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ABsTRACT. We show that sets of n — p + a(p — 1) Hausdorfl measure zero are re-
movable for a-Holder continuous solutions to quasilinear elliptic equations similar to
the p-Laplacian. The result is optimal. We also treat larger sets in terms of a growth
condition. In particular, our results apply to quasiregular mappings.

1. Introduction

Throughout this paper we let {2 be an open set in R™ and 1 < p < oo a fixed
number. Continuous solutions u € Wltcp(Q) of the equation
(1.1) —div A(z,Vu) =0
are called A-harmonic in €; here A: R™ x R™ — R" is assumed to verify for some
constants 0 < XA < A < oc:
the function z — A(z, &) is measurable for all £ € R™, and

1.2
(1.2) the function & — A(z, £) is continuous for a.e. z € R";

for all £ € R™ and a.e. z € R™

(1.3) A, €)-€ = NelP |
(1.4) Aw,€)] < Al
(1.5) (A(z,6) — A(2,0))- (=€) > 0

whenever £ # (. A prime example of the operators is the p-Laplacian
—Apu = —div(|Vu[P72Vu),

in this case, the continuous solutions of (1.1) are called p-harmonic functions. The
main result in this paper is the following theorem.
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1.6. Theorem. Let E C Q be closed and s > 0. Suppose that u is a continuous
function in Q, A-harmonic in Q\ E such that

(1.7) lu(zo) — u(y)| < Clzg — y|CGtr—)/(=1)

forally € Q andxg € E. If E is of s-Hausdorff measure zero, then u is A-harmonic
mn Q.

Since sets of p-capacity zero are removable for bounded A-harmonic functions,
Theorem 1.6 is interesting for s > n — p only. Kilpeldinen, Koskela, and Martio
[KKM] had a special version of Theorem 1.6, where u was assumed to be flat on E
and Hausdorff measure was replaced by a Minkowski content type condition.

1.8. Corollary. Suppose that u € C%%*(Q), 0 < a < 1, is A-harmonic in Q\ E.
IfE is a closed set of n—p+a(p—1) Hausdorff measure' zero , then u is A-harmonic
in €.

The following theorem shows that Corollary 1.8 is optimal. Before stating the

theorem, we recall that there is a constant s, 0 < kK = k(n,p, A, A) < 1, such that
every A-harmonic function h in Q verifies the local Holder continuity estimate

(1.9) osc(h, B(z,r)) < c(%)”osc(h,B(a:,R))

for each 0 < r < R and B(z, R) C ©Q [HKM, 6.6]. For smooth 4, in particular for
the p-Laplacian, we may choose k =1 (see e.g. [K, 2.3]).

1.10. Theorem. Let k be as above and 0 < o < k. Suppose that E C )
is a closed set with positive n — p + a(p — 1) Hausdorff measure'. Then there is
u € C%*(Q) which is A-harmonic in Q \ E, but does not have an A-harmonic
extension to Q.

For the p-Laplacian we have the following sharp result.

1.11. Corollary. Let 0 < a < 1. A closed set E is removable for a-Holder
continuous p-harmonic functions if and only if E is of n — p+ a(p — 1) Hausdorff

measurel ZET0.

Carleson [C] proved Corollary 1.11 for the Laplacian (p = 2). As to the quasi-
linear case, Heinonen and Kilpeldinen [HK, 4.5] proved Corollary 1.8 with a = 1,
and Trudinger and Wang [TW] proved it under the assumption that u has an A-
superharmonic extension to {2, which assumption can be dispensed with for small
a. However, in the general situation the growth condition of Theorem 1.6 yields
a more useful result, since A-harmonic functions are not in general in C%® for «
close to 1. Koskela and Martio [KM2]| proved a weaker version of Corollary 1.13
and 1.8, where Minkowski content is used in place of Hausdorff measure. Buckley
and Koskela [BK] also established very special cases of Corollary 1.8. In [K] there
is a weaker version of Theorem 1.10.

A mapping f: 2 — R" is called quasireqular if f € VVI})C"(Q) and there is a
constant K such that

F@)|" < KJp(a)

for a.e. x € Q; here J¢(z) is the Jacobian determinant of f at z. The coordinate

functions of a quasiregular map f satisfy an equation of type (1.1) with p = n (cf.
[HKM, Ch. 14], whence we have:

1 Assume, of course that a > (p —n)/(p — 1).
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1.12. Corollary. Let E C €2 be a closed set of s-Hausdorff measure zero, 0 <
s < n. Suppose that f: Q@ — R™ is a continuous mapping quasiregular in Q\ E. If

|f(wo) = f(y)] < Clwg —y|*/ =D

for all y € Q2 and xy € E, then f is quasiregular in .

1.13. Corollary. Suppose that f € C%*(Q) is quasireqular in Q\ E. If E is a
closed set of a(n — 1)-Hausdorff measure zero, then f is quasireqular in €.

Koskela and Martio [KM1] showed that sets whose Minkowski dimension is less
than an are removable for a-Holder continuous quasiregular mappings provided
that & < 1 —1/n, and the same for sets of an-Hausdorff measure zero if « < 1/n.

Our method of proof combines some ideas from [K], [L], and [TW]. We use
solutions of equations

—div A(z, Vu) = p

where 4 is a nonnegative Radon measure from W,_ 1% (Q), i.e. u € W2?(Q) and

/A(a:,Vu)-Vgodx:/godu
Q Q

for all ¢ € C§°(€2). In particular, we prove the following theorem that improves
the main theorem in [K].

1.14. Theorem. Let & be the number given by (1.9). Suppose that u € WLP(Q)
s a solution of
—div A(z, Vu) =

where p is a nonnegative Radon measure such that there are constants M > 0 and
0 < a< Kk with

(1.15) u(B(z, 7)) < Mym—rta®e=1)

whenever B(x,3r) C Q. Then u € C%*(Q). Moreover, k(n,p,1,1) = 1, that is, in
the case of the p-Laplacian any o < 1 will do.

Theorem 1.14 is the best possible (see [KM, 4.18], [K, 2.7]).

Finally, we remark here that Corollary 1.11 is not true when o« = 1. The problem
for which sets are removable for Lipschitz continuous p-harmonic functions is more
delicate. David and Mattila [DM] treated the case n = p = 2: a compact set E of
finite 1-Hausdorff measure is removable for Lipschitz continuous harmonic functions
if and only if F is purely unrectifiable. The other cases remain open.

2. Proof of Theorem 1.6

We need a potential theoretic version of the obstacle problem. Suppose that
is a continuous function on Q and let the balayage RY = R¥(Q) be the pointwise
inﬁmum of all supersolutions? u to (1.1) that lie above 9 in €. Similarly, let
Rw = R (©2) be the pointwise supremum of all subsolutions that lie below 9 in Q.
Then RY > 4 is a contlnuous supersolution in Q and A-harmonic in {RY > };

similar statements hold for E . For a more thorough discussion see [HKM, Ch. 9].
Next we show the following estimate for the balayage; see [L] for a related result.

%i.e. u € WbP(Q) and — div A(z, Vu) > 0 in Q
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2.1. Lemma. Let K C ) be compact. Suppose that ¢ is a continuous function
with
(@) — $(y)| < Mz —y|* for allz € K and y € O,

where M > 0 and o > 0. Let u = RY and
p=—divA(z,Vu).

Then

p(B(z,71)) < crnptae—1)
forall T < rg = 6—14 dist(K,09Q) and x € K, here ¢ = ¢(n,p, A\, A, M, ) > 0.
Proof. Write

I={2z€Q: Y(x)=u(x)}
for the contact set.

First, let ©o € I. We assume, as we may, that u(zo) = 0 = ¥(zg). If r <
5 dist(zo, 02) and
Yo = OSC('IZ)? B('T07 8T))a

then (u—o)* is a subsolution and u+ 7o a nonnegative supersolution in B(zg, 87).
Hence we deduce from the weak Harnack inequalities [HKM, 3.34 and 3.59] that

1/(p—1)
sup (u—70) < ¢ ][ (4= o) P de
B(zo,r) B(zg,2r)

1/(p—1)
<c (][ (u+70)P ™ dﬂ?)
B($0,27‘)

<ec¢ inf (u-+
o B($0,2’I‘)( ’YO)

< -
Keeping in mind that u > ¢ > —vy we conclude
(2.2) osc(u, B(xo,7)) < ¢yo = cosc(y, B(xo, 87)) .

Let r < 35 dist(zo, 02) and let n € C§°(B(zo, 2r)) be a usual nonnegative cut-off
function with n = 1 in B(zg,r) and |Vn| < 2/r. Then we obtain by applying the
Caccioppoli estimate [HKM, 3.29] to u — suppg(,, 4r) u and (2.2) that

(B (wo,7)) < /

B(wo ,2’!")

< c(/ |Vu|PrP dz) (p_l)/p(/ (VP dz) Yp
B(.’I)o,2’f‘)

B(a‘:o ,2"‘)

nP dy = p/ P ' Az, Vu) - Vi dz
B($0,27‘)

< cr™ P osc(u, B(zg, 2r))P!

< cr™ P osc(y, B(wo, 167))P~1.
Now if g € I is such that

dist(zg, K) <7 < 21,
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we have the estimate
(2.3) u(B(zo, 7)) < crmmPre®=l)

where ¢ = ¢(n,p, M) > 0.
Finally, for o € K and r < rg, there are two alternatives. Either B(xg,r)NI =0
and thus p(B(xo,7)) = 0, or there is z € B(xg,r) N I. In this latter case

u(B(zo,7)) < p(B(z,2r)) < crnpta®=1)
by (2.3). The lemma is proven. .

Remark. Using (1.9) and (2.2), one can easily prove that if ¢y € C%*(Q), then
RY ¢ C%P(Q), where 8 = min(a, k) and & > 0 is the constant such that (1.9)
holds. (see e.g. [HKM, 6.47]).

Proof of Theorem 1.6. Fix a regular set D CC (2, for instance a ball. Let
v=R"=R"(D) and

p=—div A(z, Vo).
Let K C FE be compact. Since sets of n — p Hausdorff measure zero (p < n) are
known to be removable for bounded .4-harmonic functions (see e.g. [HKM]), we need

only consider the case, where @ = (s+p—n)/(p—1) > 0. Since s =n—p+a(p—1)
we infer from (1.7) and Lemma 2.1 that

p(B(z,7)) <cr?
for all r < rp and z € K. Because H*(K) = 0, we may cover K by balls B(z;,r;)

so that
p(K) < Z,u(B(a:j,rj)) <c ZTJS <e,
J J
where ¢ > 0 is given. Consequently, u(E) = 0 and therefore p = 0, which means
that v is A-harmonic in D [M, 3.19].

Next let w = EU(D) We similarly find that w is A-harmonic in D. Since
v =u =w on 0D by [HKM, 9.26], we have that v = w in D by the uniqueness of
A-harmonic functions. Since
w<u<lv=uw,

u is A-harmonic in D and the theorem follows. O

3. Proof of Theorems 1.14 and 1.10

We recall that x is the constant such that (1.9) holds for every .A-harmonic
function A in Q. Then

(3.1) / IVh|P dz < c(%)"‘p“’”/ IVh|? dz,
B(z,r) B(z,R)

for each 0 < r < R with B(z, R) C Q; here ¢ = c¢(n,p, A, A) > 0 (see e.g. [K, 2.1]).
The following lemma provides the key estimate.



6 TERO KILPELAINEN AND XIAO ZHONG

3.2. Lemma. Letu€ WYP(B(zo, R)) be a solution of
—div A(z,Vu) = p,
where p 15 a nonnegative Radon measure such that
w(B(wo,7)) < cormPHa@—D)
for all0 < r < R. Then for each 0 <r < R and ¢ > 0 we have

/ \VulPdr < ¢; ((1)n_p+pn - s) / \Vu|P dz + cy R"™PTP
B(zo,r) R B(zo,R)

where ¢1 = c1(n,p, A\, A) > 0 and ca = ca(n,p, A\, A, @, co,€) > 0.

Proof. There is no loss of generality in assuming that r < R/2. Let h be the
A-harmonic function in B(xo, R) with u — h € Wy*?(B(zo, R)). Then

)\/ |\VulP dz < / A(z,Vu) - Vudz

B(zo,r) B(zo,r)

= / (A(z, Vu) — A(z, Vh)) - (Vu — Vh) dz
B(zo,r)

(3.3) + / A(z,Vh) - (Vu— Vh) dz + / Az, V) - Vh dz
B(zg,r) B

($o,T)

< / (A(z,Vu) — Az, Vh)) - (Vu — Vh) dz
B(zo,R)
+A/ VAP~ V| + |Vh| [VulP~! da
B(zo,r)

where we used the structural assumptions (1.3)-(1.5). Since h is A-harmonic with

h —u € WyP(B(x0, R)) and thus quasiminimizes the p-Dirichlet integral, we have
by using Adams’ inequality (see [AH, Thm 7.2.2] or [Z, Thm 4.7.2]) that

/ (A(z, Vu) — A(z, Vh)) - (Vu— Vh)dz = / (u—h)du
B(zo,R)

B(:Eo,R)
< c R(P—1)(n—p+ap)/p (/ IVu — Vh|P da:) 1/p
B(zo,R)
A
< cRMPTOP 4 —6/ |\Vul|P dz,
B(wOrR)

where we also used Young’s inequality. The remaining integrals on the right of (3.3)
do not exceed

A
—/ \Vu|pda:+c/ |Vh|Pdz
2 B(:KO 7T) B($0 a’r)

)\ n— I

< —/ VulP do + c(~ )" P / VAP dz
2 B(zo,r) R B(zo,R)
A r

< —/ (Vul? dz + ¢ )n_pﬂm/ \Vul|Pdz,
2 JB(zo,r) R B(zo,R)
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where we also employed (3.1) and the quasiminimizing property of A-harmonic
functions. Plugging these estimates in (3.3) we arrive at

/ |VulP do <c R" PP 4 8/ \Vul|P dz
B(zo,r) B(zo,R)

+ C(L)n_pﬂm / |VulP dz .
R B(zo,R)
The lemma follows. O

Proof of Theorem 1.14. If B(zg,4R) C (Q, then by appealing to [G, Lemma
IT1.2.1, p. 86] Lemma 3.2 yields

/ \Vu\pdx < C(i)n—P-i-pa
B(zo,r) R

for r < R. Thus u € C%®(Q) by the Dirichlet growth theorem [G, Theorem III.1.1,
p. 64]. O

Proof of Theorem 1.10. Let £ be the number as in Theorem 1.14. Let K C E
be compact with H?~P+¢(P=1)(K) > 0. Frostman’s lemma ([AH, 5.1.12], [C]) gives
us a nonnegative Radon measure y living on K with u(K) > 0 and p(B(z,r)) <
rr—ptea®=1) - Any solution u € W,n7(Q) to

—div A(z, Vu) = p

is A-harmonic in Q\ E [M, 3.19] and u € C®*(Q) by Theorem 1.14, but u fails to

have an A-harmonic extension to €2, since u(K) > 0. O
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