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1 Introduction

Suppose that f is a continuous mapping from an open bounded subset 
 of

Rn , n � 2, into Rn . We consider the following (Lusin) condition N: if E � 
,

Ln(E) = 0, then Ln(f(E)) = 0. Physically, this condition requires that

there is no creation of matter under the deformation f of the n-dimensional

body 
: This is a natural requirement as the N-property with di�erentia-

bility a.e. is suÆcient for validity of various change-of-variable formulas,

including the area formula, and the condition N holds for a homeomorphism

f if and only if f maps measurable sets to measurable sets.

If f 2 W 1;1(
;Rn), we can ask which integrability conditions on the

derivative Df guarantee the condition N. According to a classical result by

Marcus and Mizel [11], f satis�es the condition N if jDf j 2 Lp(
) for some

p > n. If jDf j 2 Lp(
) with p � n, the condition N may fail; see e.g. [10]

or [15] for examples.

It is then interesting to ask for the size of the exceptional set, i.e. the

set outside of which the condition N holds. It is worth pointing out that

if f is any mapping in the Sobolev space W 1;1(
;Rn), then f satis�es the

condition N outside a set of measure zero (see e.g. [14] for references). Mal�y

and Martio proved in [10] (also see [8]), as a substantial improvement on

this fact, that if f 2 W 1;n(
;Rn), then the condition N holds for f outside

of a set that has Hausdor� dimension zero.

It seems that very little is known about the size of the exceptional set

below W 1;n. It would be natural to expect that the Hausdor� dimension

of the exceptional set decreases as the exponent p increases to n. In this

paper we will prove, however, that if f 2 W 1;1(
;Rn) so that (1.1) holds,

and thus in particular when jDf j 2 \p<nL
p(
), one cannot, in general, �nd

an exceptional set of Hausdor� dimension smaller than n.
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Theorem 1.1. Let s 2 (0;1). Then there exists a homeomorphism f :

Q0 ! Q0 from the unit cube Q0 = [0; 1]n onto itself such that the following

properties hold:

(a) f �xes the boundary @Q0.

(b) f 2W 1;1(Q0;R
n), f is di�erentiable almost everywhere, and

sup
0<��n�1

�

Z
Q0

jDf(x)jn�� dx <1: (1.1)

(c) The Jacobian determinant J(x; f) is strictly positive for almost every

x 2 Q0 and J(�; f) 2 L1(Q0).

(d) If E � Q0 with Hh(E) = 0, where h(t) = tn logs log(4 + 1=t), then

there exists a compact set F � Q0 n E such that Ln(f(F )) > 0.

If we put certain additional topological or analytical assumptions on f ,

then a lower degree of integrability of jDf j is needed for the condition N.

Reshetnyak proved in [16] that for a homeomorphism it suÆces to assume

that jDf j 2 Ln(
). There are several generalizations of this result: instead

of homeomorphicity it suÆces to assume that f is continuous and open [10],

or that J(x; f) > 0 almost everywhere [2] (see also [17] and [12]). For further

results of this type see the survey paper [9]. Recently Kauhanen, Koskela

and Mal�y [5] proved that, for a topologically sense-preserving (and thus in

particular for homeomorphical) mapping f , it suÆces to assume that

lim
�!0+

�

Z



jDf jn�� = 0: (1.2)

The construction of f of Theorem 1.1 is a re�nement of our construction in

[5], where a similar mapping was constructed to show that the condition N

may fail under condition (1.1). For the convenience of the reader we will

present a complete construction here. The basic idea of the construction

comes from Ponomarev [15]; also see [14]. Ponomarev gave an example of a

homeomorphism f with jDf j 2 \p<nL
p(
) such that f creates matter. He,

however, did not consider the size of the exceptional set and worked only on

the Lp-scale.

2 About the function spaces

In this section we brie
y review some function spaces that we dealt with

in the introduction; for a more detailed discussion see [4]. Let us de�ne

BLn)(
) as the collection of all measurable functions u with

jjujjn) = sup
0<��n�1

�
�

Z



jujn��
�1=(n��)

<1:
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Then BLn)(
) is a Banach space and

V Ln)(
) =
n
u 2 BLn)(
) : lim

�!0+
�

Z



jujn�� = 0
o

is a closed subspace. The following inclusions hold (see [3]):

Ln(
) ( Ln log�1 L(
) ( V Ln)(
) ( BLn)(
) (
\

�<�1

Ln log� L(
)

(
\
p<n

Lp(
);

where the space Ln log� L(
) consists of all measurable functions u withZ



jujn log�(e+ juj) <1:

One question that Theorem 1.1 and the other results mentioned in the in-

troduction leave unanswered is the size of the exceptional set for continuous

mappings f 2 W 1;1(
;Rn) with jDf j, for example, in Ln log�1 L(
) or

V Ln)(
).

3 Proof of Theorem 1.1

Let us begin with some notation. Besides the usual euclidean norm jxj =

(x21 + : : : + x2n)
1=2 we will use the cubic norm kxk = maxi jxij. Using the

cubic norm, the x0-centered closed cube with edge length 2r > 0 and sides

parallel to coordinate axes can be represented in the form

Q(x0; r) = fx 2 Rn : kx� x0k � rg:

We then call r the radius of Q. c(a; b; : : : ) denotes a positive constant

depending only on a; b; : : : which might di�er from occurrence to occurrence.

We write x � c(a; b; : : : )y if x � c(a; b; : : : )y and y � c(a; b; : : : )x.

We will be dealing with radial stretchings that map cubes Q(0; r) onto

cubes. The following lemma can be veri�ed by an elementary calculation.

Lemma 3.1. Let � : (0;1)! (0;1) be a strictly monotone, di�erentiable

function. Then for the mapping

f(x) =
x

kxk
�(kxk); x 6= 0

we have

jDf(x)j � c(n)max

�
�(kxk)

kxk
; j�0(kxk)j

�

and

J(x; f) � c(n)
�0(kxk)�(kxk)n�1

kxkn�1
:
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We will �rst give two Cantor set constructions inQ0. Our mapping f will

be de�ned as a limit of a sequence of piecewise continuously di�erentiable

homeomorphisms fk : Q0 ! Q0, where each fk maps the k:th step of the �rst

Cantor set construction onto the second one. Then f maps the �rst Cantor

set onto the second one. Choosing the Cantor sets so that the Hausdor� h

measure Hh of the �rst one is positive and �nite and so that the second one

has positive measure, we get the property (d).

Let V � Rn be the set of all vertices of the cube Q(0; 1). Then the

sets V k = V � � � � � V , k = 1; 2; : : : , will serve as the sets of indices for

our construction (with the exception of the subscript 0 used in Step 0). If

w 2 V k�1, we denote

V k[w] = fv 2 V k : vj = wj ; j = 1; : : : ; k � 1g:

Let z0 = (1
2
; : : : ; 1

2
), r0 =

1
2
and denote

 (k) =
1

2

logs=n 2

logs=n(k + 2)
:

For v 2 V 1 = V let zv = z0+
1
4
v, Pv = Q(zv;

1
4
) and Qv = Q(zv;  (1)2

�1). If

k = 2; 3; 4; : : : and Qw = Q(zw; rk�1), w 2 V k�1, is a cube from the previous

step of construction, then Qw is divided into 2n subcubes Pv, v 2 V k[w],

with centers zv and radius rk�1=2 and inside them we pick concentric cubes

Qv, v 2 V
k[w], with radius

rk =  (k)2�k:

Note that rk < rk�1=2 for all k. Thus, denoting v = (v1; : : : ; vk), we have

zv = zw + 1
2
rk�1vk = z0 +

1
2

kX
j=1

rj�1vj ;

Pv = Q(zv ; rk�1=2); Qv = Q(zv; rk):

See Figure 1. The number of cubes in the family fQv : v 2 V kg; k =

1; 2; 3; : : : , is #V k = 2nk. The Hausdor� h measure of the resulting Cantor

set

C =

1\
k=1

[
v2V k

Qv

is positive and �nite basically since for large k we haveX
v2V k

h(diamQv) � c(n; s)2nkrnk log
s log(1=rk)

� c(n; s) (k)n logs
�
log 2k + log (k)�1

�
� c(n; s) log�s k logs k � c(n; s):

(3.1)

In lack of a convenient reference we give a short proof for this fact.
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Lemma 3.2. 0 < Hh(C) <1.

Proof. We mimic the proof in [13, Section 4.10]. The estimate Hh(C) <1

directly follows from (3.1). Let us justify Hh(C) > 0.

Let fUjg be an open covering of C. It suÆces to show that

X
j

h(diamUj) � c(n; s): (3.2)

Since C is compact, we can assume that fUjg is �nite. For each j choose

xj 2 Uj \C (the intersection can be assumed to be non-empty) and denote

Bj = B(xj;diamUj). Then there is k0 such that for all k � k0 every cube

Qv, v 2 V
k, is contained in some Bj, and because h(2t) � 2nh(t) for t � 0,

we have that X
j

h(diamUj) � 2�n
X
j

h(diamBj):

Therefore it suÆces to prove (3.2) for the family fBjg in the place of fUjg.

We claim that for any open ball B with center in C and any �xed `,

X
v2V k; Qv�B

h(diamQv) � c(n; s)h(diamB): (3.3)

This gives (3.2), since for k � k0, by (3.1),

X
j

h(diamBj) � c(n; s)
X
j

X
v2V k; Qv�Bj

h(diamQv)

� c(n; s)
X
v2V k

h(diamQv)

� c(n; s):

To prove (3.3), suppose that Qv � B for some v 2 V `, and let m be the

smallest integer for which Qw � B for some w 2 V m. Then m � `. Denote

W = fw 2 V m : Qw \B 6= ;g:

By concidering the geometry of the construction of C, it is evident that

#W � c = c(n; s). Thus

h(diamB) �
1

c

X
w2W

h(diamQw)

� c(n; s)
X
w2W

X
v2V `; Qv�Qw

h(diamQv)

� c(n; s)
X

v2V `; Qv�B

h(diamQv);

where the second step can be proven similarly as (3.1).
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The second Cantor set construction is similar to the �rst one except that

at this time we denote the centers by z0v and the cubes by P 0v , Q
0
v, v 2 V k,

with

z0v = z0w + 1
2
r0k�1vk = z0 +

1
2

kX
j=1

r0j�1vj ;

P 0v = Q(z0v ; r
0

k�1=2); Q0v = Q(z0v; r
0

k):

We set r00 = 1=2 and

r0k = '(k)2�k

for k = 1; 2; 3; : : : , where

'(k) =
1

4

�
1 +

log log 4

log log(k + 4)

�
:

Note that r0
k
< r0

k�1=2 for each k. We have

Ln
� 1\
k=1

[
v2V k

Qv

�
= lim

k!1

Ln
� [
v2V k

Qv

�
= lim

k!1

2nk(2r0k)
n = 2�n > 0:

k = 1 k = 2

Figure 1: Cubes Qv, v 2 V
k.

We are now ready to de�ne the mappings fk. De�ne f0 = id. We will

give a mapping f1 that stretches each cube Qv, v 2 V 1, homogeneously

so that f1(Qv) equals Q
0
v. On the annulus Pv n Qv, f1 is de�ned to be an

appropriate radial map with respect to zv and z0v in the image in order to

make f1 a homeomorphism. The general step is the following: If k > 1, fk
is de�ned as fk�1 outside the union of all cubes Qw, w 2 V k�1. Further, fk
remains equal to fk�1 at the centers of cubes Qv, v 2 V

k. Then fk stretches

each cube Qv, v 2 V k, homogeneously so that f(Qv) equals Q
0
v. On the

annulus Pv nQv, f is de�ned to be an appropriate radial map with respect

to zv in preimage and z0v in image to make fk a homeomorphism (see Figure

2). Notice that the Jacobian determinant J(x; fk) will be strictly positive

almost everywhere in Q0.
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fk

Figure 2: The mapping fk acting on Pv, v 2 V
k.

To be precise, let f0 = idjQ0 and for k = 1; 2; 3; : : : de�ne

fk(x) =

8>>>>>><
>>>>>>:

fk�1(x) if x 62
S
v2V k Pv;

fk�1(zv) + ak(x� zv) + bk
x� zv

kx� zvk

if x 2 Pv nQv; v 2 V k;

fk�1(zv) + ck(x� zv) if x 2 Qv; v 2 V k:

where ak, bk and ck are chosen so that fk maps each Qv onto Q
0
v, is contin-

uous and �xes the boundary @Q0:

akrk + bk = r0
k

akrk�1=2 + bk = r0k�1=2

ckrk = r0k

(3.4)

Clearly the limit f = limk!1 fk is di�erentiable almost everywhere, its

Jacobian determinant is strictly positive almost everywhere, and f is abso-

lutely continuous on almost all lines parallel to coordinate axes. Continuity

of f follows from the uniform convergence of the sequence (fk): for any

x 2 Q0 and l � j � 1 we have

jfl(x)� fj(x)j � c(n)r0j ! 0

as j !1.

It is easily seen that f is a one-to-one mapping of Q0 onto Q0. Since f

is continuous and Q0 is compact, it follows that f is a homeomorphism.

To �nish the proof of the properties (b) and (c), we next estimate jDf(x)j

and J(x; f) at x in the interior of the annulus PvnQv, v 2 V
k, k = 1; 2; 3; : : : .

Denote r = kx� zvk � c(n; s)rk. In the annulus

f(x) = fk�1(zv) +
�
akkx� zvk+ bk

� x� zv

kx� zvk

whence denoting �(r) = akr+ bk we have by Lemma 3.1 (it is easy to check

that bk > 0 for large k)

jDf(x)j � c(n; s)
�
ak + bk=rk

�
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and

J(x; f) � c(n; s)ak(ak + bk=rk)
n�1:

From the equations (3.4) it follows that

ak =
r0
k�1=2� r0

k

rk�1=2� rk
=
'(k � 1)� '(k)

 (k � 1)�  (k)
� c(n; s)

'0(k)

 0(k)
� c(n; s)

logs=n k

log2 log k

and

ak + bk=rk = r0k=rk =
'(k)

 (k)
� c(n)

1

 (k)
� c(n; s) logs=n k:

Therefore

jDf(x)j � c(n; s) logs=n k

and

J(x; f) � c(n; s)
logs k

log2 log k
:

The measure of
S
v2V k(Pv nQv) is

2nk
�
rnk�1 � (2rk)

n
�
� c(n)

�
 (k � 1)n �  (k)n

�

� c(n; s)

�
1

logs(k � 1)
�

1

logs k

�

� �c(n; s)
d

dk

�
1

logs k

�

� c(n; s)
1

k log1+s k

and so for 0 < � � n� 1

�

Z
Q0

jDf(x)jn�� dx � c(n; s)�

1X
k=2

1

k log1+s k
log(s=n)(n��) k

= c(n; s)�

1X
k=2

1

k log1+(s=n)� k

� c(n; s)�

Z
1

2

dt

t log1+(s=n)� t

� c(n; s):

(3.5)

This proves (1.1), and it follows that f 2W 1;1(Q0;R
n). Similarly we prove

the property (c):

Z
Q0

J(x; f) dx � c(n; s)�

1X
k=4

1

k log1+s k

logs k

log2 log k

� c(n; s)

Z
1

4

dt

t log t log2 log t
<1:

(3.6)
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Let us now prove the property (d). Since Hh is Borel regular, we �nd a

Borel set E0 � E \ C such that Hh(E0) = 0. Now C n E0 is a Borel set,

whence there is a compact set F � C n E0 such that Hh(F ) > 0. Denote

W k = fv 2 V k : Qv \ F 6= ;g:

Then there exists a constant c > 0 such that

#W k

#V k
� c (3.7)

for all k, since otherwice we would have, similarly as in (3.1),

X
v2W

k

h(diamQv) � c(n; s)#W k 2nk = c(n; s)
#W k

#V k
! 0

as k ! 1 for k in some subsequence (k) � N, whence we would have

Hh(F ) = 0, a contradiction. Since F is compact, we have that

F =

1\
k=1

[
v2W k

Qv;

whence (3.7) yields

Ln(f(F )) = Ln
�
f

� 1\
k=1

[
v2W k

Qv

��
= Ln

� 1\
k=1

f

� [
v2W k

Qv

��

= lim
k!1

Ln
� [
v2W k

Q0v

�
� c(n) lim

k!1

#W k('(k)2�k)n

� c(n) lim
k!1

#W k 2�nk = c(n) lim
k!1

#W k

#V k
� c(n)c > 0:
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