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1 Introduction

Throughout this paper we assume that {2 is a bounded open set in R"™ and
that f:Q) — R™, n > 2, is an orientation-preserving mapping, that is, the Jacobian
J = J(z, f) = det Df is nonnegative for almost every x € ). We warn the reader
that the word “orientation-preserving” is partially misleading here in the sense that

there exist a continuous, orientation-preserving mapping f with

sup G/Q|Df|"_6dx < 00 (1)

0<e<n—1

that has a strictly negative topological degree. On the other hand, under assump-
tions very close to (1), e.g. (2) below, an orientation preserving mapping has a
non-negative degree. For these results see [11].

S. Miiller proved in [16] that if |[Df| € L™(Q2), then J € Llog L(K) for any
compact K C 2. The result of T. Iwaniec and C. Sbordone [9] on the integrability
of the Jacobian is in a sense a dual to S. Miiller’s result: if |[Df| € L"(log L)~'(Q),
then J € L .(Q). As a matter of fact J € Lloglog L(K) for any compact K C ,
[15]. It was also shown in [9] that a Sobolev mapping f has an integrable Jacobian
if |Df| belongs to the grand Lebesgue space GL"(f2), that is, if (1) holds. The
phenomenon of the improved integrability of the Jacobian was then investigated by
several researchers; see [5] and the references therein.

Recently, L. Greco [4] proved a conjecture in [5] by relaxing the known sufficient

conditions for the integrability of the Jacobian. He proved, among the other things,
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that for an orientation-preserving mapping f on Q, if |[Df| € L®(Q), then J €
L‘I/

10c(€2), whenever the Orlicz function ® satisfies the following two assumptions:

d [ ®(t
(1) E(%)ZO,forsomeO<(5<1andallt>t0>0;

- N o(t
(ii) <1>(N)=/1 tn&f dt — oo, as N — co.

and the Orlicz function ¥ is defined as
tl/n )

n—|—1 dS

U(t) = d(t™) +nt/

and that this result is optimal. We note here that W(¢) > t, that is, the integrability
for the Jacobian is above the L!-degree. We also remark that the grand Lebesgue
space GL™(Q) is not contained in any allowable Orlicz space L®(Q) and that L*(9),
for ®(t) = t"(log(e+t)) ™", is essentially the largest Orlicz space contained in GL™(Q),
see [8].

Our first result in this note extends and unifies the sufficient conditions for the

integrability of the Jacobian of an orientation-preserving mapping.

Theorem 1.1 Suppose that ® satisfies the assumptions (i) and (ii). Let f € WHH(Q, R™)
be an orientation-preserving mapping and |Df| € GL* (), that is,
1

lim sup — / &(|Df|)dz < oo.
WS BN Juonew TP

Then J(.’L' f) S L]OC(Q)

In Section 2 below we show that GL® () coincides with GL™(Q2) when ®(t) = t",
and thus Theorem 1.1 can be considered as an analog of the result of Iwaniec and
Sbordone mentioned above. Some further properties of the spaces GL®(Q) are also
given in Section 2. To see that Theorem 1.1 does not follow from Greco’s result,
simply consider the cavitating map fo(z) = H I that collapses the unit ball to the
sphere. Clearly |Df,| ¢ L®(Q2) for any allowable @, but, on the other hand, we show
below by a simple computation that |D fo| € GL®(Q) for each allowable ®.

Before commenting on the sharpness of Theorem 1.1, let us continue with the
problem of the relation between the point-wise Jacobian J and the distributional
determinant DetD f introduced by J. M. Ball [2]. We write det Df = DetDf if the

point-wise Jacobian coincides with the distributional Jacobian, that is, if,

/fl 2, (B, far- -, [ /gzﬁ J(z, f)dx



for each test function ¢ € C§°(€2). According to the results of [9], det Df = DetD f
holds when f is orientation-preserving if |Df| € L"(log L)~*(£2). This requirement

was then relaxed in [3] to the assumption that

lim e/Q IDf(2)["dz =0 2)

e—0+

and in [4] to |Df| € L*(Q), where ® satisfies the assumptions (i) and (ii). These
two conditions are incomparable. Our second result extends and unifies these con-

clusions.

Theorem 1.2 Suppose that ® satisfies the assumptions (i) and (ii). Let f € WH1(Q, R")

be an orientation-preserving mapping such that |Df| € VL®(Q), that is,
1
lim —/ &(|Df|) dz = 0.
N=oo ®(N) J{|DfI<N}
Then det D f = DetDf.

We show in Section 2 that the condition |Df| € VL®(Q) is equivalent to (2)
when ®(t) = ¢".

As a corollary to Theorem 1.1 and Theorem 1.2 we obtain the following result
that is also contained in the work [4] of Greco.

Corollary 1.3 Let ® satisfy assumptions (i) and (ii). Let f € WH(Q, R™) be an
orientation-preserving mapping such that |Df| € L*(Q)). Then J(z, f) € LL.(Q)
and det Df = DetD f.

Let us discuss the sharpness in Theorem 1.1 and in Theorem 1.2. First of all, the
desired results hold in L™ and fail in L? for all p < n. Thus the assumption (i) that

(29 >0

is, in practice, harmless. We will prove below that we can let 6 = 0 when n > 2.

Let us then consider (ii). Given an increasing function ® with

> ®(1)
/1 pres) dt < o0,

under mild additional conditions on ® we construct in Section 4 (Example 1) a

mapping
T

p(ll]])’
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where

¥(t) = o)
when t — 0 so that |[Df| € L®(B") and J(z, f) is not locally integrable. This shows
that (ii) is crucial, as expected in [5]. Secondly, Example 2 in Section 4 shows that
the L'-integrability of the Jacobian as stated in Theorem 1.1 cannot be improved:
Suppose we are given an Orlicz function ® which satisfies the assumptions (i) and
(ii). Then for each function © such that

lim —G(t) =00

t—oo ’

there exists an orientation-preserving mapping f with |Df| € GL*®(Q), whose Jaco-

[S]
loc

bian fails to belong to L.(£2). Finally, regarding sharpness in Theorem 1.2, consider
the cavitating map fo(x) = a7 that collapses the unit ball to the sphere. Computing

in spherical coordinates, we see that
1
/ o(|Dfo|) dz = wn_l/ LD (1/t) dt =
{IDfol<N} 1/N

N ~
= Wn_y /1 B()t "t = wal B (N).

Thus the limit in Theorem 1.2 exists (and equals w,_1) for each allowable &, but,
nevertheless, the distributional Jacobian is the delta-function and the point-wise
Jacobian the zero-function. Theorem 1.2 then states that detDf = DetD f as soon
as

/{IDfISN} *(IDF]) dz = 0(/ ®(|D fo|) dz)

{IDfo/<N}
for an allowable ®.

The above cavitating map f; also shows that the grand Orlicz space GL®(2)
is pretty large: fo is in GL®(Q) for all ® satisfying the assumptions (ii), but an
elementary computation reveals that it fails to belong to any L®(Q).

The proofs of the results in [9] and [3] and are based on new estimates in the
Hodge Decomposition, see also [7] and [10] for this nice method. Greco uses in [4]
ideas from a [1] paper by Acerbi and Fusco which do not as such seem to powerful
enough for our setting. Instead of this we use a method of J. L. Lewis [13]; in fact
while we began this work we were unaware of Greco’s paper [4] and found out of
his work only after we had proved Theorem 1.1 and Theorem 1.2. In both methods
one constructs a Lipschitz continuous function by using a point-wise inequality for
Sobolev functions in terms of the maximal function of the gradient, see also [14],
[18] and [12].



2 Orlicz Spaces

In this section we give the definitions of the Orlicz space L*(Q2) and the grand
Orlicz spaces GL®(2) and VL®(Q).

A continuous and strictly increasing function ®: [0, co] — [0, oco] with ®(0) = 0
and ®(oc0) = oo is called an Orlicz function. The Orlicz space L®(Q) is made up of

all measurable functions v on 2 such that
/ Bk u(z))) dz < oo
Q

for some k = k(u) > 0. The space L®() is a complete linear metric space [17]. In

general the Luxemburg functional
llu|o = inf{k > 0:/ Ok ul) < @(1)}
Q

need not be a norm, but it is if ® is convex. In this case L®(2) is a Banach space.
We are interested in the Orlicz functions ®(¢) which grow at oo a little bit slower
than t". More precisely, ® satisfies for some t; > 0 and 0 < § < 1,

(i) d<q’(t)>zo,fom>t0>o

% tn—l—l—&

N N @
() B =/1 tn(ff dt — oo, as N — oo.

A prime example of such Orlicz functions is ®(¢) = t"(log™ t... log"" ¢)~1.
The grand Orlicz space GL®(£2) consists of all measurable functions u on 2 such

that

1
lim sup = / O (|ul) dz < oo,
Nooo D(N) J{u<N}

and V L®(Q) consists of all functions u such that
1
lim —/ U(|u|) dz = 0.
N=oo §(N) J{ju <Ny

The reason for calling them grand Orlicz spaces is that when ®(t) = t*, GL®(Q2) and
V L®() coincide with the grand Lebesgue spaces GL" () and V L™((2), respectively.
These are defined as in [9] by

GL"(Q) = {u € Noce<n—1L"¢(): sup0<€gn,le/Q lu|" “dr < oo} ;

VINQ) = {u € ﬂ0<€§n_1L"_f(Q):lime/Q | dz = o} .

e—0



Proposition 2.1 Let ®(t) = t". Then GL®(Q) = GL™(Q) and VL*(Q) = VL"(Q).

Proof. We only prove that VL®(Q2) = VL"(Q). The other equality can be proven

in the same way. If u € V.L™(Q2), we observe from the trivial inequality

1 ‘ |n < e
X
log N

n—l/logNd
log N Jju<n /Q|u| v

that v € VL®*(Q). Thus, VL"(Q) C VL®(Q). For the other direction, let u €
VL®(2). Then for § > 0, there exists N = N(§) > 0 such that for all ¢ > N we have

/ lu|" dz < §logt.
Ju|<t
It follows from

e/ lu|""“dx = e/ |u\"_6dx+6/ |u|" ¢ dx
Q u|<N Ju|>N

eN"<|Q)] + ¢ / 1 / lu|" dadt
N

lu| <t

IN

IN

eN™"¢|Q + € / t~"¢logtdt
N

log N 1
eN"€|Q|+5<€0g + )

IN

Ne Ne
< eN™ Q|+ 26

that v € GL"(2), and the proposition follows.
The following proposition shows that the grand Orlicz spaces GL®(Q) and VL®(Q)
are ordered.

Proposition 2.2 Let ®; and @5 be two Orlicz functions satisfying the assumption
(ii). Suppose that ®o(t) = ¢(t)D1(t) and that ¢(t) decreases to 0 as t increases to
oo. Then GL*'(Q) C GL*2(Q) and VL*'(Q) C VL*2(Q)

Proof. We only prove that GL®* () € GL*2(Q). Let u € GL* (). Then for
N >1,

Nd
/|u§N(I)2(u)dm < /0 %(_¢(t))/|ugtq)1(u)dmdt
= M/O %(—qﬁ(t))@l(t)dt

N
< QM/ (1) dt,
0

tn-|—1
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where we used the trivial inequality

/ON (1) > ¢(N) /ON 01(t) 4y

tn+1 tn—|—1

This shows the proposition.

The inclusions of Proposition 2.2 are strict (cf. the proof of Proposition 2.1 in

8])-

In the following, we will assume that

o(to)
a(t) = 20
0

for all t < t5. We may do this because the spaces GL?(2) and V L%®(f2) remain

unchanged. We define
s [N 20
() :/0 pr dt.

3 Proofs of Theorem 1.1 and Theorem 1.2

The inequalities of the following lemma are well-known; the proof relies on an
argument due to L. I. Hedberg [6].

Lemma 3.1 Let v € WH(R"™), 1 < q < oo, and let x and y be Lebesgue points of
v such that x € By = B(xq,r). Then

v(z) —vg,| < erM(|Dvlxan,)(2); (3)
o(z) —v@)| < clz—yl(M(|Dv])(x) + M([Dv[)(y)), (4)

where ¢ = ¢(n) > 0, xr is the characteristic function of set E, vg, is the average
integral of v over By, and

Mh(x) = su

_ h|d
U Bl )] Joen Y

1s the Hardy-Littlewood maximal function of h.

We are now ready to prove Theorem 1.1 and Theorem 1.2.

Proof of Theorem 1.1. Let B C () be a ball such that 4B C €, and let ¢ €
C§°(2B) be nonnegative. Define a function u on R" by setting u = (f1 — (f1)25)¢
in 2B and 0 outside 2B. Denote for A > 0,

F\={z €2B: M(|Du|)(z) < A} N{z € 2B: x is Lebesgue point of u}.

7



We claim that
. u(z) on F)
Uy =
0 on R"\2B

is Lipschitz continuous with constant ¢\ for some ¢ = ¢(n) > 1. Indeed, suppose
that z,y € F). Then it follows from (2) in Lemma 3.1 that

u(z) —uy)l < clz —yl[(M(|Dul)(x) + M(|Dul)(y))
< ez —yl.

If z € F\,y € R"\2B, then let r = 2dist(z, R"\2B). Since u = 0 outside 2B, we
have by the Sobolev inequality that

1
|(U)B(w,r) S CTW /B(;g " |D’LL| dx S C)\T‘,

and by inequality (1) in Lemma 3.1 that
[u(z) — (u) B | < cAr.

Thus,
lu(z)| < eXdist(z, R"\2B),

which shows the claim. By the classical McShane extension theorem, we extend
to a Lipschitz continuous function u, in R™ with the same Lipschitz constant such
that uy(z) = Gx(z) = u(z) for x € Fy, uy(z) =0 for x € R™\2B and |Du,(z)| < cA
for a.e. x € R™. We deduce from

/ I(z, (ux, foy- -, ) da = 0
2B

that
/ T(z, (u, for -, f)) dz| < c)\/ IDf|"" da. (5)
Fy QB\FA
We estimate the right hand side of (5)):
M pfrtae <0 Df" dx 6
QB\F,\| d N CM(M(|Df|X4B))>)“ d ©)

< M(M(|Df|xa5))" ™+ da
eM(M(|Dflxan))>>

< oAl / M(IDf|xap)""* dz (7)
2¢M(|DfxaB)>X

< oAl / IDF|™ 14 da. 8)
{zx€4B:4c|D f|>A}

8



Here (6) follows from the estimate

\Du| < [Dfil¢ + | f1 — (f1)28l|D¢| < cM(|Df[xa8),

obtained from Lemma 3.1, and (7) and (8) follow from the inequality
/ M(g)dx < c/ lg|?dzx, for all g € LY(R"),q > 1.
M(g)>A 29>\
This inequality is verified as follows:
[ Mgyde = g e7H{M(g) > thdt+ MI{M(g) > A}
M(g)>A A

o0
< c/ tq72/ |g|da:dt+c)\q*1/ lg| dx
A 2|g|>t 2/g|>A

< c/ lg|? dx.
2|g|>A

We note here that we may assume 6 = 0, if n > 2. Combining (3) and (6), we obtain
that

[ oT@Dde + [ (f = (R)2) (@ (6 fo o )

Fy

< )\17(5/ D n71+(5d ] 9
= ¢ {$€4B:C|Df\>/\}‘ f| v ()

This inequality holds for all A > 0, and by multiplying it by

1 d [ ()
)\lfda tnfl—l—é ’

and integrating over (0, N), we obtain by changing the order of integration that

ooy o 870 W) = $QI(DF) da
/M(Dfnszv(f1 — (f1)28)J (2, (0, fo, - - -, fu)) (U(N) — W (M(|Df])) dz|

< CAB IDf|""1+°0 (min(c| D f|, N)) dz,

where
U(t) = % (1- (5)<i>(t), and O(t) = tf—%'

Divide both sides by ¥(N) and let N — oo. Taking into account the fact that

J(z, f) > 0, we have by the monotone convergence theorem and the dominated



convergence theorem that

|/23¢J(x,f)dx + /QB(fl—(fl)zB)J(l"a(¢af2,---,fn))d$|

< limsup g | D" 6 (min(c D], N)) da

) c
< limsup ——

>~ N—o0 (P(N) /{we4B:c|Df<N} (I)(C|Df|) dx (10)

where in the last step we used the inequality

N
lim sup o) /C|Df>N |Df|" 1 dx < limsup _c ®(c|Df]) dx.

N—oo \I](N) N—oo (N) /{C|Df|<N}

This follows from the estimate

o d [ -1
n—1+4 < — [ — () dzdt
[ e < [T () [ atabas

< (M+0(1))/N°°% (%) B(t) dt

M +0(1) ¥(N)
=5 ON) (11)

that holds for all g € GL®(4B), where O(1) — 0 as N — oo, and

1
M = limsup - / (|g]) d.
mSup S Jyen (lgl) dz

Now the theorem follows from (8) by replacing cf by f.
Proof of Theorem 1.2. We infer from the proof of inequality (9) that

. O(N) 4
] —/ =148 g0 — ()

for g € VL®(Q). Then it follows from (8) that

eI fdo+ [ (fi= (R (@, (6, oo Jo) do = 0,

which concludes the proof of the theorem.

4 Examples

Example 1. The necessity of (ii). Let ® be a strictly increasing, differentiable

= B(t)
/1 o dt < oo, (12)

function satisfying

10



o(t) d ()
017 < &‘I’(t) < 027 (13)

for all t > 0. We note here that assumption (i) is equivalent to the first inequality of
(13) with Cy = n—1+4, which also implies the Ay-regularity of the inverse function
®~1 of @ [5], that is,

O1(291t) < 2071(1). (14)
Set

o0

(1) = 12" (@(1/75)/( /

It then follows from (12) and (14) that

d(s)s™ " ds)lﬂ) .
/t

lim p(t) = oo

and from (12) and (13) that
p'(t) < Csp(t)/t.
Set

It follows that |Df(z)| < Cyp(t)/t and we conclude using (12) that |[Df| € L®(B").
On the other hand, f maps homeomorphically B™ \ {0} onto a domain of infinite
volume, and thus J; ¢ L'(B").
Example 2. Sharpness of Theorem 1.1. Suppose we are given an Orlicz function
® which satisfies the assumptions (i) and (ii). Let © be such that

lim o) = 00. (15)

t—oo

We construct an orientation-preserving mapping F with |DF| € GL®(Q), whose

[S]
loc

Jacobian fails to belong to L;2.(€2). We only give the example for the case n = 2;
the general case can be handled in much the same way. Let B ={z € Q: |[z—a| < 1}

and 1/2 < o < 1. Consider the orientation preserving mapping

_ r*(z — a)
f(x)=a+ T—ap
It follows easily that
TOL
D =
IDf@)| = A

11



where 3 = (2 — 2a + a?)'/2 and that

T2a

detDf = (1 — «)

|z — al?e’

Then for N > 0,

nB¥er? N ®(t)dt .
C(|Df]) dz = / < 81r2®(N),
/{xeB:|Df§N} (IDfl) dz a g (2atl = T ®(N)

and, for every k£ > 1, we have

/ o (deth) dr — mr? e O(13%) 5> 72 (1 — ) /oo O(t) dt
B 1

T a N ti+1/a = kl/ae ti+1/a

Set  O(t) dt
P(a) = (1 - 04)/1 irja

We have

lim ¢(e) = oo. (16)
Indeed, it follows from (15) that for each M > 0 there exists tg = to(M) > 1 such
that ©(t) > Mt for ¢ > to. Splitting the defining integral for ¢ as [° = [{° + [°,

we have
lim ¢(a) > M,

and hence (16) follows. Now we construct an orientation preserving mapping F :
0 — R"™ using f. First, we choose mutually disjoint disks B; = {z € Q: |z — a;| <
r;i} C Q,j =1,2,..., and numbers 0 < c;; < 1 converging to 1, such that

o [ee]

Zr? = oo, but gb(aj)r?- = oo.

j=1 j=1
This is possible because of (16). We can certainly assume that U2, B; is compactly
contained in Q2. Put o )

i’ (r—a;

for x € Bj,j =1,2,.... Then define

Flz) = fi(z) ifz e B;
AR if z € Q\ U B;.

12



We then find that F' € GL®(Q2). On the other hand, for each k > 1 we have

2

detDF
@ ( € ) I/:—l:aj d)(a])

DF DF
(det dr > Z/ (det > dr = 0o
B;

This shows that det DF ¢ LP (Q), as desired.

Hence
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