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1 Introduction

We study a two dimensional G-closure problem. We consider multiphase composites
made of an arbitrary number of linearly conducting phases. We will establish new
optimal bounds for the homogenized tensor of a large class of composites.

To explain our results in detail, let us introduce some notations. Let Q =
(0, 1) × (0, 1) be the unit square in R2. Let σ(x) be a symmetric, uniformly elliptic
and bounded matrix function, having measurable entries and being defined for all
x ∈ R2. Assume also that σ is Q-periodic. Then the effective conductivity σhom is
the unique, constant and symmetric matrix satisfying

∀A ∈ M , Tr[AσhomAt] = inf
U∈W 1,2

�
(Q;R2)

∫
Q

Tr[(DU(x) + A)σ(x)(DU(x) + A)t]dx

(1.1)
where the space W 1,2

� (Q;R2) denotes the completion of the space of Q-periodic
vector fields with respect to the W 1,2 norm, M denotes the set of two by two real
matrices and Tr denotes the trace.

We now describe the class of conductivity matrices considered in our study. Fix
an arbitrary integer N ≥ 1 and N real numbers

0 < σ1 ≤ σ2 ≤ . . . ≤ σN . (1.2)
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Given N real numbers pi > 0, (called the the volume fractions) with
∑N

i=1 pi = 1,
and a real number K ≥ 1, we consider a Q-periodic conductivity tensor of the form

σ(x) = Rt(x)

(
K 0
0 K−1

)
R(x)χ1(x)σ1 +

N∑
i=2

χi(x)σiI, x ∈ Q, (1.3)

where the χi are Q-periodic characteristic functions of measurable sets satisfying
1
|Q|

∫
Q χi(x)dx = pi, x 	→ R(x) is a measurable field of rotation matrices (i.e.

R(x) ∈ SO(2) for each x) and I denotes the identity matrix. The corresponding
G-closure problem consists of characterizing the (closure of the) set of constant
matrices which arise as a homogenized (or effective) conductivity when one allows the
“microgeometry” i.e. both the field of rotations R and the characteristic functions
χi to vary over their respective ranges. We emphasize that the set of values of K,
σi and pi are given parameters which we call for brevity, the G-closure parameters.

For clarity of exposition we will consider only bounds that are optimal when the
composite is isotropic, i.e. σhom = hI for some real number h. However, as in [5],
[26] similar methods do yield bounds also for non isotropic composites; we leave the
details for the reader.

With these notations, we begin by recalling the following generalization of the
celebrated Hashin-Shtrikman bounds [14].

Theorem 1.1 (Kohn-Milton, [25], Section 4, formula (4.22)) Let σ be of the form
(1.3), (1.2). If K = 1, then σhom satisfies the following inequality

2

Tr(σhom) + 2σ1

≤
N∑

i=1

pi

σi + σ1

. (1.4)

It will be convenient to use the notation

ci =
σi − σ1

σi + σ1

, i = 2, 3, . . . , N . (1.5)

Then we write (1.4) in the equivalent form

2

Tr(σhom) + 2σ1

≤ 1

2σ1

[
1 −

N∑
i=2

cipi

]
. (1.6)

Milton [22] was the first to prove the following sufficient condition for the
optimality of the bounds (1.6).
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Theorem 1.2 (See [25], Section 4, formula (4.29)) Under the same assumptions
of Theorem 1.1, if σhom is isotropic, then the bounds (1.6) are optimal provided the
following inequality holds

c2 ≥
N∑

i=2

cipi . (1.7)

In fact a slightly better result can be proved.

Theorem 1.3 (Gibiansky-Sigmund, [13], Section 5.3, formula (80)) The inequality
(1.4) is optimal if the following condition holds

p1 ≥
2σ1(σ3 − σ2)(

√
p2 − p2)

(σ2 + σ1)(σ3 − σ1)
. (1.8)

For more details see Section 5 of [13].
From the composites viewpoint, our main result is a generalization of Theorems

1.1 and 1.2 to the class of polycrystalline composites described at the beginning of
the section. Indeed, we prove the following results.

Theorem 1.4 Let σ be of the form (1.3), (1.2) and let K ≥ 1 be arbitrary. Then,
σhom satisfies the following inequality

2

Tr(σhom) + 2σ1

≤ 1

2σ1


1 −

(
N∑

i=2

c
1
K
i pi

)K

 , (1.9)

where the ci are defined in (1.5).

The proof will be presented in Section 3.

Theorem 1.5 Under the same assumptions of Theorem 1.4, , if σhom is isotropic,
then the bounds (1.9) are optimal provided

c2 ≥
(

N∑
i=2

c
1
K
i pi

)K

. (1.10)
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Section 4 is devoted to the proof of the optimality. Note that our condition
(1.10) reduces to (1.7) as K tends to one. It would be desirable to have a condition
reducing to (1.8) but we were unable to achieve this. In fact among the class of
microgeometries which are known to be optimal for the case K = 1, only some
appear to admit a natural generalization to the polycrystalline case.

Let us briefly put our results into context by considering some special cases. In
the following, we restrict attention to the case of prescribed volume fractions and
isotropic composites.
Case 1: N = 2, K = 1. The bounds (1.9) reduce to those of Tartar and Murat [34]
and Lurie and Cherkaev [19]. If in addition one assumes that σhom is isotropic, the
bounds reduce to those of Hashin-Shtrikman [14]. They are optimal for any choice
of the G-closure parameters.
Case 2: N = 2, K > 1. The bounds (1.9) reduce to those of Nesi [29]. When
σ1 < σ2, they are optimal for any choice of the remaining G-closure parameters.
Case 3: N > 2, K = 1. The bounds reduce to those of Kohn and Milton [25],
(see also Zhikov [37]). For isotropic composites, the bounds are due to Hashin
and Shtrikman [14]. They are optimal for any choice of the G-closure parameters
satisfying (1.8).
Case 4: N > 2, K > 1. The bounds are new. When σ1 < σ2, they are optimal for
any choice of the remaining G-closure parameters satisfying (1.10).

We wish to emphasize that from the point of view of the bounds, the new results
for the cases N > 2 and K > 1 are obtained using new sharp distortion estimates
for planar quasiconformal mappings. These inequalities are explained in detail later
in this section and proved in Section 2. In contrast to some recent work on the
subject, c.f. [29], [5], [26], the already known results on quasiconformal mappings
due to Astala [3] do not suffice as such in the present G-closure problem. The new
results which are needed were in fact suggested exactly by the G-closure problem
under study.

From the point of view of optimal microstructures, we generalize previous work
by combining ideas due to Cherkaev and Lurie [21], Kohn and Milton [25] and
Schulgasser [32].

Although already restricted to two dimensional problems in linear conductivity,
our discussion of bounds and their optimality is far from being complete. We quote
here some of the relevant literature on the subject. When the volume fraction of
the phases is not prescribed and N = 2, the so-called two phase polycrystalline
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problem has been fully solved by Francfort and Murat [12], completing previous
work by Lurie and Cherkaev [20]. In [11] there are results concerning the case
of unconstrained volume fractions with an arbitrary number of phases. A few
more recent papers attempt the task of finding good candidates for optimal
microgeometries (both isotropic and anisotropic). They include [13], [33], [36]. We
mention in particular the work by Cherkaev and Gibiansky, [9], where new optimal
anisotropic microgeometries are exhibited for N = 3 and K = 1. It is important to
recall that, even for K = 1, if N ≥ 3, it is known that the bounds (1.4) cannot be
optimal for all the values of the G-closure parameters because, in certain regimes,
better bounds are available [28].

It is worth mentioning that Cherkaev, [8], found a new type of isotropic composite
for the case N = 3 and K = 1. This microgeometry is likely to be optimal under
an additional constraint on the G-closure parameters when (1.8) is not satisfied.
The reason to conjecture optimality is that its effective conductivity approaches the
value predicted by the bounds in [28] as σ3 diverges.

Another issue which deserves a comment is the exact definition of an optimal
bound. Let us emphasize that in our Theorem 1.4, we understand optimality in its
most stringent sense. Namely we show that for any value of the G-closure parameters
satisfying (1.10), one can find a Q-periodic σ satisfying (1.3) and (1.2), such that
the corresponding σhom is isotropic and it satisfies (1.9) as an equality. Very often,
optimality is understood in a weaker sense. For instance in Theorem 1.3 optimality
was considered in the sense of an approximating procedure.

Let us then turn to the quasiconformal aspects of our work. Recall that a
mapping f : R2 	→ R2 is K-quasiregular, K ≥ 1, if f ∈ W 1,2

loc and

‖Df(x)‖2 ≤ KJf (x) a.e. x ∈ R2. (1.11)

Here ‖ ‖ denotes the operator norm. It follows that quasiregular mappings are open,
discrete and continuous. If, in addition, f is a homeomorphism, then the map f is
called K-quasiconformal. The are a number of other (nontrivially) equivalent ways
of defining these mappings, c.f. Section 2.

Basically, the connection of quasiconformality to composites arises in this paper
in a manner similar to the fundamental work [29] where these relations were first
established. However, in the case of multiphase problems one needs instead of [3]
results on the distortion of weighted area under a K−quasiconformal mapping f . To
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obtain sharp bounds we shall use for f the so called hydrodynamical normalization
f ∈ ΣK ; for details see Section 2, formula (2.6). Under this assumption we prove

Theorem 1.6 Suppose f ∈ ΣK is K−quasiconformal in R2. Assume that we have
a measurable set E ⊂ D = {x ∈ R2 : |x| < 1} and a (measurable) weight w(x) ≥ 0,
x ∈ E.

If f |E is conformal, meaning that ∂f(x) = 0 a.e. x ∈ E, then

(∫
E

w(x)1/Kdm(x)
)K ≤

∫
E

w(x)Jf (x)dm(x) ≤
(∫

E
w(x)Kdm(x)

)1/K
. (1.12)

As we shall see Theorem 1.6 is sharp; there is a large class of weights and
K−quasiconformal mappings f for which one of the bounds (1.12) holds as an
equality, see Section 2.

From the point of view of composites, Theorem 1.6 is the result needed for
the G−closure bounds and a reader looking for a minimal approach to composites
may proceed with (1.12) directly to Section 3. However, from the point of view
of quasiconformal and quasiregular mappings (1.12) has interesting consequences
to their regularity theory. In particular, recall [3] that in dimension n = 2 any
K−quasiconformal mapping f is contained in the Sobolev class f ∈ W 1,p

loc for
each p < pK ≡ 2K

K−1
while there are simple examples showing that in general

f /∈ W 1,pK
loc . Somewhat surprisingly, when f |E is conformal as in Theorem 1.6,

then the derivatives of f do integrate at the borderline case p = pK , even if the set
E can be of quite irregular character.

Theorem 1.7 Suppose f : R2 → R2 is a K−quasiregular mapping and E ⊂ R2 is
measurable and bounded. If ∂f(x) = 0 a.e. x ∈ E, then, for K > 1,

∫
E
|Df(x)|pdx < ∞ for p =

2K

K − 1
. (1.13)

Again we show by an example that for some f satisfying the assumptions, (1.13)
fails for all exponents p > 2K

K−1
. If in addition, f ∈ ΣK we prove the sharp bound

∫
E

Jf (x)pdm(x) ≤ 1, p =
K

K − 1
.
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The higher integrability has similar consequences for solutions to elliptic PDE’s, see
Section 5.

The organization of the paper is as follows: Section 2 is devoted to the proof
of Theorem 1.6. In Section 3 we prove the composite bounds of Theorem 1.4
and in Section 4 we show their optimality. Finally, Section 5 studies some of the
quasiconformal consequences of Theorem 1.6.

2 Area distortion and quasiconformal mappings

The definition (1.11) of a K-quasiregular mapping says that at almost every point
the partial derivatives of f are of the same order, up to the constant K. There
are of course many other ways to express this property. A convenient definition,
equivalent to (1.11) is

Df(x)tDf(x) = Jf (x)G(x), (2.1)

where
1

K
|h|2 ≤ 〈G(x)h, h〉 ≤ K|h|2, h ∈ R2. (2.2)

It follows e.g. that f satisfies the linear elliptic PDE

Div
(
σf (x)Df(x)t

)
= 0, σf (x) = G(x)−1, (2.3)

determined by its matrix dilatation σf .
These identities yield a number of different representations for planar

quasiregular mappings. For later purposes it will be essential to consider these
notions also in the complex analytic terms. Here recall [1] [17], that a W 1,2

loc -mapping
f is K-quasiregular if and only if it satisfies the Beltrami equation

∂f(x) = µ(x)∂f(x) a.e. x ∈ R2, (2.4)

where

|µ(x)| ≤ K − 1

K + 1
a.e. x ∈ R2. (2.5)

Here µ = µf is the complex dilatation of f ; note in particular, that µf = 0 in a
domain Ω ⊂ R2 if and only if ∂f(x) = 0 there, i.e. f is complex analytic in Ω.
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Furthermore, as is well known [1], [16] and [17], any K−quasiregular mapping
f is of the form f = h ◦ g where h is complex analytic ( ∂h ≡ 0 ) and g is K-
quasiconformal, in particular homeomorphic. Therefore many of the properties of f
reduce to those of g. Hence in the rest of this section we consider only quasiconformal
mappings.

It is clear from above that quasiconformal mappings have a number of
connections and applications to PDE’s. What make them especially useful in this
setting are the various strong distortion properties of quasiconformal mappings. A
particular example is Theorem 1.6, to be proven below.

On the other hand, it is equally clear that explicit and optimal distortion
estimates are possible only under special normalizations of the mappings. It is
for this purpose that we must introduce auxiliary subclasses.

Let ΣK denote the class of K-quasiconformal mappings that are conformal
outside the unit disk D = {x ∈ R2 : |x| < 1} and are normalized by

f(x) = x + O(1/|x|), |x| > 1. (2.6)

The choice (2.6) is the classical one; there is a wealth of results in the theory of
conformal mappings using this normalization. From there we obtain the first simple
bounds.

For aesthetic reasons we denote by dm = 1
π
dx the standard Lebesgue measure

divided by π, so that the unit disk has measure m(D) = 1.

Lemma 2.1 ([31], Theorem 1.3) Suppose f ∈ ΣK, K ≥ 1. Then∫
D

Jfdm(x) = m(f(D)) ≤ 1. (2.7)

A similar identity is obtained from (2.6) via the Stokes theorem.

Lemma 2.2 For each f ∈ ΣK,∫
D

Tr (Df(x))dm(x) = 2�{
∫
D

∂f(x)dm(x)} = 2. (2.8)

After these preliminaries we are ready for the main result of this section.

Proof of Theorem 1.6 We shall make use of the basic arguments in [3]. We
establish the claim first for open sets E and prove the general case later by
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approximation. Moreover, we consider only weight functions w ≥ 0 that are bounded
away from 0 and ∞ on the set E; the case of general w follows then by an obvious
limiting argument.

Therefore suppose that the weight w(x) and f ∈ ΣK are given, with ∂f(x) = 0
for a.e. x ∈ E. Our principal goal is then to show that

∫
E

w(x)Jf (x)dm(x) ≤
(∫

E
w(x)Kdm(x)

)1/K
. (2.9)

For this, let us begin by representing the f ∈ ΣK as a solution to the Beltrami
equation

∂f(x) = µ(x)∂f(x), |µ| ≤ K − 1

K + 1
χ

D\E
. (2.10)

Then for each complex number |λ| < 1 we write µλ(z) = λK+1
K−1

µ(z), z ∈ C.
According to the measurable Riemann mapping theorem ([1], [17]) for each λ ∈ D
we have a (unique) W 1,2

loc (R2)-solution fλ to

∂fλ(x) = µλ(x)∂fλ(x) (2.11)

satisfying (2.6). In particular, with our choice of µλ, one has

λ =
K − 1

K + 1
=⇒ fλ = f. (2.12)

Furthermore [1], the solution fλ(x) depends holomorphically on the parameter
λ. Since E is assumed to be open, fλ|E is conformal in the classical sense and in
particular fλ is smooth, even complex analytic on E. Therefore, c.f. [16] page 69,
for each fixed x ∈ E the function λ 	→ f ′

λ(x) = ∂fλ(x) is holomorphic in D. Note
also that by conformality on E,

f ′
λ(x) �= 0 ∀x ∈ E, ∀λ ∈ D. (2.13)

Next, let us use the concavity of the logarithm in conjunction with Jensen’s
inequality in the following manner: For any function a(x) > 0, x ∈ E, we have

log
∫

E
a(x) dm(x) = sup

p

[∫
E

p(x) log
(a(x)

p(x)

)
dm(x)

]
. (2.14)
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Here the supremum is taken over the functions p such that

i) 0 < p(x) < 1 a.e. x ∈ E and

ii)
∫

E
p(x) dm(x) = 1.

Note that the supremum is attained when p(x) ≡ a(x)/
∫
E a dm.

In our case we take a(x) = w(x)Jfλ
(x) = w(x)|f ′

λ(x)|2, x ∈ E. Then (2.14) gives

log
(∫

E
w(x)|f ′

λ(x)|2dm(x)
)

(2.15)

= sup
p

[∫
E

p(x) log w(x) dm(x) +
∫

E
p(x) log

( |f ′
λ(x)|2
p(x)

)
dm(x)

]
.

Here the latter integral

hp(λ) :=
∫

E
p(x) log

( |f ′
λ(x)|2
p(x)

)
dm(x) (2.16)

is harmonic in λ, by (2.13). Moreover, we can use Lemma 2.1 to deduce

hp(λ) ≤ log
∫

E
|f ′

λ(x)|2 ≤ log
(∫

D
Jfλ

dm
)
≤ 0. (2.17)

Consequently, λ 	→ hp(λ) is harmonic and nonpositive in D.
We are now in position to use the Harnack’s inequality. It gives

hp(λ) ≤ 1 − |λ|
1 + |λ|hp(0) =

1 − |λ|
1 + |λ|

∫
E

p(x) log
( 1

p(x)

)
dm(x). (2.18)

Combining (2.15) and (2.18) we obtain (with λ = K−1
K+1

) that

log
(∫

E
w(x)Jf (x)dm(x)

)

≤ sup
p

[∫
E

p(x) log w(x) +
1

K

∫
E

p(x) log
( 1

p(x)

)
dm(x)

]

=
1

K
sup

p

[∫
E

p(x) log
(w(x)K

p(x)

)
dm(x)

]

=
1

K
log

(∫
E

w(x)Kdm(x)
)

(2.19)
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by (2.14). Exponentiating (2.19) gives the estimate (2.9) for open sets E; this is the
latter of the inequalities (1.12) in Theorem 1.6.

To deduce the first of the inequalities (1.12) for E open, one needs to use
Harnack’s inequality in the form

hp(λ) ≥ 1 + |λ|
1 − |λ|hp(0) (2.20)

rather than (2.18) and then otherwise argue in a similar fashion.

Let us lastly consider the case of arbitrary measurable sets E such that f |E is
conformal. Choose a decreasing sequence {En}∞n=1 of open subsets such that E ⊂ En

and
m(En \ E) → 0 as n → ∞. (2.21)

Set µn = µχ
D\En

, with µ as in (2.10), and let fn be the corresponding quasiconformal

mapping, normalized by (2.6) and satisfying the Beltrami equation ∂fn(x) =
µn(x)∂fn(x). It follows from [1], Lemma V.B.1, p.93, that ‖∂fn − ∂f‖L2(C) → 0
as n → ∞. Recall that on the sets En and E, we have Jfn = |∂fn|2 and Jf = |∂f |2
respectively. Since w can be assumed to be bounded from above on, say, E1 we
deduce ∫

E
w(x)Jf (x)dm(x) = limn→∞

∫
En

w(x)Jfn(x)dm(x). (2.22)

Clearly, for any q > 0∫
E

w(x)qdm(x) = limn→∞

∫
En

w(x)qdm(x). (2.23)

As the inequalities (1.12) hold for each of the open sets En, using (2.22) and (2.23)
gives the proof of the Theorem 1.6. ✷

The inequalities of Theorem 1.6 are optimal, as can be shown by several
examples. Indeed, let us consider the family of weights w attaining only finitely
many values. Then, if a condition corresponding to (1.10) is satisfied, for any apriori
given choice of the distribution function of w we will construct examples achieving
the equality.

Example 2.1 Suppose 0 < w1 < . . . < wn and 0 < pj < 1, j = 1, . . . , n, satisfy

n∑
j=1

pjw
K
j ≤ wK

1 . (2.24)
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Then there is an open set E ⊂ D with m(E) =
∑n

j=1 pj, a K-quasiconformal mapping
f ∈ ΣK with f |E conformal and a weight w, positive on E, such that

m({x ∈ E : w(x) = wj}) = pj, j = 1, . . . , n, (2.25)∫
E

w(x)Jf (x)dm(x) =
(∫

E
w(x)Kdm(x)

)1/K
. (2.26)

To construct mappings and weights satisfying (2.25), (2.26) we need some notation.
First, we may normalize the numbers wj so that

n∑
j=1

pjw
K
j = 1. (2.27)

Then by our assumptions w1 ≥ 1 and wj+1 > wj. Hence we can find numbers
0 < Rj ≤ 1 so that

wj =
( j∏

l=1

Rl

)−2/K
, j = 1, . . . , n. (2.28)

Consider next a version of the radial stretching, a basic example of a
K−quasiconformal mapping in ΣK ,

f
R
(x) =




R
1
K

−1

x, 0 ≤ |x| ≤ R

x|x|
1
K

−1

, R < |x| ≤ 1
x, 1 < |x|.

(2.29)

Define also fρ
R
(x) = ρf

R
(x

ρ
), x ∈ R2.

To complete the notations let ρj, j = 1, . . . , n, be numbers defined by the
following rule,

R2
nρ

2
n = pn, R2

jρ
2
j − ρ2

j+1 = pj, 1 ≤ j ≤ n − 1. (2.30)

Then by (2.28), (2.27), ρ1 = 1.
After these preparations set simply

f = fρ1

R1
◦ . . . ◦ fρn

Rn
, w =

n∑
j=1

wjχEj
(2.31)

where

En = {x : |x| < ρnRn}; Ej = {x : ρj+1 < |x| < ρjRj}, 1 ≤ j ≤ n − 1. (2.32)

Then by (2.30) m(Ej) = pj for each j = 1, . . . , n, (2.25) is clearly satisfied and
(2.26) follows since by the chain rule Jf |E ≡ wK−1 on the set E = ∪n

j=1Ej.
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3 New G-closure bounds

In this section we prove new G-closure bounds. We will in fact prove bounds for
the so-called overall conductivity. Standard arguments in homogenization theory
yield then the corresponding statement for the homogenized conductivity (see for
instance [29]).

Let us consider matrices σ of the form (1.3), (1.2) defined on a domain Ω (instead
of the square Q). Then the overall, or macroscopic, conductivity σ∗ is defined as
follows: for any A ∈ M,

Tr[Aσ∗At] = inf
U∈W 1,2

0 (Ω;R2)

1

| Ω |
∫
Ω

Tr[(DU(x) + A)σ(x)(DU(x) + A)t]dx . (3.1)

We use the following result.

Theorem 3.1 Let Ω ⊂ R2 be a simply connected, bounded open set with Lipschitz
boundary. Let σ be a uniformly elliptic symmetric matrix with bounded measurable
coefficients defined in Ω and let σ∗ be the associated overall conductivity as defined
above. Set dm = ess inf

√
det σ. Then for any λ ∈ (0, dm), one has

1

Tr(σ∗) + 2λ
= inf

Ψ∈T

1

| Ω |
∫
Ω

Tr[DΨ(x)σ(x)DΨ(x)t] − 2λ det DΨ(x)

det σ(x) − λ2
dx , (3.2)

where

T ≡
{

Φ ∈ W 1,2(Ω;R2) ,
1

| Ω |
∫
Ω

Tr(DΦ(x))dx = 1

}
. (3.3)

For the proof the reader is referred to Proposition 2.1 in [5]. See also [29], Theorem
3.1 and [30], Section 2, Lemma 1.

We warn the reader that the mappings in T are normalized in a slightly different
way with respect to the statement in [29], where 1

|Ω|
∫
Ω Tr(DΦ(x))dx = 2 was used.

Let K ≥ 1 be arbitrary but given and let ΣK be the space of quasiconformal
mappings defined in Section 2. When Ω = D, by Lemma (2.2) the (normalized)
gradient of f ∈ ΣK belongs to T and the following corollary of Theorem 3.1 is then
obtained as a consequence.
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Corollary 3.1 (Lemma 5.1 in [29]). Suppose K−1|h|2 ≤ 〈σ(x)h, h〉 ≤ K|h|2,
h ∈ R2. Then under the assumptions of Theorem 3.1,

2

Tr(σ∗) + 2λ
≤ sup

Ψ∈ΣK

∫
D

det DΨ(x)√
det σ(x) + λ

dm . (3.4)

Proof. For the reader’s convenience we sketch the argument from [29]. Note that
we use the normalized measure dm = dx/π.

Define a new matrix function G(x) = ( σ(x)√
det σ(x)

)−1 for x ∈ D and G(x) = I for

x ∈ R2 \D. Then by the measurable Riemann mapping theorem [1], [16] there is an
element Ψ ∈ ΣK with DΨtDΨ = G det(DΨ). By the cyclic property of the Trace,
one obtains

Tr[DΨ(x)σ(x)DΨ(x)t] = Tr[G(x)σ(x) det DΨ(x)] = 2
√

det σ(x) det DΨ(x) . (3.5)

According to Lemma 2.2, 1
2
Ψ ∈ T ; substituting this test function transforms the

right hand side of (3.2) to

[
√

det σ(x) − λ] det DΨ(x)

2[det σ(x) − λ2]
. (3.6)

The claim (3.4) follows. ✷

Proof of Theorem 1.4. Consider Corollary 3.1 and the inequality (3.4) specialized
to the case when σ has the particular form (1.3), (1.2). It follows from the proof
of Corollary 3.1 that actually we can now take the supremum over Ψ ∈ ΣK(E), i.e.
over the set of those Ψ ∈ ΣK that are conformal on E = {x ∈ D :

∑N
i=2 χi(x) = 1}.

Passing to the limit as λ tends to σ1 in (3.4), we obtain

2

Tr(σ∗) + 2σ1

≤ sup
Ψ∈ΣK(E)

∫
D

det DΨ(x)√
det σ(x) + σ1

dm . (3.7)

Recall next the notation (1.5), ci = (σi − σ1)/(σi + σ1). With this and with (1.3),
(3.7) implies

2

Tr(σ∗) + 2σ1

≤ 1

2σ1

sup
Ψ∈ΣK(E)

(∫
D

det DΨ(x)dm −
N∑

1=2

ci

∫
D

χi(x) det DΨ(x)dm

)
.

(3.8)
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Finally, recall that for any Ψ ∈ ΣK ,
∫
D det DΨ(x)dm ≤ 1, see Lemma 2.1. Hence

choosing now w(x) =
∑n

i=2 ciχi(x) in (1.12), gives the desired bound for σ∗. The
same bounds hold automatically for the σhom, c.f. [29]. ✷.

Remark 3.1 When K = 1 and N > 2, for certain values of the G-closure
parameters when (1.10) is not satisfied, the bounds (1.9) cannot be optimal (see
[28]). The same happens when K > 1. This follows using Theorem 3.1 in [29] with
the choice t(x) = σ1χ1(x) + (1 − χ1(x))σ2 and arguing as in [28].

4 Optimality of bounds

This section is devoted to proving Theorem 1.5. Our statement, as remarked at the
end of the introduction, has to be understood as optimality in the classical sense.
In other words the proof requires three parts. First: for Q = (0, 1) × (0, 1), define
a specific Q-periodic σ satisfying (1.3), (1.2) and (1.10) at almost every point of Q.
Second: exhibit the weak solution to the Euler-Lagrange equations of (1.1). Third:
compute the corresponding σhom and show that σhom is isotropic and it satisfies (1.9)
as an equality.

There are actually several possibilities to do the constructions. One is based on
structures similar to those in Example 2.1, by filling in the square by families of such
concentric disks. However, we have chosen below a slightly different route which is
here technically less demanding.
Proof of Theorem 1.5. We begin by performing the first part of the above
program. Set h0 to be the solution of the equation

1

h0 + σ1

=
1

2σ1


1 −

(
N∑

i=2

c
1
K
i pi

)K

 (4.1)

and define

z =
h0 − σ1

h0 + σ1

, qi =
(

z

ci

) 1
K

, i = 2, . . . , N . (4.2)

Note that, by (1.10), (4.1) and (4.2), each qi belongs to (0, 1]. Hence, setting

αi =
pi

qi

, i = 2, . . . , N . (4.3)
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one has αi > 0 for every i. An easy calculation shows that, by the definition of
h0, one has

∑N
i=2 αi = 1. Now let Q = (0, 1) × (0, 1). We cover Q (up to a set of

zero measure) with N − 1 open sets Ωi such that | Ωi |= αi. This can of course be
done in infinitely many ways. For instance one may take Ωi to be non overlapping
rectangles of sides 1 and αi.

Next, for R > 0, 0 < r < ρ and y ∈ R2 we define

B(y, R) ≡ {x ∈ R2 : | x − y |< R} , A(y, r, ρ) ≡ {x ∈ R2 : r ≤| x − y |< ρ} .
(4.4)

For any i there exists a countable set of non overlapping open disks B(ij) =
B(x(ij), R(ij)) such that

| Ωi \ ∪∞
j=1 B(ij) |= 0 . (4.5)

We write B(ij) as the union of an inner disk and an outer annulus

B(x(ij), R(ij)) = B(x(ij), r(ij)) ∪ A(x(ij), r(ij), R(ij)) ,

(
r(ij)

R(ij)

)2

= qi . (4.6)

With these notation we are now ready to define our optimal conductivity, denoted by
σopt. As the restriction of σopt to the disk B(ij) we set (σopt)|B(ij)(x) = σ(i)(x−x(ij)),
where

σ(i)(x) = σiIχ
B(0,r)

(x) + σ1RS(x)t

(
K 0
0 K−1

)
RS(x)χ

A(0,r,R)
(x) (4.7)

with r = r(ij), R = R(ij) and the field of rotations RS(x) is given by

RS(x) =
x2

| x |I +
x1

| x |J (4.8)

where J is the (counterclockwise) rotation by 90 degrees. Outside the disks we may
set, say, σopt = σ1I. Then clearly the support of phase i ≥ 2, i.e. {x : σopt(x) = σi},
is ∪∞

j=1B(x(ij), r(ij)) while the first phase is located, up to measure zero, in the union

of the annuli A(x(ij), r(ij), R(ij)).
Lastly we extend σopt periodically to R2. This concludes the first part.
We begin now the second part of the program. Our goal is to find a weak solution

of the PDE

div[σopt(x)(∇u0(x) + e1)] = 0 , u0 ∈ W 1,2
� (R2,R) . (4.9)
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Our strategy here is to construct in each disk B(ij) = B(x(ij), R(ij)) a function of the
form uij(x) = uij

0 (x) + x1 where uij
0 ∈ W 1,2

0 (B(ij);R) and then extend this function
to be x1 outside the union of the disks. Later we show the main point namely that
this “gluing” delivers a weak solution of the PDE (4.9).
Preliminary step: i-th solution in B(y, R). We assume without loss of generality
that y = 0 and that in this disk σopt(x) = σ(i)(x), |x| < R, as defined in (4.7). Then
we look for the weak solution with boundary data x1 in this specific disk. This
calculation can be found for instance in [29], Subsection 6.1. We review it for the
readers convenience. Suppose

u(i)(x) =

{
aix1, 0 ≤ |x| < r

(Ai|x|K−1 + Bi|x|−K−1)x1, r ≤ |x| < R.
(4.10)

Then u(i) is a solution to the equation div[σ(i)(x)∇u(i)(x)] = 0 if and only if

Ai = ai
σ1 + σi

2σ1

1

rK−1
, Bi = ai

σ1 − σi

2σ1

rK+1. (4.11)

Furthermore, if the numbers hi, i ≥ 2, are such that

1

hi + σ1

=
1 − qK

i

2σ1

+
qK
i

σ1 + σi

(4.12)

and we make the choices(
r

R

)2

= qi ; ai =
1

2σ1

[
(σ1 + hi)q

K−1
2

i + (σ1 − hi)q
−K+1

2
i

]
(4.13)

then we have three important identities. First, for any smooth function η defined
on B(0, R), we have

∫
B(0,R)

〈σ(i)(x)∇u(i)(x),∇η(x)〉dx = hi

∫
B(0,R)

ηx1(x)dx . (4.14)

Secondly, ∫
B(0,R)

〈σ(i)(x)∇u(i)(x),∇u(i)(x)〉dx = hi | B(0, R) | (4.15)

and thirdly,
AiR

K−1 + BiR
−K−1 = 1. (4.16)
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The last of the identities is obtained be a tedious but elementary calculation;
with (4.10), (4.15) it shows in particular that u(i) − x1 ∈ W 1,2

0 (B(0, R);R). For
the identities (4.14), (4.15), for small ε > 0 we can use integration by parts in
B(0, r − ε) and A(r + ε, R − ε) since there the function u(i) is smooth satisfying
div(σ(i)(x)∇u(i)(x)) = 0 in the classical sense. For |x| = r, by (4.11) the boundary
terms on the left hand side cancel as ε goes to zero while using Stokes theorem to
the remaining boundary terms proves (4.14), (4.15).

We lastly make the observation which is crucial for the construction to succeed.
Namely, with the choice of qi in (4.2), we have

hi = h0 for any 2 ≤ i ≤ N, (4.17)

where h0 is given by (4.1).
Definition of u in the generic disk B(ij) . In the disk B(x(ij), R(ij)), we define
u(ij)(x) = u(i)(x − x(ij)), with R = R(ij) in (4.10).
Definition of the solution in Q. We define u(x) as follows

u(x) =
N∑

i=2

∞∑
j=1

(
u(ij)(x)χB(ij)(x) + x1χQ\∪B(ij) (x)

)
. (4.18)

We want to show that u is a weak solution to (4.9).
By the above construction, u is continuous and belongs to W 1,2

� (Q;R2). It
remains to show that for any test function η ∈ C∞

� (Q;R) one has

∫
Q
〈σopt(x)∇u(x),∇η(x)〉dx = 0 . (4.19)

Let us use the notation σ(ij) for the restriction of σ to B(ij). Now, by construction

∫
Q
〈σopt(x)∇u(x),∇η(x)〉dx =

N∑
i=2

∞∑
j=1

∫
B(ij)

〈σ(ij)(x)∇u(ij(x),∇η(x)〉dx . (4.20)

Each integral in the above sum can be computed separately. By a linear change of
coordinates (4.14) and (4.17) yield

∫
Q
〈σopt(x)∇u(x),∇η(x)〉dx = h0

N∑
i=2

∞∑
j=1

∫
B(ij)

ηx1(x)dx = h0

∫
Q

ηx1(x)dx . (4.21)
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The latter integral is obviously zero since η is Q-periodic.
Finally, using (4.15), (4.17) we see that∫

Q
〈σopt(x)∇u(x),∇u(x)〉dx = h0 . (4.22)

Replacing x1 by x2 in the above calculation shows that σhom = h0I. This completes
the proof of Theorem 1.5. ✷.

5 Quasiconformal consequences

The motivation behind Theorem 1.6, our result on distortion of weighted area
under quasiconformal mappings, was to obtain new bounds for composite materials.
However, once the theorem has been established, it is interesting to see that it has
consequences also to quasiconformal mappings. We briefly describe here some of
them; for other developments that use the theorem see [4]. Our main goal is to
prove Theorem 1.7, the bound (5.6) and their optimality.

For the background, recall that Theorem 1.6 implies that |f(E)| ≤ |E|1/K if
f ∈ ΣK and f |E is conformal. In [3] this was a main step to proving the optimal
smoothness of K−quasiconformal and K−quasiregular mappings f , namely that

f ∈ W 1,p
loc ∀ p <

2K

K − 1
. (5.1)

Here, in general, the inclusion fails for the extremal exponent p = 2K/(K − 1).
However, we wish to show that in special cases one can do better: Our last goal is

Theorem 1.7, which proves that one has borderline integrability on any measurable
set E for which ∂f |E = 0.

We first need a technical decomposition lemma.

Lemma 5.1 Suppose f is K−quasiregular in R2. Then f admits the decomposition

f = h ◦ g, (5.2)

where g ∈ ΣK and h is K−quasiregular in R2 with

∂h|g(D) ≡ 0. (5.3)

In particular, h is complex-analytic in the open set g(D).
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Proof. Let µ = µf be the complex dilatation of f as in (2.4). Let then g be the
(unique) element in ΣK for which

∂g = χD µ ∂g; (5.4)

the existence of such a g follows from the measurable Riemann mapping theorem
[1], [16].

We can then easily calculate the complex dilatation of the quasiregular mapping
h ≡ f ◦ g−1, c.f. [16] p. 24. It follows that

µf◦g−1(gx) =
µf (x) − µg(x)

1 − µg(x)µf (x)

∂g(x)

∂g(x)
(5.5)

From this we see that µh ◦ g = µf (∂g/∂g)χR2\D; hence h satisfies the required
properties. ✷

Lemma 5.2 Let K > 1 and assume that f ∈ ΣK. Let E ⊂ D be a measurable set.
If ∂f(x) = 0 a.e. x ∈ E, then

∫
E

Jf (x)pdm(x) ≤ 1, p =
K

K − 1
. (5.6)

Moreover the bound is optimal.

Proof We choose a sequence of weights such that w0 = 1 and wn = J
1/K+...+1/Kn

f ,
n ≥ 1. By Theorem 1.6∫

E
wn(x)Jf (x)dm(x) ≤

(∫
E

wn(x)Kdm(x)
)1/K

=
(∫

E
wn−1(x)Jf (x)dm(x)

)1/K

(5.7)
for each n ≥ 1. Using this argument inductively we arrive at∫

E
Jf (x)1+1/K+...+1/Kn

dm =
∫

E
wn(x)Jf (x)dm ≤

(∫
E

Jf (x)dm
)1/Kn

≤ |E|1/Kn+1

.

(5.8)
Using Fatou’s lemma we can pass to the limit for n → ∞ in (5.8). This proves
(5.6). To prove the second part we need to give an examples of equality in (5.6).
This is easy. For instance, we can take E = B(0, R) with R < 1 and fR the
K−quasiconformal mapping defined in (2.29). ✷
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Proof of Theorem 1.7 Suppose that f : R2 	→ R2 is K-quasiregular and there is
a bounded measurable set E ⊂ R2 such that µf |E ≡ 0, or that ∂f |E ≡ 0. Our goal
is then to show that

∫
E |Df(x)|pdx < ∞ for the exponent p = 2K

K−1
.

With a linear change of variables we can first assume that E ⊂ {x : |x| ≤ 1/2}.
After this we will use the decomposition f = h ◦ g of the above Lemma 5.1. Since h
is complex analytic in a neighborhood of the set g(E), supg(E) |h′(x)| ≤ Ch < ∞ for
a constant Ch depending on the function h. Therefore we may assume that actually
f ∈ ΣK .

Finally, in this case it is enough to show (5.6), since |Df(x)|2 ≤ KJf (x) for a.e.
x. On use of Lemma (5.2) the proof is completed. ✷.

Theorem (1.7) is sharp. We prove this by giving the following modification of
the example proving optimality of (5.6).

Example 5.1 As in the proof of Theorem 1.5 cover the unit disk D by a countable
set of non-overlapping open disks Bj = B(xj, ρj), j ∈ N, such that

| D \ ∪∞
j=1 Bj |= 0 . (5.9)

For the set E choose E = ∪∞
j=1B(xj, ρjRj), where the Rj < 1 with Rj → 0 so that

∞∑
j=1

ρ2
j log

1

Rj

= ∞. (5.10)

Define then a K−quasiconformal mapping f : R2 	→ R2 by setting

f(x) = ρjfRj
((x − xj)/ρj) + xj, x ∈ Bj (5.11)

and by defining f(x) = x for x /∈ ∪∞
j=1Bj.

Clearly f |E is conformal. Moreover, for each ε > 0 and for each Bj,∫
B(xj ,ρjRj)

Jf (x)(1+ε)K/(K−1)dm = R−2ε
j ρ2

j . (5.12)

Summing up the integrals over the disks we see from (5.10), (5.12) that∫
E
|Df(x)|pdx = ∞ (5.13)
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for every p > 2K
K−1

.

The higher integrability (5.1) and Theorem 1.7 have their counterparts for the
integrability of |Df(x)|q where q < 0. However, as quasiregular mappings are of the
form f = h ◦ g where h is complex analytic and g quasiconformal, the zeroes of h
cause now extra singularities. Removing these we have

Corollary 5.1 Suppose f is K−quasiregular in a domain Ω ⊂ R2 and that
∂f |E ≡ 0. Then there is a discrete set A ⊂ Ω such that for any compact subset
L of Ω \ A ∫

E∩L
|Df(x)|−2/(K−1)dx < ∞. (5.14)

As in Example 5.1, one can construct a K−quasiconformal mapping such that∫
E∩L |Df(x)|−qdx = ∞ for each q > 2/(K − 1).

Proof of Corollary 5.1. If f = h ◦ g as above and A = g−1{x ∈ Ω : h′(x) = 0},
then outside the discrete set g(A), h′ is locally bounded away from ∞ and 0. Using
Theorem 1.7 for G ≡ g−1 yields∫

E∩L
J−1/(K−1)

g dx =
∫

E∩L
J

K
K−1

G (g)Jgdx =
∫

G(E∩L)
J

K
K−1

G dx < ∞. (5.15)

This proves the claim (5.14). ✷

Lastly, let us remark that one has similar consequences for the solutions of second
order equations in divergence form. More precisely, given a domain Ω, we consider
the class of symmetric matrices σ with measurable entries that satisfy

K−1|h|2 ≤ 〈σ(x)h, h〉 ≤ K|h|2, h ∈ R2. (5.16)

Let us call this class MK . Assume that u ∈ W 1,2(Ω) is a weak solution of
div[σ(x)∇u(x)] = 0. Consider the mapping f = (u, v), where ∇v(x) = Jσ(x)∇u(x),
then as pointed out in [18], f is K− quasiregular and hence the previous results
apply to the components u, v. In particular, it follows that in general u ∈ W 1,p

loc

∀p < 2K/(K − 1) but u �∈ W
1, 2K

K−1

loc . Therefore, in this class of spaces, this is the
best regularity one can obtain. In addition, thanks to the work of Alessandrini and
Alessandrini and Magnanini [2], one can control the ”singular set” A in terms of
knowledge of the boundary data [18].

However, quite unexpectedly, we obtain an improvement of the higher
integrability in the borderline case in the spirit of a partial regularity result.
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Corollary 5.2 Given K ≥ 1 and given σ ∈ MK, suppose u is a W 1,2-solution to

div[σ(x)∇u(x)] = 0 (5.17)

in a domain Ω ⊂ R2. Let E = {x ∈ Ω |σ(x) = I}. Then for any compact subset
L ⊂ Ω ∫

E∩L
|∇u(x)| 2K

K−1 dx < ∞. (5.18)

Similarly, there is a set A, discrete in Ω, such that for any compact L ⊂ Ω \ A∫
E∩L

|∇u(x)| −2
K−1 dx < ∞.

The proofs follow from Corollary 5.1 and Theorem 1.7, using the fact from [18] that
u = �f , where f is K−quasiregular. Indeed, by construction, on the set E the
mapping f satisfies the Cauchy-Riemann system.

It appears a curious fact that one has improved regularity on a special level
set of σ, on E = {x ∈ Ω : σ(x) = I}. We are unable to prove that a similar
consequence holds on any other level set, even on some other level set of the form
{x ∈ Ω : σ(x) = cI} where c �= 1. This remains an interesting open question.
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