
NORM ESTIMATES FOR THE KAKEYA MAXIMAL

FUNCTION WITH RESPECT TO GENERAL

MEASURES

THEMIS MITSIS

Abstract. We generalize Bourgain's theorem on the two

dimensional Kakeya maximal function by proving norm estimates

with respect to measures satisfying certain conditions. We use this

to extend the classical result of Davies on the Hausdor� dimension

of Kakeya sets in the plane.

1. Introduction

Let S1 be the unit circle in the plane. If Æ > 0; e 2 S1; x 2 R
2 then

we de�ne

T Æe (x) =

�
y 2 R

2 : j(y � x) � ej �
1

2
; j(y � x)� ((y � x) � e)ej �

Æ

2

�
:

Thus T Æe (x) is a rectangle of dimensions 1�Æ centered at x such that its

side with length 1 is in the e direction. The Kakeya maximal function

KÆ : S
1 ! R is de�ned for all locally integrable functions f : R2 ! R

by

KÆf(e) = sup
x2R2

1

jT Æe (x)j

Z
T Æ
e (x)

jf(y)jdy:

KÆ was introduced by Bourgain [1]. It is one of several similar

maximal functions which have been studied by many authors going

back at least to Cordoba [2]. Bourgain proved, using the Fourier trans-

form, that KÆ de�nes a bounded L2(R2)! L2(d�) operator, where d�
denotes arc length measure on S1. Namely, there exists a constant C,
independent of Æ, such that

kKÆfkL2(d�) � C

�
log

1

Æ

� 1

2

kfkL2(R2):

Interpolating with kKÆfk1 � kfk1 we get

kKÆfkLp(d�) � Cp

�
log

1

Æ

� 1

p

kfkLp(R2):

This estimate is sharp as can be seen, for example, by the Perron tree

construction due to Schoenberg [4].
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In this paper we consider the problem of obtaining non trivial

Lp(R2) ! Lp(d�) estimates for KÆ where � is a measure supported

on S1. In particular, we study the in
uence of the geometric proper-

ties of � on the operator norm of KÆ. It is clear that little can be said if

� is completely arbitrary. So, in order to get a meaningful problem, we

have to impose certain restrictions on �. It turns out that if � satis�es

the uniform growth condition �(B(e; r)) � �(r); e 2 S1, for some func-

tion �, then KÆ de�nes for p � 2 an Lp(R2)! Lp(d�) operator whose
norm is bounded by a concrete function of Æ. If we further assume

that � is Ahlfors regular, a notion to be de�ned in the next section,

then our estimates are sharp. The case of measures with �nite energy

seems di�erent and we only obtain a weaker estimate. Finally we use

our results to give lower bounds on the generalized Hausdor� measure,

also to be de�ned in the next section, of a wide class of Kakeya-type

subsets of the plane.

2. Background

We make some de�nitions and introduce the terminology that we

will use throughout this paper.

B(x; r) is the open disc of radius r centered at x.
j � j denotes 2-dimensional Lebesgue measure and dim(�) Hausdor�

dimension.

x . y means x � Ax for some absolute constant A and similarly

with x ' y.
spt(�) denotes the support of the measure �.
The �-energy of a Borel measure � is de�ned by

I�(�) =

ZZ
d�(x)d�(y)

jx� yj�
:

A Borel measure � is said to be s-dimensional Ahlfors regular if there

exist C1; C2 > 0 such that for x 2 spt(�); r � 1

C1r
s
� �(B(x; r)) � C2r

s:

A measure function is a non-decreasing function h(r); r � 0, such that

limr!0 h(r) = 0.

The generalized Hausdor� outer measure �h with respect to a

measure function h is de�ned for A � R
2 by

�h(A) = sup
Æ>0

inf

(X
j

h(rj) : A �
[
j

B(xj; rj); rj < Æ

)
:

When h(r) = rs, �h is the usual Hausdor� outer measure denoted by

Hs.

We will make use of the following, quite standard, lemma which gives

bounds on the area of intersection of two thin rectangles in terms of
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their angle of intersection. The proof can be easily carried out by using

elementary plane geometry.

Lemma 2.1. Let x; y 2 R
2 ; e1; e2 2 S1; Æ < 1. Then, with notation

as in the introduction, we have

jT Æe1(x) \ T
Æ
e2
(y)j .

Æ2

Æ + �(e1; e2)
;

where �(e1; e2) = cos�1 je1 � e2j is the acute angle between e1 and e2.

3. Measures satisfying the uniform growth condition

The main result of this paper is the following.

Theorem 3.1. Let � be a Borel measure supported on S1 such that

�(B(x; r)) � �(r) for some non-negative function �. Then for all

p � 2 there exists a constant Ap such that

kKÆfkLp(d�) � ApC(Æ)
1

pkfkLp(R2);

where C(Æ) is given by

C(Æ) =

Z 1

Æ

1

�(1=r)dr:

Proof. We will prove the L2(R2)! L2(d�) estimate. The theorem then

follows by interpolation with kKÆfk1 � kfk1.
Without loss of generality we may assume that spt(�) is contained

in the �rst quadrant. We cover spt(�) with a family fAjg of disjoint

arcs each of length Æ. Pick ej 2 A \ spt(�) and let aj = �(Aj). Note

that if u; v 2 Aj then for any x 2 R
2

T Æu(x) �
~T Æv (x);

where ~T Æv (x) is the rectangle with dimensions 2�4Æ and with the same

center and orientation as T Æv (x). Therefore, for every e 2 Aj

KÆf(e) . sup
x2R2

1

j ~T Æej(x)j

Z
~T Æ
ej
(x)

jf(y)jdy

.
1

Æ

Z
~T Æ
ej
(xj)

jf(y)jdy;

for some xj 2 R
2 .

We estimate kKÆfkL2(d�) by duality. Let g 2 L2(d�) such that

kgkL2(d�) = 1 and put

cj =

 Z
Aj

jg(e)j2d�(e)

!1

2

:
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Then, letting

Qg =

Z
KÆf(e)g(e)d�(e);

we have

Qg =
X
j

Z
Aj

KÆf(e)g(e)d�(e)

.
1

Æ

X
j

Z
~T Æ
ej
(xj)

jf(y)jdy

Z
Aj

jg(e)jd�(e)

�
1

Æ

Z
jf(y)j

 X
j

a
1=2
j cj� ~T Æ

ej
(xj)

(y)

!
dy

�
1

Æ
kfkL2(R2)

0
@Z

 X
j

a
1=2
j cj� ~T Æ

ej
(xj)

(y)

!2

dy

1
A

1

2

=
1

Æ
kfkL2(R2)

 X
i;j

a
1=2
i a

1=2
j cicjj ~T

Æ
ei
(xi) \ ~T Æej (xj)j

! 1

2

. kfkL2(R2)

 X
i;j

a
1=2
i a

1=2
j cicj

Æ + jei � ejj

! 1

2

where the last inequality follows from Lemma 2.1.

Now let

F (i; j) =
a
1=2
i a

1=2
j

Æ + jei � ejj
;

and note that for all jX
i

a
1=2
i F (i; j) = a

1=2
j

X
i

ai

Æ + jei � ejj

. a
1=2
j

X
i

Z
Ai

d�(e)

Æ + je� ejj

= a
1=2
j

Z
d�(e)

Æ + je� ejj

= a
1=2
j

Z 1

Æ

0

�(fe : Æ + je� ejj < 1=rg)dr

� a
1=2
j

 Z 1

0

�(B(ej; 1=r))dr +

Z 1

Æ

1

�(1=r)dr

!

. a
1=2
j C(Æ):
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Similarly, for all i X
j

a
1=2
j F (i; j) . a

1=2
i C(Æ):

Therefore

Qg . kfkL2(R2)

 X
i

ci
X
j

cjF (i; j)

! 1

2

� kfkL2(R2)

0
@X

i

 X
j

cjF (i; j)

!2
1
A

1

4

� kfkL2(R2)

 X
i

 X
j

c2ja
�1=2
j F (i; j)

! X
j

a
1=2
j F (i; j)

!! 1

4

. kfkL2(R2)C(Æ)
1

4

 X
i;j

c2ja
�1=2
j F (i; j)a

1=2
i

! 1

4

= kfkL2(R2)C(Æ)
1

4

 X
j

c2ja
�1=2
j

X
i

a
1=2
i F (i; j)

!1

4

. kfkL2(R2)C(Æ)
1

2

 X
j

c2j

! 1

4

= kfkL2(R2)C(Æ)
1

2 :

We conclude that

kKÆfkL2(d�) = supfQg : kgkL2(d�) = 1g . C(Æ)
1

2kfkL2(R2):

Note that when �(r) = r, that is, when � is absolutely continuous

with L1 density with respect to arc-length measure on S1, we get

C(Æ) = log 1
Æ
and thus recover Bourgain's result.

Taking �(r) = rs; 0 < s < 1, we obtain the following estimate for

measures of fractal dimension.

Corollary 3.1. Let � be a Borel measure on S1 such that

�(B(x; r)) � rs for some s 2 (0; 1). Then, for p � 2

kKÆfkLp(d�) .

�
1

Æ

� 1�s
p

kfkLp(R2):

We next show that the above estimate is sharp if � satis�es an extra

regularity condition.
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Proposition 3.1. Let s 2 (0; 1) and � be an s-dimensional Ahlfors

regular measure on S1. Then

kKÆkLp(R2)!Lp(d�) '

�
1

Æ

� 1�s
p

:

Proof. Let fejg
N
j=1 be a maximal Æ=2-separated set of points in spt(�).

For each j let Aj be an arc of length Æ centered at ej. Then

1 �

NX
j=1

�Aj
(e) � 2; 8e 2 spt(�):

Hence

�(S1) �

NX
j=1

�(Aj) � 2�(S1):(1)

Note that Ahlfors regularity implies that �(Aj) ' Æs. Therefore (1)

yields

N '

�
1

Æ

�s
:

Now let

EÆ =

(
x 2 R

2 : 0 < jxj � 4;
x

jxj
2
[
j

Aj

)
:

Then

1 . KÆ�EÆ
(e); 8e 2 spt(�):

Note that

jEÆj . NÆ ' Æ1�s:

Consequently

kKÆkLp(R2)!Lp(d�) �
kKÆ�EÆ

kLp(d�)

k�EÆ
kLp(R2)

&

�
1

jEÆj

� 1

p

&

�
1

Æ

� 1�s
p

:
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4. Measures with finite energy

The next result shows that we can weaken the condition �(B(x; r)) �
rs in Corollary 3.1 at the expense of obtaining a weaker estimate.

Theorem 4.1. Let � be a Borel measure on S1 such that Is(�) < 1

for some s 2 (0; 1). Then for every p � 1 and � > 0 there exists

Cp;� > 0 such that

kKÆfkLp(d�) � Cp;�

�
1

Æ

� 1�s
2p

+�

kfkL2p(R2):

Proof. Fix Æ > 0 and let

Ai =

�
x 2 S1 : 2i�1 < sup

r�Æ

�(B(x; r))

rs
� 2i

�
:

Then there are . log 1
Æ
values of i such that Ai 6= ;. Using the Besicov-

itch covering theorem we can �nd, for each i, a family of discs fB(rij)gj
such that

2i�1 <
�(B(rij))

rsij
(2)

and

�Ai
�
X
j

�B(rij) � C;(3)

for some constant C. Note that for every x 2 B(rij)

�(B(rij))

rsij
.

Z
B(rij )

d�(y)

jx� yjs
:

Therefore, by (2)

2i�1�(B(rij)) .

Z
B(rij)

Z
B(rij)

d�(x)d�(y)

jx� yjs
:

Consequently

�(Ai) �
X
j

�(B(rij))

.
1

2i

X
j

Z
B(rij)

Z
B(rij)

d�(x)d�(y)

jx� yjs

.
1

2i
Is(�);

where the last inequality follows from (3). Now let �i = �(Ai)�jAi.
Then

�i(B(x; r)) . rs 8r � Æ:
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Hence, by Theorem 3.1

kKÆfkL2p(d�i) .

�
1

Æ

� 1�s
2p

kfkL2p(R2):

It follows thatZ
(KÆf(e))

pd(�jAi)(e) =
1

�(Ai)
kKÆfk

p
Lp(d�i)

�
(�i(S

1))1=2

�(Ai)
kKÆfk

p
L2p(d�i)

= kKÆfk
p
L2p(d�i)

.

�
1

Æ

� 1�s
2

kfkp
L2p(R2)

:

Summing over i we get

kKÆfk
p
Lp(d�)

. log
1

Æ

�
1

Æ

� 1�s
2

kfkp
L2p(R2)

.

�
1

Æ

� 1�s
2

+�p

kfkp
L2p(R2)

:

Note that if � satis�es �(B(x; r)) � rs then It(�) <1 for all t < s. So
in view of Corollary 3.1, one would expect that an Lp(R2) ! Lp(d�)
estimate like

kKÆfkLp(d�) � Cp;�

�
1

Æ

� 1�s
p

+�

kfkLp(R2); p � 2

should hold. We don't, however, know how to prove this.

5. An application to Kakeya-type sets

If e 2 S1 and x 2 R
2 then we de�ne

le(x) =

�
x + te : t 2

�
�
1

2
;
1

2

��
:

Let A be a subset of S1. A set E � R
2 is said to be an A-Kakeya set

if for every e 2 A there exists xe 2 R
2 such that le(xe) � E. In other

words, an A-Kakeya set contains a unit line segment in the e-direction
for every e 2 A. We will use Theorem 3.1 to obtain lower bounds

on the size of an A-Kakeya set in terms of the size of A, generalizing
the classical result of Davies [3] on the Hausdor� dimension of usual

Kakeya sets in the plane. This type of argument originates in [1].
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Theorem 5.1. Let A be a subset of S1 such that �h(A) > 0 for some

measure function h. If E is an A-Kakeya set in the plane then for all

� > 0, �r2�� (r)(E) > 0, where  is given by

 (r) =

Z 2

r

1

h(1=s)ds:

Proof. Using Frostman's lemma we can �nd a measure � supported

on A such that �(B(x; r)) � h(r). Let fB(aj; rj)gj be a countable

covering of E by discs. Without loss of generality we may assume that

rj � 1. De�ne

Jk =
�
j : 2�k < rj � 2�(k�1)

	
;

Ek =
[
j2Jk

B(aj; rj);

~Ek =
[
j2Jk

B(aj; 2rj):

By the de�nition of E, for each e 2 A there is xe 2 R
2 such that

le(xe) � E. Using the pigeonhole principle and the fact that
P

1
n2

= �2

6

one can show that for each e 2 A there exists ke such that

L
1(Eke \ le(xe)) �

6

�2k2e
;

where L1 is linear Lebesgue measure. By the pigeonhole principle

again, there exists k such that

��
��

e 2 A : L1(Ek \ le(xe)) �
6

�2k2

��
�

6�(S1)

�2k2
;

where �� is the corresponding outer measure. Using measure theory,

we can �nd a Borel set ~A � S1 with

�( ~A) �
�(S1)

2k2

such that for all e 2 ~A there is x0e 2 R
2 with

L
1(Ek \ le(x

0
e)) �

1

2k2
:

With this k, note that if e 2 ~A then

jT 2�k

e (x0e) \
~Ekj &

1

k2
jT 2�k

e (x0e)j

and consequently

K2�k� ~Ek
(e) &

1

k2
:

9



Therefore, by Theorem 3.1

1

k6
.

Z
~A

�
K2�k� ~Ek

(e)
�2
d�(e)

. C(2�k)j ~Ekj

. C(2�k)jJkj2
�2k:

It follows that

jJkj &
22k

k6C(2�k)
:

Hence X
j

r2��j  (rj) & jJkj

�
1

2k

�2��

 (2�k+1)

&
2k� (2�k+1)

k6C(2�k)

& 1:

Therefore

�r2�� (r)(E) > 0:

If we specialize to the case of the usual Hausdor� measure by taking

h(r) = rs then we obtain the following.

Corollary 5.1. Let E be an A-Kakeya set in the plane. Then dim(E) �
dim(A) + 1.

Note that the trivial example

E =

�
x 2 R

2 : jxj > 0;
x

jxj
2 A

�
shows that the above estimate is sharp.

References

[1] Bourgain, J. Besicovitch type maximal operators and applications to Fourier

Analysis, Geom. Funct. Anal. 1 (1991), 147-187.

[2] Cordoba, A. The Kakeya maximal function and spherical summation multipli-

ers, Amer. J. Math. 99 (1977), 1-22.

[3] Davies, R.O. Some remarks on the Kakeya problem, Proc. Cambbridge Philos.

Soc. 69 (1971), 417-421.

[4] Schoenberg, I.J. On the Besicovitch-Perron solution of the Kakeya problem

Studies in Mathematical Analysis-Essays in Honour of G. P�olya, pp. 359-363,

Stanford University Press, 1962.

Department of Mathematics, University of Jyv�askyl�a, P.O. Box 35,

SF-40351 Jyv�askyl�a, Finland

E-mail address : mitsis@math.jyu.fi

10


