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1 Introduction

Suppose that f is a continuous mapping from a domain Q C R*, n > 2,
into R". We consider the following Lusin condition N: if £ C Q, L™"(F) = 0,
then L™(f(F)) = 0. Physically, this condition requires that there is no
creation of matter under the deformation f of the n-dimensional body 2.
This is a natural requirement as the N-property with differentiability a.e.
is sufficient for validity of various change-of-variable formulas, including the
area formula, and the condition N holds for a homeomorphism f if and only
if f maps measurable sets to measurable sets.

If the coordinate functions of f belong to the Sobolev class Wlﬁ’cl(Q)
and |Df| € LP(Q2) for some p > n, then f satisfies the Lusin condition
N (Marcus and Mizel, [13]). Recently we verified in [11] that this also
holds when | D f| belongs to the Lorentz space L™!(f2) and that this analytic
assumption is essentially sharp even if the determinant of D f is nonnegative
a.e. For a homeomorphism less regularity is needed: it suffices to assume
that f € WIIOZL(Q,R"); this is due to Reshetnyak [18]. On the other hand,
there is a homeomorphism that creates matter and so that |D f| belongs to
LP(Q) for each p < n, see the examples by Ponomarev [16, 17]. Some further
results on the Lusin condition are listed in the survey paper [12].

We will need the concept of topological degree. We say that f is sense-
preserving if the topological degree with respect to any subdomain G CC 2
is strictly positive: deg(f,G,y) > 0forally € f(G)\ f(0G). In this paper we
show that for a sense-preserving mapping the sharp regularity assumption
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in the rearrangement-invariant scale to rule out creation of matter is that

e—0+

lim e/Q|Df|n—f =0. (1.1)

Theorem A. Suppose that f : Q — R" is sense-preserving and that (1.1)
holds. Then f satisfies the condition N. Conwversely, there is a homeomor-
phism f from the closed unit cube Qy onto Qqy so that

sup e/ |Df|I" ¢ < o0, (1.2)
Q

0<e<n—1

f creates matter, and f restricted to the boundary of the unit cube is the
identity mapping.

Let us define L™ (Q) as the collection of all the measurable functions
with
(n—e)
[[ullny = sup / lu(z)|™™ 6d:zc < 00.

0<e<n—1

Then L™ (1) is a Banach space and

LZ)(Q) = {u e L( 61_1)151 e/ |u|""dz = O}

is a closed subspace. These function spaces were introduced by Iwaniec and
Sbordone [9]. The motivation for the subindex b in the definition of the latter

space comes from the fact that LZ)(Q) is the closure of bounded functions
in L™ (Q); see [4] where the notation is slightly different from ours. It is

immediate that LZ)(Q) C L™(Q) C Np<nLP(Q) and that each measurable u

with "
/ L dr < 00
o log(e + [u])

belongs to LZ)(Q).

There are recent results related to Theorem A. Miiller and Spector [14]
prove the condition N for a Sobolev mapping that satisfies an invertibility
assumption under the conditions that the Jacobian determinant is strictly
positive a.e. and either the image of the domain has finite perimeter or that
the weak Jacobian, defined as a distribution using integration by parts, is
represented by an appropriate measure. In our situation the weak Jacobian
of the mapping f coincides with the pointwise Jacobian by a result of Greco
[4] and thus no additional assumptions are needed. Yet another result in
the same direction can be found in the work of Sverdk [19]. Here again
it is assumed that the Jacobian of the mapping be strictly positive almost
everywhere. Thus our results are not covered by these earlier works.



Let us now move on to mappings of finite distortion. We say that a
Sobolev mapping f € WH1(Q, R?) has finite distortion if there is a measur-
able function K = K(z) > 1, finite almost everywhere, such that

IDf(z)" < K(z)J;(z)  ae. (1.3)

Here J¢(z) = J(z, f) = det Df(z) is the Jacobian determinant of f. We
call (1.3) the distortion inequality for f. Notice that, unless we put any
extra conditions on K, we only require that Jg(z) > 0 a.e. and that the
differential D f vanishes a.e. in the zero set of the Jacobian determinant .J;.
Gol’dstein and Vodop’yanov [5] proved that Sobolev mappings of finite dis-
tortion with |Df| € L™(Q) satisfy the Lusin condition N. We are interested
here in mappings of finite distortion with lower integrability of the gradient.
For the basic properties of such mappings see [8] and [10]. Our results in
[10], Theorem A and its proof yield the following corollary.

Corollary B. Let f be a mapping of finite distortion that satisfies (1.1).
Then f satisfies condition N. Conwversely, there is a homeomorphism f of
finite distortion from the closed unit cube Qo onto Qo so that (1.2) holds
and so that f creates matter.

As a consequence of Theorem A we also deduce that Sobolev mappings
whose dilatations are exponentially integrable satisfy the condition N. This
result in the planar case is essentially due to David [1]. More generally, we
have the following result.

Corollary C. Suppose that f € WH1{(Q,RY), Jp € L'(Q) and that
[Df(z)[" < K(z)Jf(x)

a.e. © € Q, where exp(AK) € L'(Q) for some A > 0. Then f satisfies the
condition N. Conwversely, there is a homeomorphism f of finite distortion
Jrom the closed unit cube Qo onto Qo so that Jy € L'(Qo) with

/Oexp(%> dz < o0

for some X\ > 0, and so that f creates matter.

The conclusion of the first part of Corollary C was previously only known
in even dimensions, under the assumption that A > A(n) > 0. For this see
the paper [7] by Iwaniec, Koskela and Martin, where the condition N was
obtained as a consequence of non-trivial regularity results for mappings of
exponentially integrable distortion.

Our proof of Theorem A goes as follows. The topological degree is related
to the weak Jacobian by a degree formula. On the other hand, by a result
of Greco [4], the weak Jacobian coincides with the determinant of D f under



the assumptions on f. We are then able to estimate the measure of f(E) by
an integral of the determinant of D f. The example showing the sharpness of
(1.1) is a natural homeomorphism that maps a regular Cantor set of measure
zero onto a Cantor set of positive measure. The construction is similar to
that of Ponomarev’s [17]. Extra care is however needed as we also use this
very same mapping for Corollaries B and C and we thus have to estimate
the distortion of our homeomorphism.

2 Degree formula

If A is a real n X n matrix, we denote the cofactor matrix of A by cof A.
Then the entries of cof A are b;; = (—1)*7 det A;; and cof A is the transpose
of the adjugate adj A of A.
Let V be an (n—1)-dimensional subspace of R" oriented by a unit vector
v normal to V. Then for each linear mapping L : V — R" there is a vector
A, 1L € R" such that
Ap 1L-v=(cof L)v

whenever L : R* — R" is a linear extension of L, cf. [15].
The following result is due to Miiller, Spector and Tang [15].

Proposition 2.1. Let G C R” be a domain with a smooth boundary and
f €C(G)NWYP(OG). Let Drf be the tangential derivative of f with respect
to 0G, in the sense of distributional differentiation on manifolds. Let h €
CH(R",R"). Assume that either

(a) p>n—1, or
(b) p>n—1 and L*(f(0G)) = 0.
Then

/ (ho f)(z) A" Dpf(z) - n(z) dH" (z)
oG (2.1)

_ / divh(y) deg(f, G,) dy.

Proof. The part (a) is directly stated in [15]. For the part (b), we can mimic
the proof in [15], where the strict inequality p > n — 1 is used only to prove
the assumption (b). O

The following proposition is stated in ultimate generality as it may be
self-interesting. In the sequel we will use the assertion only under the
stronger hypothesis that |Df| € LP(R2), p > n — 1. A reader interested
only in this level of generality may skip the proof and realize that the con-
clusion easily follows from the part (a) of Proposition 2.1.



Proposition 2.2. Suppose that f : Q@ — R is a continuous mapping and
|IDf| € LPLY(Q). Letn € C®(Q), n > 0 and h € C*(R*,R"). Then, for
almost all t > 0 we have

LY(f({n=1}) =0 (2.2)

and
/{ (ke @) -eof D @na) " ()

_ / divh(y) deg(/, {n > t},9) dy,

where n(x) denotes the outward unit normal to {n =t} at .

Proof. According to Corollary 2.4 in [11], the property |Df| € L"11(Q)
implies that there is a nonnegative increasing function ¢ on (0,00) such

that ~
/ o/ (5) dz < 00
0

and
/ IDf| 1" (IDf]) de < .
{Df#0}

We call a level ¢ good if D7 is bounded away from zero on {n = t} (so that
{n =t} is a smooth manifold), the trace of f belongs to W1~ 1({n = t}),
for for H" !-a.e. z € {n = t} the tangential derivative Dy f(z) of the trace
of f coincides with the restriction of D f(z) to Ty({n = t}) and

/ Df| 9125 (IDF]) dH" () < oo.
{n=t}n{D f#£0}

Using the Sard theorem, co-area formula and well-known behavior of traces,
we observe that almost all levels ¢ are good.

Let t be a good level. Then, using Corollary 2.4 in [11] again, we observe
that |Dpf| € L"~11({n = t}) and thus by [11], Theorem C,

HH (f({n=1}) =0
and, in particular (2.2) holds. Now formula (2.3) follows from Proposition
2.1. O
3 Sense-preserving mappings

Each sense-preserving mapping f : 2 — R" satisfies the spherical mono-
tonicity property

diam f(B) < diam f(0B) for each B CC . (3.1)



Indeed, ify € f(B)\ f(0B), then y cannot belong to the unbounded compo-
nent of R" \ f(0B) since we would then have deg(f, B,y) = 0. Hence f(B)
is contained in the closed convex hull of f(9B) and (3.1) holds.

If f € WHP(Q), p > n — 1, satisfies (3.1), then the following well-known
oscillation estimates hold: for each z € Q and r € (0, 5dist (z, 02)) we have

that .
(LT BE )Y ¢ gy / DSIP dy.
r B B(z,2r)

The right hand side is bounded as r — 0, for all Lebesgue points of |D f|P.
By Rademacher-Stepanov theorem, it follows that f is differentiable almost
everywhere, cf. [6], and thus at almost every point zg, D f(z¢) is the classical
(total) differential of f at xo.

The following result is well-known, but for the convenience of the reader
we give a proof here.

Lemma 3.1. If f € WYP(Q,R?), p > n — 1, is sense-preserving, then
Jy >0 a.e in Q.

Proof. Fix xg such that Df(zo) is the classical differential of f at xzo and
Jg(zo) # 0. It suffices to prove that Jy(zo) > 0.
We may assume that 2o = 0 = f(zp). Since J;(0) # 0, there is a
constant ¢ > 0 such that
IDF(0)s] > clz]

for all z € R*. By the differentiability assumption, there exists r > 0 for
which B(0,r) CC © and

|f(z) = Df(0)z| < ger
for all z € 0B(0,). It follows that
|f(z) = Df(0)z| < dist (0, f(9B(0,7)))

for all x € 0B(0,r). Then by the properties of the topological degree we
have (see e.g. [3, Theorem 2.3 (2)])

deg(Df(0), B(0,r),0) = deg(f, B(0,7),0) > 0
whence det Df(0) > 0. O

Let ¢ > 1 and ¢’ be the conjugated exponent. If f € WI})’Cq(n_l)(Q,R”) N
Lﬁ;C(Q, R™), then the weak Jacobian is the distribution Det D f defined by

the rule

(Det Df,m) = /Q Fud (2, (f1, ooy foo1,m)) do



for each test function n € C°(Q2). Here J(z, (f1, ..., fn—1,7n)) is the determi-
nant of the differential Dg of the mapping g(z) = (f1, ..., fu—1,1). Thus, in
the language of differential forms,

J(:C, (fl""afnflan))dm = dfl AR /\dfnfl /\d’l’)

We need a result of Greco [4] according to which J; € L{ .(©2) and
Det Df(z) = J(z) := J(z, f)

whenever f € Wl1 1(Q R") satisfies (1.1) and either Js(z) > 0 a.e. in © or
Jp(z) < 0 a.e. in Q. The regularity in this result is sharp in the sense that
(1.1) cannot be replaced with (1.2).

Lemma 3.2. Let f : Q — R" be a sense-preserving mapping in W1P(Q)
with p > n—1 and assume that the weak Jacobian Det D f satisfies Det D f =
Jy. Then

£(f(G)) < /G Ji() da

for all open G CC (.

Proof. Let s € (0,1). Choose n € C°(G) such that 0 <n <1, |Vn| #0in
{0 <n <1} and
sL™(f(G)) < L"(f({n = 1})).

Then for almost every ¢ € (0,1) we have that
feWh({n=1},R").
Thus, by choosing h(y) = (0,...,0,y,) in Proposition 2.2, we have, since
n(z) = —Vn(z)/|Vn(z)|, that
SLFG) < L (n > 1) < [ deg(f.n > tho)dy

= Inl@) T n-lg,
[ T s s ) a7 ),

Integrating (3.2) over ¢t € (0,1) via the co-area formula we obtain (see e.g.
[2, Theorem 3.2.12])

S} /fn 2, (f1y oo frt ))dw—/an /Jf

In the last inequality the fact that J; > 0 a.e. is used (Lemma 3.1). Now
let s — 1. O

(3.2)



4 Proofs of Theorem A and Corollaries B and C

The first part of the claim of Theorem A immediately follows from the above
Lemma 3.2 since, by Lemma 3.1, J; > 0 a.e. and thus by Greco’s result
Js € L () and Det Df = J;. The example of Section 5 gives the second
part of Theorem A as well as the second parts of Corollaries B and C.
Corollary B immediately follows from Theorem A since, by [10, Theorem
1.5], a mapping f of finite distortion satisfying (1.1) is sense-preserving.

Under the assumptions of Corollary C,

[

o log(e + [Df])

(see [7]), whence, by the results of Greco [4], (1.1) is satisfied. Thus Corollary
C follows from Corollary B.

5 An example

We will construct a homeomorphism f : Qo = [0,1]™ — Qo, n > 2, which
fixes the boundary 9@y and has the following properties:

(a) f € Wh(Qo,R"), f is differentiable almost everywhere, and

sup 6/ |Df(z)|" ¢dz < oo. (5.1)
Qo

0<e<n—1

(b) The Jacobian determinant Jy(z) is strictly positive for almost every
T € Qo and

Ji(z) dz < oo. (5.2)
Qo

(¢) The dilatation K(z) = |DJJ; ((fc))‘n is finite almost everywhere and there
exists A > 0 such that

/Qo o <%> d < co. (5.3)

(d) f does not satisfy Lusin’s condition N.

Besides the usual euclidean norm || = (22 4. .. 4 x2)Y/? we will use the

cubic norm ||z|| = max; |z;|. Using the cubic norm, the z(-centered closed



cube with edge length 2r > 0 and sides parallel to coordinate axes can be
represented in the form

Qzo,r) ={z € R" ¢ [lz —xol| <7}

We then call r the radius of Q. We will use the notation a < b if there is
a constant ¢ > 0 (not depending on (integration) variables or summation
indices) such that a < ¢b, and we write a = b if a < b and b < a.

We will be dealing with radial stretchings that map cubes Q(0,7) onto
cubes.

The following lemma, can be verified by an elementary calculation.

Lemma 5.1. Let p: (0,00) — (0,00) be a strictly monotone, differentiable
function. Then for the mapping

fz) = ”j—Hmuwn), z#0
we have
Df(@)|/e(n) < max{"ﬁl'ﬁ“), \p'<||x||>|} < e(n)|Df (z)|
and

P lelp(l=l)"

Jp(@)/e(n) < a1 < ¢(n)Jj(z)

where c(n) depends only on n.

We will first give two Cantor set constructions in (Qy. f will be defined
as a limit of a sequence of piecewise continuously differentiable homeomor-
phisms fi : Qo — Qo, where each f; maps the k:th step of the first Cantor
set construction onto the second one. Then f maps the first Cantor set onto
the second one. Choosing the Cantor sets so that the measure of the first
one equals zero and so that the second one has positive measure, we get the
property (d).

Let V. C R™ be the set of all vertices of the cube @(0,1). Then sets
VE =V x...xV,k=12,..., will serve as the sets of indices for our
construction (with the exception of the subscript 0 used in Step 0). If
w € VF~1 we denote

VFwl ={veV*: vj=w;, j=1,...,k—1}.

Let zg = [%,,%] and ro = % Forve V! =V let z, = z0+iv, P, =
Q(2y, i) and Q, = Q(zy, %) Ifk€2,3,... and Qyu = Q(zw,Tk_1) is a cube
from the previous step of construction, w € V*~!, then Q,, is divided into

2" subcubes P,, v € V*[w], with radius rx_1/2, and inside them concentric



cubes Q,, v € VF [w], are considered with radius ry = irk,l. These cubes
form the new families. Thus, if v = (vy,...,v;) € V¥, then

k
- 1 _ 1
Zy = Zy + 5Tk—1Vk = 20 + 3 E Tj_1Vj ,
j=1

P’U = Q(z’vark—l/z)a Q’U = Q(ZvaTk)'
See Figure 1. We get the families {Q, : v € V¥}, k= 1,2,3,..., for which

0|d 0|d
0|d 0|d
0|d 0|d
0|d 0|d
k=1 k=2

Figure 1: Cubes Q,, v € V.

the radius of @, is
rp = 2721

and the number of cubes is #V* = 27%. Note that r, < ri_1/2 for all k.
The measure of the resulting Cantor set

=N U@

k=1vevk

equals zero since
/;"( U QU) = gnkg=2kn _y .
veVk
The second Cantor set construction is similar to the first one except that
at this time we denote the centers by 2! and the cubes by P!, Q., v € V¥,
with
k
2=zl + %7";;_17116 =z + % Zr;_lvj ,
j=1
Pqi = Q(zzlnr;cfl/z)v Q’IU = Q(Z:n'r;c)
Now,
r, = (k)27

1 log 2
o(k) = 5(1+710g(k+2)).

where

10



Note that 7, < r),_,/2 for each k. We have

o
‘w<ﬂ U(%)Zggfw<u<%>=gg}M@%W=2”>0-

k=1ypecVk veVE
We are now ready to define the mappings f;. Define fy = id. We will
give a mapping f; that stretches each cube Q,, v € V!, homogeneously
so that f1(Qy) equals @,. On the annulus P, \ @, f1 is defined to be an
appropriate radial map with respect to z, in preimage and 2] in image to
make f; a homeomorphism. The general step is the following: If £ > 1, fi
is defined as fi_; outside the union of all cubes Q,,, w € V¥~1. Further, f
remains to equal fy_; at the centers of cubes Q,, v € V¥. Then f}, stretches
each cube Q,, v € V¥, homogeneously so that f(Q,) equals Q). On the
annulus P, \ Q,, f is defined to be an appropriate radial map with respect
to z, in preimage and 2, in image to make fj a homeomorphism (see Figure
2). Notice that the Jacobian determinant Jy, will be strictly positive almost
everywhere in Q.

T

Figure 2: The mapping fi acting on P,, v € V*.

To be precise, let fo =id|Qo and for £k =1,2,3,... define

[ fr_1(z) if £ & Upevr Po,
T — 2y
fk(m) = fk_l(zv) + ak(:v — ZU) + bkm

ifzre P, \Q,, veVk,
\fk—l(zv)‘l‘clc(x_z'u) if z € Qo, v e VE

where ay, by and ¢, are chosen so that fy maps each @, onto @}, is contin-
uous and fixes the boundary 9Q):
agry + by, = 14,
akrk_1/2 + b, = TL,1/2, (5.4)
CkT) = T}
Clearly the limit f = limy_,, f; is differentiable almost everywhere, its

Jacobian determinant is strictly positive almost everywhere, and f is abso-
lutely continuous on almost all lines parallel to coordinate axes. Continuity

11



of f follows from the uniform convergence of the sequence (fx): for any
€ Qo and ! > j > 1 we have

\filz) = fi(x)] S5 =0

as j — oo.

It is easily seen that f is a one-to-one mapping of Qg onto (Qg. Since f is
continuous and @ is compact, it follows that f is a homeomorphism. One
also easily verifies that

f(ﬂ U Qu)zﬂ U«
k=1veVk k=1yeVk

so that the property (d) holds.

To finish the proof of the properties (a)—(c) we next estimate |D f(z)]
and Jg(z) at z in the interior of the annulus P,\ @y, v € V¥, k=1,2,3,....
Denote r = || — zy|| = 7¢. In the annulus

T —z
f(@) = fo-1(z0) + (akl|z — 20| + bk)”:c—izv

o

whence denoting p(r) = axr + b we have by Lemma 5.1 (it is easy to check
that by > 0 for large k)

|Df(x)| = ay, + bg/ry

and
Jt(z) = ag(ag, + by /)"

From the equations (5.4) it follows that

T 1/2 =T} k
ap = ———— " k—1) —¢(k))2
o= PR (ol = 1) (k)
and
ag + by /TE =74 /TK = <,o(k)2’C ~ 2k
Therefore
|Df(z)] ~ 2"
and

Tp(2) = (p(k — 1) — p(k))2"*

whence for £ > 2
K(z) = |Df(z)|" ~ 1 ~ (log k)2
Jr(z) ek —1) —p(k)  log(k+2)—log(k+1) (5.5)
~ k(log k)?

12



The measure of UvEVk P, is 2”’“7‘,?71 ~27™ andsofor0<e<n—1

6/ |Df($)|ni6 dr 5 € Z 2*nk2k(n75)
Qo

k=1
oo €
—ek __
SekE_OZ =1 9= <C

where C' < oo does not depend on e. This proves (5.1), and it follows that
f € WhH(Qo, R™). Similarly we prove (5.2):

27" (p(k — 1) — p(k))2"*

hE

Jp(z)dr S
Qo

B
Il
—

(p(k —1) = p(k)) = (0) — lim (k) < oco.

k—o00

M

=
Il
—

By (5.5) there is a constant 1 < ¢ < oo such that K(z) < ck(logk)? for
k > 2, and since t — t/log?(1 4 t) is increasing for large ¢,

o0 2
/ . ( K@) > <302 e ( ch(log ) )
Qo log”(1 + K(z)) prre log“(1 + ck(log k)?)
o
27" exp(Ack) = ) (ePTmBHE < o0
3 k=3

<

NE

ES
Il

if we choose A > 0 such that Ac < nlog2. Thus (5.3) is proven.
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