A STEIN-TOMAS RESTRICTION THEOREM FOR
GENERAL MEASURES

THEMIS MITSIS

ABSTRACT. We prove a general Stein-Tomas type restriction
theorem for measures of given dimension and Fourier exponent.

1. INTRODUCTION

Let do be normalized surface measure on the (n — 1)-dimensional
sphere S"!. The classical Stein-Tomas restriction theorem is the fol-
lowing statement.

Theorem 1.1. For every p > 2™ there ezists a constant Cpn >0

n—1
such that
| fdolly < Cpmll fllL2(ao)

for all f € L*(do). Moreover, the above range of exponents is best
possible.

This result has been extended to various more general situations
where the sphere is replaced by smooth manifolds satisfying certain
curvature hypotheses. For proofs and more details the reader may
consult Stein [2] and the references contained there.

The purpose of this paper is to prove the following restriction result
for general measures.

Theorem 1.2. Let u be a positive, finite, compactly supported Borel
measure in R* such that

uw(B(z,r)) <r* Vx eR", r>0

and

~ 1

)| < ‘f‘—ﬂ/z
for some 0 < o, B < n. Then for every p > m’fgﬂ
constant Cp a8 > 0 such that

lfdully < Cpnapll Fll2(am)

, there erists a

for all f € L*(dp).
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The example of a bounded flat hypersurface, in which case restriction
fails, makes it clear that the decay condition on Ji is, in a certain sense,
indispensable and that no general restriction theorem can be based only
on dimensionality or even smoothness considerations. We will address
this issue again in Section 3.

Throughout this paper, by the term measure we will always mean
a positive, finite, compactly supported Borel measure. Also, we will
denote a-dimensional Hausdorff measure by H.

2. THE MAIN RESULT
Theorem 1.2 will be a consequence of the following.

Proposition 2.1. Let i be a measure in R* such that

w(B(z,r)) <r®, Ve eR", r>0 (1)
and
~ 1
) < g )
for some 0 < o, B < n. Then for every p > W
172 fllo < 11 £l

for all f in the Schwartz space S. Here p' is the conjugate exponent
p'=p/lp-1).
Proof. Let fi(z) = fi(—x) and f(z) = f(—z). Then
fix fx)=jox f(—a).
Therefore, it is enough to show that ||z fl, < || f]]y-

Let ¢ be a C* function which is equal to 1 when |z| > 1 and to 0
when |z| < 1/2, and let ¢(x) = ¢(2x) — ¢(x). Then

supp(¢) C {z:1/4 <z <1}

and

Y 62z) =1, if |z] > 1.

Jj=0

We now decompose i as follows.

where



We are going to estimate || K * f||oo and ||K; * f||2.
Using (2) and the support property of ¢ we get

1 % fllo < [1K ool [ £]2
_j8
S 272 (3)
To estimate || K;  f||2, let ¢;(z) = #(277z) and choose N > «. Then

K] = [6;*u(©)|

= ‘/qﬁyf y)du( )‘
in du(y)
= O /krwwm—ymN
oo 1
= CN2’"/ u({y 1+ 27 —y| < wv})dr
0
1
< oo [o(o(ezt))

1
, , d
by (1) < Cy2in2 e / 4
0

ro/N
< 9i(n—a)
It follows that || K;|le < 2/, Therefore
165+ fll2 = 1K fll2
< K llooll £l
< 20| £l (4)

Using (3), (4) and the Riesz-Thorin interpolation theorem we get
1K % fllp S 27622 | fly, p > 2

et i) = 20 2 (1-2),

where

p 2 p
Further, note that since K_., is a C*® function with compact support
we have

”Kfoo * f”p S ||f||p'a p>2

by Young’s inequality.
To complete the proof, notice that the sum

Koot f+Y Kj*f
J

converges pointwise to [ * f since f is a Schwartz function. Moreover,
the exponent c(n,a, 3,p) is negative provided that p > 2(2n—ﬂ2a+,3)'
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Therefore

i fllp < Koo % fllp+ D IKG * fllp
j=0

o0

S D Pl g,

j=0
S

To prove Theorem 1.2, let f € L?(du) and g € S. Then

/ Fan©)g(©)de = / 3(0)f (W) du(y)

< 9l z2 @ 11 £l 22 (an)

= Wl [ 305000

”wa”(/ﬁ*ﬁwwﬁmm)ug

~ 1/2
< fllz2a (18 * Gl llgll)
S ANl llglly

where the last inequality follows from Proposition 2.1. Since S is dense
in L*', we conclude that

Il fdully S 112

3. REMARKS

1. It is a standard fact that the condition |u(€)| < \6\% implies that

the Hausdorff dimension of the support of y is at least 3. This can be
shown using the formulas

3l

Ia1) = (.0 [ 2020

e 96

and

dimy (A) = sup{a : Ju, such that spt(u) C A, I,(u) < co}.

// \fv—y|“

is the a-energy of  and dimg denotes Hausdorff dimension (see Mattila
[1]). We further note that |(€)| < |B/2 implies that u(B(z,r)) < rf/2.

Here



To see this, choose ¢ € S such that ¢ > 0, ¢ 2 1 on B(0,1) and =0
outside B(0,¢) for some § > 0. Let

Gor(y) = ¢ (‘” - y) .

Then
wB(,r) < / bor (1) da(y)

. . 1
< / ., 300 e

_ B2 oy #d
r /K EGIEE
< P2

Thus, we obtain the following version of Theorem 1.2 if we only know
the rate of decay of .

Corollary 3.1. Let pu be a measure in R* such that

- 1
)l < m—ﬂﬂ

for some 0 < B < n. Then for every p > %", there exists a constant
Cpn,p > 0 such that

Ifdplly < Cpnpll fll2(an)
for all f € L*>(du).
2. The argument for the L? estimate in the proof of Proposition 2.1

was based only on dimensionality considerations. This suggests that

there should be an L? bound for ﬁm valid under very general condi-
tions. This was first observed by Strichartz [3] in a different context.
He showed that if u satisfies u(B(z, 7)) < r* then

/ Fan(E) 2de < 11 F12scan.
B(zo,r)

His approach involved the fractional Hardy-Littlewood maximal func-
tion. Here we will give a simple, direct proof of a more general result.

sup o
zo€R?, r>0 T

Theorem 3.1. Let u be a measure in R satisfying u(B(z,r)) < h(r),
for some non-negative function h. Then there exists a constant C > 0

such that
/ o FBOPAE S 7O

for allzyg € R, r >0, f € L?(du).
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Proof. We will prove the theorem in the case where B(zy, ) is centered
at the origin. The general case then follows by multiplying f by a
character. R
Let ¢ be an even Schwartz function such that ¢ > 1 on B(0,1),¢ =0
outside B(0,C), for some C' > 0 and let ¢,(z) = ¢(x/r). Then

[ e < [ 1o Tau-e e
B(0,r)
= [ 1o+ (raw (@)
-/ ‘ [ 8-ty
< [[ 8@~ lduto) [ Btz - )1 0) Pdn(w)d

For fixed x we have

/ 13 (@ — 9)lduly)

2

dx

" / Bz - 9)|du(y)
B(z,C/r)

< 7" lloop( B(z, C/r))
< r"h(C/r).

Therefore

/B(OJ) fdu(€)Pde < rnh(C/r)/|f(y)‘2/Tn‘(’g(r(x_ymdxdﬂ(y)

h(C/) 13 / () Pdp(y)
rR(CIN o

A

O

3. For expository reasons it will be convenient to make the following
definition. If 0 < «, 8 < n then the restriction exponent p(n,c, B) is
defined by

p(n, o, B) = inf{q :(Yu with p(B(z,r)) <r* and [@(€)[* < 1/[¢])

(Vf € L2(dw) (Il fdulle S I1f1lz2(am)}-

For general values of «, 5 it is unknown whether Theorem 1.2 is optimal,
that is, whether p(n,a, 8) = w We do, however, have the

following lower bound.
Proposition 3.1. If 0 < «, 8 < n then
2n
p(”a a, ﬁ) Z -
«
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Proof. Let A = spt(u) and notice that p(B(z,r)) < r* implies that p
is absolutely continuous with respect to H*|A with bounded density.
Therefore p = hH*| A for some h € L®(H*|A). Let € > 0 be such that
0<H*{zx € A:h(z) >¢€}) <ooand put C = {z € A: h(x) > €}
Then for H*-almost all z € C' (see Mattila [1]) we have

lim sup H(C r;aB(a:, r)

> 9,

It follows that there exists zy € spt(u) such that

B
lim sup W > €2%.

T

Choose a sequence 7 such that 7, \, 0, u(B(xg,7x)) =~ rg and put

fk = XB(zo,rx)"
Now let ¢ be a Schwartz function which equals 1 on B(0, 1) and define

6r(z) = ¢ (“”‘“) .

r

Suppose we have restriction for some exponent g. Then
= [ A
~ [ 6n@ila)nta
— [T~

/ €267 31 ) Frdpa(—€) de

ri lollg Nl fedull,

n
Sore I fellzoaw
n,,a
q 2
k

IN

12

Since r; N\, 0 we conclude that

2n
qz—.
Q
O
Note that the optimality of the range of exponents in the original Stein-
Tomas theorem is intimately related to the fact that do has two special
regularity properties: It is a rectifiable (n — 1)-dimensional measure
and its Fourier transform has the best possible decay rate. It might,
therefore, be of some interest to try to determine the values of @ < n
for which there exists a measure p in R” such that

w(B(z,r)) =% z €spt(p), 0<r<1 (5)
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and
N 1
()| < |§|—a/2 (6)

Clearly, the support of a measure satisfying the above conditions must
be a Salem set. It is, however, unknown whether any such measure
exists for non-integral values of a. On the other hand, we remark that
if there exists a measure y satisfying (5) and (6) with o < 2n/3 then
the support of p fails to be translation invariant in the sense that

px p({(y,2) :x —y—z€spt(p)}) =0, Vo € spt(u).
To see this, suppose that for some zy € spt(u) we have

wx p({(y,z) i 2o —y— 2z €spt(p)}) >0
and let ¢, , be as in the discussion preceding Corollary 3.1. Then

< / / (B (@0 —y — 2, ) du(y)du(z)
= px*p* p(B(zo, 7))
< / B (¥ % 1% 1) (9)

N
< / Brenac-opa
3a/2 o 1 d
< /|ﬂ§5\¢(s)|—|€|3a/25

S T3o¢/2

for all » < 1, which is a contradiction.

No information on the nature of the geometric restrictions that (5)
and (6) impose on u, other than the above, essentially trivial, remark,
is currently available.
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