we have for the measure $\mu_n = \lambda_n \sigma_n$ with $\lambda_n = 1/\sqrt{\varepsilon_n}$ that $c^2(\mu_n) \leq ||\mu_n||$. We now have to show that

(16)
$$\mu_n(B(z,\delta)) \le A_2 \cdot \delta$$

for all $z \in \mathbf{R}^2$ and $\delta > 0$. To prove this consider 2 cases. The first is $\delta \ge \delta_n$. Then, since $\operatorname{supp}(\mu_n) \subset \overline{B}(a, \delta_n)$, we can write

$$\mu_n (B(z,\delta)) \leq \mu_n (\overline{B}(a,\delta_n)) \leq \sigma_n (\overline{B}(a,\delta_n)) / \sqrt{\varepsilon_n}$$

$$\leq h(\delta_n) \left(A_1 \int_{\delta_n}^{2\delta_n} t^{-3} h^2(t) dt \right)^{-1/2}$$

$$\leq A_2 h(\delta_n) \left(h^2(\delta_n) / \delta_n^2 \right)^{-1/2} = A_2 \delta_n \leq A_2 \delta.$$

The second case is $\delta \in (0, \delta_n)$. Here we have

$$\mu_n \left(B(z,\delta) \right) \le \frac{\sigma_n \left(B(z,\delta) \right)}{\sqrt{\varepsilon_n}} \le h(\delta) \left(A_1 \int_{\delta}^{2\delta} \frac{h^2(t)}{t^3} dt \right)^{-1/2}$$
$$\le A_2 h(\delta) \left(\frac{h^2(\delta)}{\delta^2} \right)^{-1/2} = A_2 \delta.$$

Finally (assuming that $A_2 \ge 1$), the measure $\nu_n = \mu_n / A_2$ satisfies $c^2(\nu_n) \le \|\nu_n\|$ and $\nu_n (B(z, \delta)) \le \delta$ for all $B(z, \delta)$. Therefore, by (14), $\gamma_+(X_n) \ge A_3 \|\nu_n\| \ge A_4 h(\delta_n) / \sqrt{\varepsilon_n}$, which gives (7) since h is continuous. Again, it was really proved that

$$\limsup_{\delta \to 0} \frac{\gamma_+ (B(a,\delta) \cap X)}{h(\delta)/\sqrt{\varepsilon(\delta)}} > 0,$$

where $\varepsilon(\delta) = \int_0^{2\delta} t^{-3} h^2(t) dt$. Recall, that here we could use (14) only whenever $\mathcal{L}_{(2)}(X) = 0$. If $\mathcal{L}_{(2)}(X) > 0$ then, since clearly $h(r)/r \to 0$ as $r \to 0$, the property (7) can be easily obtained from the following analog (in fact a corollary) of Vitushkin result on instability of analytic capacity [V, Ch. VI, §1]. Put $\mathcal{L} = \mathcal{L}_{(2)}$.

Proposition 1. Let E be any \mathcal{L} -measurable set in \mathbb{R}^2 , $\mathcal{L}(E) > 0$. Then for each \mathcal{L} -density point a of E (and therefore \mathcal{L} -a.e. on E) one has

$$\lim_{\delta \to 0} \frac{\gamma_+ \left(B(a, \delta) \cap E \right)}{\delta} = 1.$$

Proof. The corresponding proof in [V, pp. 188–192] is given for capacity α and for some more precise result (Theorem 1, p. 190). It also works for γ_+ , but for the reader's convenience we choose to present here its considerably simplified version.

Let *a* be any \mathcal{L} -density point of *E*. Fix any $\varepsilon \in (0, 1)$. There is $\delta_{\varepsilon} > 0$ such that for each $\delta \in (0, \delta_{\varepsilon})$ one can find a compact set K_{δ} in $E \cap B(a, \delta)$ with $\mathcal{L}(K_{\delta}) \geq (1 - \varepsilon^2) \pi \delta^2$. Put $\Omega_{\delta} = B(a, \delta) \setminus K_{\delta}$, $\mu = \mathcal{L}|_{B(a, \delta)}$, $\nu = \mathcal{L}|_{\Omega\delta}$, $\sigma = \mathcal{L}|_{K_{\delta}}$. It can be easily checked that $\hat{\mu}(z) = \pi(\overline{z} - \overline{a})$ in $B(a, \delta)$ and $\hat{\mu}(z) = \pi \delta^2 / (z - a)$ in $\mathbf{R}^2 \setminus B(a, \delta)$, so that $\|\hat{\mu}\| = \pi \delta$. On the other hand, $\|\hat{\nu}\| \leq 2\pi\varepsilon\delta$. In fact, fix any $z \in \mathbf{R}^2$ and let $\varrho \in (0, \varepsilon\delta]$ be such that $\mathcal{L}(\Omega_{\delta}) = \pi \varrho^2 = \mathcal{L}(B(z, \varrho))$. Then

$$|\widehat{\nu}(z)| \leq \int_{\Omega_{\delta}} \frac{d\mathcal{L}(\zeta)}{|\zeta - z|} \leq \int_{B(a,\varrho)} \frac{d\mathcal{L}(\zeta)}{|\zeta - z|} = \int_{0}^{2\pi} \int_{0}^{\varrho} \frac{r \, dz \, d\varphi}{r} = 2\pi\varrho,$$

as desired. Therefore,

$$\|\widehat{\sigma}\| \le \|\widehat{\mu}\| + \|\widehat{\nu}\| \le \pi\delta(1+2\varepsilon).$$

Since $\sigma(\pi\delta(1+2\varepsilon))^{-1} \in \mathcal{A}_+(K_\delta)$, we get

$$\gamma_+(E \cap B(a,\delta)) \ge \gamma_+(K_\delta) \ge \pi \delta^2 (1-\varepsilon^2) \left(\pi \delta (1+2\varepsilon)\right)^{-1} = \delta (1+O(\varepsilon)).$$

It remains to recall now that $\gamma_+(B(a,\delta) \cap E) \leq \gamma_+(B(a,\delta)) = \delta$.

(b) Let h, c and g satisfy conditions in (b) of Theorem 2. The function $g(r) = h(r) \exp\left(-\int_{r}^{1} \frac{ch^{2}(t)}{2t^{3}} dt\right)$ satisfies g(r) = o(h(r)) as $r \to 0$ (see (8)) and g is strictly increasing. Moreover,

$$\left(\left(\frac{g(r)}{h(r)}\right)^2\right)' = \exp\left(-\int_r^1 \frac{ch^2(t)}{t^3}\right) \frac{ch^2(r)}{r^3} = \frac{cg^2(r)}{r^3}.$$

Thence, $\int_{r}^{1} t^{-3} g^{2}(t) dt = g^{2}(t)/ch^{2}(t) \Big|_{r}^{1}$, which gives

$$\int_0^1 t^{-3} g^2(t) dt = \frac{g^2(1)}{ch^2(1)} = \frac{1}{c} < +\infty$$

and

(17)
$$\int_0^r \frac{g^2(t) dt}{t^3} = \frac{g^2(r)}{ch^2(r)}.$$

The conditions (9) allow us to construct a 2-dimensional Cantor set X_1 with parameters $\{l_j = g^{-1}(4^{-j})\}_{j=j_1}^{\infty}$, where $\varepsilon l_j \leq l_{j+1} < l_j/2$ $(j \geq j_1 \in \mathbf{N})$. We use again the notation X_n^m from the proof of Theorem 1 and the same way we prove that g and h satisfy doubling properties (13) with constants $A_0 = 16$ and 32 respectively (we apply the condition $h(t) \leq t$ and consider (13) only for $r \in (0, l_{j_1+1})$). In order to apply (14) again, we need to verify that $\mathcal{L}_{(2)}(X_1) \equiv \mathcal{L}(X_1) = 0$. In fact, if, by contradiction, $\mathcal{L}(X_1) > 0$ then, clearly, $\lim_{n\to\infty} l_{n+1}/l_n = 1/2$. From this we have (as $ch^2(t) \leq t^2$):

$$\frac{h(l_{j+1})}{h(l_j)} = \frac{g(l_{j+1})}{g(l_j)} \exp\left(\int_{l_{j+1}}^{l_j} \frac{ch^2(t)\,dt}{2t^3}\right)$$
$$\leq \frac{1}{4} \left(\exp\left(\int_{l_{j+1}}^{2l_{j+1}} \frac{dt}{2t} + \mathop{\mathrm{o}}_{j\to\infty}(1)\right)\right) = \frac{\sqrt{2}}{4} \left(1 + \mathop{\mathrm{o}}_{j\to\infty}(1)\right),$$

which leads to a contradiction with (8).

Set $\mu = \mathcal{H}_g|_{X_1}$, where \mathcal{H}_g is the *g*-Hausdorff measure. The main property of μ is that (see[G])

(18)
$$A_1 g(r) \le \mu \big(B(z,r) \big) \le A_2 g(r)$$

for each $z \in X_1$ and $r \in (0, l_{j_1})$ (all appearing A_j are positive and depend only on g).

It remains to prove that for all $n \ge j_1$ and $m = 1, \ldots, 4^n$

(19)
$$A_3 h(l_n) \le \gamma_+(X_n^m) \le A_4 h(l_n).$$

The left inequality in (19) can be proved following part (a) of the present proof. Concretely, fix n and m, and let $\sigma_n = \mu|_{X_n^m}$. As in (15) and (16), using doubling conditions of g, we get

$$c^{2}(\sigma_{n}) \leq A_{5} \|\sigma_{n}\| \int_{0}^{l_{n}} t^{-3} g^{2}(t) dt =: \varepsilon_{n} \|\sigma_{n}\|,$$

so that for $\mu_n = \sigma_n / \sqrt{\varepsilon_n}$ one has

$$c^{2}(\mu_{n}) \leq \|\mu_{n}\|$$
 and $\mu_{n}(B(z,\delta)) \leq A_{6}\delta$

 $(A_6 > 1)$ for all z and $\delta > 0$. From (14) and (18),

$$\gamma_+(X_n^m) \ge \|\mu_n\|/A_6 \asymp \frac{g(l_n)}{\sqrt{\varepsilon_n}} \asymp h(l_n)$$

(see (17)). And that is it.

To prove the right inequality in (19) we need one more result of Tolsa. In [T2] it is proved (Theorem 1), that for each $\sigma \in M_+(\mathbf{R}^2)$ one has

(20)
$$\gamma_+(\{z \mid c_{\sigma}(z) \ge t\}) \le A_7 \frac{\|\sigma\|}{t}, \quad t > 0,$$

where

$$c_{\sigma}(z) = \left(\iint \frac{d\sigma(x) \, d\sigma(y)}{R^2(z, x, y)}\right)^{1/2},$$

and $A_7 > 0$ is an absolute constant.

For σ_n as just above, the same way as in [M2, Theorem 2.3], we get for all $z \in K_n^m$:

$$\left(c_{\sigma_n}(z)\right)^2 \ge A_8 \int_0^{t_n} t^{-3} g^2(t) dt =: A_9 \varepsilon_n.$$

Applying (20) to $\sigma = \sigma_n$ and $t = \sqrt{A_9 \varepsilon_n}$ completes the proof of Theorem 2. \Box

§3. Examples. Partial results for γ_+ and α_+ in \mathbf{R}^N

For p > 0, $q \ge 0$ define

$$h_{p,q}(t) = t^p / |\log t|^q, \quad t \in (0, e^{-1}), \quad h_{pq}(0) = 0,$$

 $h_{p,q}(t) = e^{-p}, \quad t \ge e^{-1}.$

It can be easily checked that all $h(t) = h_{p,q}(t)$ with $p > s, q \ge 0$ and all $h(t) = h_{s,q}(t)$ with q > 1 satisfy the part (a) of Theorem 1. All functions $h(t) = h_{s,q}$ with $q \in [0, 1]$ satisfy part (b) of Theorem 1 (take $c < \min\{1, N - s\}$).

The functions $h_{p,q}$ with p > 1, $q \ge 0$ and $h_{1,q}$, q > 1/2 satisfy part (a) of Theorem 2, and the functions $h_{1,q}$, $q \in [0, 1/2]$ satisfy part (b) of this theorem (take c < 1).

Theorems 1 and 2 can be applied even for a wider class of functions h, namely for the functions

$$h(t) = t^p |\log t|^{-q_1} |\log |\log t||^{-q_2} \dots, \quad p > 0, \ q_j \ge 0$$

(finite product). From this we have

Corollary 1. Let $N \in \mathbf{N}$, $s \in (0, N)$.

(a) If X is a compact set in \mathbf{R}^N with $C_s(X) > 0$, and q > 1, then for C_s -almost all $a \in X$ one has

$$\limsup_{\delta \to 0} \frac{C_s(B(a,\delta) \cap X)}{\delta^s / |\log \delta|^q} = +\infty.$$

(b) For each $q \in [0, 1]$ there exists a Cantor set X_1 in \mathbb{R}^N and $A_1 > 0$, $A_2 > A_1$ depending only on N, s, q, such that for each $a \in X_1$ and $\delta \in (0, e^{-1})$ one has

$$A_1 \,\delta^s / |\log \delta|^q \le C_s \big(X_1 \cap B(a, \delta) \big) \le A_2 \,\delta^s / |\log \delta|^q.$$

Corollary 2. (a) For each compact set X in \mathbb{R}^2 with $\gamma_+(X) > 0$ and each q > 1/2 one has

$$\limsup_{\delta \to 0} \frac{\gamma_+ (X \cap B(a, \delta))}{\delta / \log \delta|^q} = +\infty$$

for γ_+ -almost all $a \in X$.

(b) For each $q \in [0, 1/2]$ there exists a Cantor set X_1 in \mathbb{R}^2 such that for each $a \in X_1$ and $\delta \in (0, e^{-1})$ one has

$$A_1 \,\delta/|\log \delta|^q \le \gamma_+ (X \cap B(a,\delta)) \le A_2 \,\delta/|\log \delta|^q$$

with $A_1 > 0$, $A_2 > A_1$ depending only on q.

Remark 1. ;From Corollaries 1 and 2 (parts (b)) it follows (at least for functions h from the class $\{h_{p,q}\}_{p>0,q\geq 0}$) that for h, satisfying the requirements of the parts (b) of Theorems 1 and 2 respectively, one can find compact sets X_0 and X_{∞} in \mathbf{R}^N (respectively in \mathbf{R}^2) such that $C_s(X_0) > 0$, $C_s(X_{\infty}) > 0$ and

$$\lim_{\delta \to 0} \frac{C_s \left(B(a,\delta) \cap X_0 \right)}{h(\delta)} = 0, \quad x \in X_0,$$
$$\lim_{\delta \to 0} \frac{C_s \left(B(a,\delta) \cap X_\infty \right)}{h(\delta)} = +\infty, \quad x \in X_\infty$$

(respectively, $\gamma_+(X_0) > 0$, $\gamma_+(X_\infty) > 0$ and

$$\lim_{\delta \to 0} \frac{\gamma_+ \left(B(a,\delta) \cap X_0 \right)}{h(\delta)} = 0, \quad x \in X_0,$$
$$\lim_{\delta \to 0} \frac{\gamma_+ \left(B(a,\delta) \cap X_\infty \right)}{h(\delta)} = +\infty, \quad x \in X_\infty \right).$$

In the cases, when the corresponding limits are $+\infty$ we, clearly, need to require in addition that $h(t) = o(t^s)$ (h(t) = o(t) respectively) as $t \to 0$.

We propose also the following precisions to the parts (a) of Theorems 1 and 2.

Corollary 3. (i) Suppose that h satisfies property (1) of Theorem 1 and that for some α , $0 < \alpha < N$,

(21)
$$\lim_{t \to 0} \frac{h(t)}{t^{\alpha}} = +\infty.$$

Then there exists a Cantor-type set X in \mathbf{R}^N with $C_s(X) > 0$ (and so (2) holds), but

$$\liminf_{\delta \to 0} \frac{C_s (B(a,\delta) \cap X)}{h(\delta)} = 0$$

for all $a \in X$.

(ii) Let h satisfy property (6) of Theorem 2 and for some α , $0 < \alpha < 2$,

(22)
$$\lim_{t \to 0} \frac{h(t)}{t^{\alpha}} = +\infty.$$

Then there is a Cantor-type set X in \mathbf{R}^2 with $\gamma_+(X) > 0$ (so (7) holds), but for all $a \in X$,

$$\liminf_{\delta \to 0} \frac{\gamma_+ (B(a, \delta) \cap X)}{h(\delta)} = 0.$$

Proof. (i) We perform the following Cantor construction. Let Q_0 be a closed cube in \mathbf{R}^n with side-length $1 = d_0$. Let $n_1 \in \mathbf{N}$ with $n_1 > 1$ and partition Q_0 into subcubes $P_{1,1}, \ldots, P_{1,n_1^N}$ of side-length $1/n_1$. Let $0 < d_1 < 1/n_1$ and let $Q_{1,i}$ be the closed subcube of $P_{1,i}$ with the same center as $P_{1,i}$ and side-length d_1 . We perform the same operation inside each $Q_{1,i}$ with parameters $n_2 \in \mathbf{N}$, $n_2 > 1$, and $0 < d_2 < d_1/n_2$. Thus we obtain altogether $(n_1 n_2)^N$ closed cubes with side-length d_2 . We continue this process and set

$$X = \bigcap_{k=1}^{\infty} \bigcup_{i=1}^{(n_1 \dots n_k)^N} Q_{k,i}$$

where $Q_{k,i}$ has side-length d_k with $0 < d_k < d_{k-1}/n_k$.

Let $s < \tau < N$ such that $\alpha < sN/\tau$ and choose n_k and d_k so that

$$(23) n_k^N d_k^\tau = d_{k-1}^\tau$$

Then $0 < \mathcal{H}_{\varphi}(X) < \infty$, $\varphi(t) = t^{\tau}$, and so $C_s(X) > 0$. We also choose n_k such that $n_k \to \infty$ from which one easily checks that for sufficiently large k,

$$\left(B(x, d_{k-1}/2n_k) \setminus B(x, Nd_k)\right) \cap X = \emptyset$$

for all $x \in X$. Thus

$$C_s\big(B(x, d_{k-1}/2n_k) \cap X\big) = C_s\big(B(x, Nd_k) \cap X\big) \le A_1 d_k^s.$$

Hence it is enough to check that we can choose d_k so that $d_k^s/h(d_{k-1}/2n_k) \to 0$ as $k \to \infty$. But by (23),

(24)
$$\frac{d_k^s}{h(d_{k-1}/2n_k)} = d_{k-1}^{s-\alpha} 2^{\alpha} n_k^{\alpha-sN/\tau} \frac{(d_{k-1}/2n_k)^{\alpha}}{h(d_{k-1}/2n_k)}.$$

After fixing d_{k-1} we are free to choose n_k as large as we want. Since $\alpha - sN/\tau < 0$, we can make right hand side of (24) to tend to zero by (21).

The proof of (ii) is similar. \Box

Finally, we discuss the corresponding density properties of capacities γ_+ and α_+ in \mathbf{R}^N , $N \geq 2$.

For a bounded set E in \mathbf{R}^N , $N \ge 2$, define

$$\gamma_{+,N}(E) = \sup \{ \mu(E) \mid \mu \in M_{+}(E), \| |\nabla \Phi_{N} * \mu| \| \le 1 \},\$$

$$\alpha_{+,N}(E) = \sup \{ \mu(E) \mid \mu \in M_{+}(E), \| |\nabla \Phi_{N} * \mu| \| \le 1, \ \Phi_{N} * \mu \in C^{1}(\mathbf{R}^{N}) \},\$$

where $\Phi_N(x)$ is the standard fundamental solution for the Laplace equation in \mathbf{R}^N (see [MP] and [MPV]). It can be easily checked that $\gamma_{+,2} = 2\pi\gamma_+$.

¿From Egoroff's theorem it follows, that

$$C_s(F) = \sup \left\{ \mu(F) \mid \mu \in \mathcal{A}_s(F) \quad \text{and} \quad \int_{B(x,r)} \frac{d\mu(y)}{|x-y|^s} \to 0$$

as $r \to 0$ uniformly for $x \in \operatorname{supp}(\mu) \right\}$

(see [C, pp. 15-16]).

¿From this (taking s = N - 1) we have for each $N \ge 2$ that

(25)
$$\gamma_{+,N}(F) \ge \alpha_{+,N}(F) \ge A_N C_{N-1}(F),$$

 $A_N > 0$ depends only on N.

Theorem 1 (a) and (25) give

Corollary 4. Let X be a compact set in \mathbb{R}^N with $\gamma_{+,N}(X) > 0$ and suppose that h (as in §1) satisfies $\int_0^1 \frac{h(t) dt}{t^N} < +\infty$. Then for $\gamma_{+,N}$ -almost all $a \in X$ one has:

(26)
$$\limsup_{\delta \to 0} \frac{\gamma_{+,N} (B(a,\delta) \cap X)}{h(\delta)} = +\infty.$$

The analogous result holds also for $\alpha_{+,N}$ -capacity.

Proof. As before, it is enough to prove (26) for at least one point $a \in X$. Take $\mu \in M_+(X)$ with $\||\nabla \Phi_N * \mu|\| \leq 1$ (for $\alpha_{+,N}$ in addition we require continuity of $\nabla \Phi_n * \mu$). If there is $a \in X$ with

(27)
$$\limsup_{\delta \to 0} \frac{\mu(B(a,\delta) \cap X)}{h(\delta)} = +\infty,$$

then (26) also holds by [MPV, Lemma 3.3], which gives $\gamma_{+,N}(B(a,\delta) \cap X) \geq A\mu(B(a,\delta) \cap X)$ for some A = A(N) > 0 (for the case $\alpha_{+,N}$ we apply [MPV, Lemma 5.4]. If (27) fails for all $a \in X$ then we get $M_h(X) > 0$ and therefore (2) with s = N - 1 for some $a \in X$. It suffices to invoke (25).

We shall need the following

Theorem 3. Let r and δ be positive numbers, $E_N \subset B(0,r)$ in \mathbf{R}^N $(N \ge 2)$ and $E_{N+1} = E_N \times [0, \delta] \subset \mathbf{R}^{N+1}$. Then

$$\frac{A^{-1} \,\delta \,\gamma_{+,N}(E_N)}{\max\{1, (r/\delta)^2\}} \le \gamma_{+,N+1}(E_{N+1}) \le A \max\{\delta, r\} \,\gamma_{+,N}(E_N),\\\frac{A^{-1} \,\delta \,\alpha_{+,N}(E_N)}{\max\{1, (r/\delta)^2\}} \le \alpha_{+,N+1}(E_{N+1}) \le A \max\{\delta, r\} \,\alpha_{+,N}(E_N),$$

with A > 1 depending only on N.

The proof of Theorem 3 is analogous to that of [MP, Theorem 3.1].

Corollary 5. Let h satisfy conditions (b) of Theorem 2. Then for each $N \ge 3$ there exists a compact set X_N in \mathbf{R}^N such that for each $a \in X_N$ one has

$$A_1 \,\delta^{N-2} \,h(\delta) \le \gamma_{+,N} \big(B(a,\delta) \cap X_N \big) \le A_2 \,\delta^{N-2} \,h(\delta)$$

with $A_1 > 0$ and $A_2 > A_1$ depending only on N and h.

Proof. It is enough to take the corresponding X_1 from Theorem 2 (b) and set $X_N = X_1 \times [0,1]^{N-2}$. Theorem 3 and induction give the result. \Box

Therefore, here we have a gap for $\gamma_{+,N}$ and $\alpha_{+,N}$ in the sense that we do not have such complete results as in Theorems 1 and 2. Particularly, in the class of densities $\{t^{N-1}/|\log t|^q\}$, neither positive results nor counterexamples for $q \in (1/2, 1]$ for $\gamma_{+,N}$ and for $q \in (0, 1]$ for $\alpha_{+,N}$ -capacity, $N \geq 3$.

We close this paper with the following

Proposition 2. Let h, c > 0 and $g(r) = h(r) \exp\left(-\int_{r}^{1} \frac{ch^{2}(t) dt}{2t^{3}}\right)$ satisfy conditions (9) and $ch^{2}(t) \leq t^{2}, t \geq 0$. Suppose that there exists some compact set X in \mathbb{R}^{2} and $Y \subset X$ with $\gamma_{+}(Y) > 0$ such that $\gamma_{+}(B(y, \delta) \cap X) \approx h(\delta)$ as $\delta \to 0$ for each $y \in Y$. Then there is a compact set X_{1} with properties (10) for each $a \in X_{1}$ and $\delta \in (0, 1)$.

Proof. This h cannot satisfy condition (6), so that it satisfies (8) and then (b) of Theorem 2 applies. \Box

The analogous result holds for C_s -capacities.

One can construct such a compact set X, for which there exist countably many pairwise uncomparable functions h_j , satisfying Proposition 2 (they can be functions $\{t/|\log t|^{q_j}\}, 0 \le q_1 < q_2 \cdots < \cdots \le 1/2$).

References

- [C] L. Carleson, Selected Problems on Exceptional Sets, Van Nostrand, Princeton, 1966.
- [E] V. Ya. Eiderman, Estimates for potentials and δ -subharmonic functions outside exceptional sets, Izvestiya: Mathematics **61:6** (1997), 1293–1329.
- [F] H. Federer, *Geometric Measure Theory*, Springer-Verlag, 1969.
- [G] J. Garnett, Analytic Capacity and Measure, Lecture Notes in Math. 297, Springer-Verlag, 1972.
- [M1] P. Mattila, An example illustrating integralgeometric measures, Amer. J. Math. 108 (1986), 693–702.

- [M2] P. Mattila, On the analytic capacity and curvature of some Cantor sets with non-σ-finite length, Publ. Mat. 40 (1996), 195–204.
- [MP] P. Mattila and P. V. Paramonov, On geometric properties of harmonic Lip₁-capacity, Pacific J. Math. 171:2 (1995), 469–490.
- [MPV] M. S. Melnikov, P. V. Paramonov and J. Verdera, C¹-approximation and extension of subharmonic functions, CRM (Barcelona), Preprint 443 (2000), 25 pp. To appear in Math. Sbornik (Russia).
- [T1] X. Tolsa, L²-boundedness of the Cauchy integral operator for continuous measures, Duke Math. J. 98:2 (1999), 269–304.
- [T2] X. Tolsa, The analytic capacity γ_+ , Manuscript.
- [V] A. G. Vitushkin, Analytic capacity of sets in problems of approximation theory, Uspekhi Mat. Nauk 22:6 (1967), 141–199, English transl. in Russian Math. Surveys 22:6 (1967).

P. MATTILA, UNIVERSITY OF JYVÄSKYLÄ, DEPARTMENT OF MATHEMATICS AND STATISTICS, P.O. Box 35 (MAD), FIN-40351 JYVÄSKYLÄ, FINLAND

E-mail address: pmattila@math.jyu.fi

P. V. PARAMONOV, MECHANICS AND MATHEMATICS FACULTY, MOSCOW STATE UNIVERSITY, 119899 MOSCOW, RUSSIA

E-mail address: petr@paramonov.msk.ru