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Abstract

We establish a sharp integrability condition on the partial deriva-
tives of a weakly monotone Sobolev function to guarantee differentia-

bility almost everywhere.

1 Introduction

It is well known that if a function u belongs to the Sobolev class W'?((Q),
Q c R*, for some p > n, then u is differentiable almost everywhere in (2.
This was proved by Cesari [2] for n = 2 and by Calderén [1] for general
n. Here W'P(Q) consists of the functions in © which together with their
first order weak partial derivatives are p-integrable. In 1981, Stein showed
that this condition can be sharpened to a very precise integrability condition.
He proved that if v € WH'(Q) is a function whose weak partial derivatives
belong to the Lorentz space L™ (£2), then u is diffentiable almost everywhere.
The notion of the Lorentz space L4(2) was first introduced in [10].

In this paper we address the following question: What are the minimal
integrability conditions on the partial derivatives of a homeomorphic Sobolev
mapping f € WH(Q,R") to guarantee differentiability almost everywhere.
Here Wh'(Q, R") consists of the mappings of 2 into R" whose coordinate
functions belong to WH1(Q2). By the above result of Stein’s, it naturally
suffices to assume that |V f| € L™!(). However, less is needed: it suffices to
assume that |V f| is p-integrable, for some p > n—1, whereas |V f| € L"}(Q)
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is not sufficent when n > 2. This was proved by Vaisala [16]. Véiséld’s
approach is itself an n-dimensional version of a technique used by Gehring
and Lehto [4] to show that a planar homeomorphism with integrable partial
derivatives is differentiable a.e. Recall that each function u € Wh'(Q) is
differentiable a.e. when 2 C R. Because L»'(Q) = L'(Q), the results of
Stein, Gehring and Lehto, and Viisild suggest that the natural assumption
should be that |Vf| € L"11(Q). We will show in this paper that this
condition guarantees differentiability almost everywhere even for a larger
class of mappings than the class of homeomorphisms. This will be the class
of weakly monotone mappings.

Monotonicity for a continuous function v in a domain 2 C R” simply

means that
supu(z) < sup u(x) (1)
TEB r€OB
and
) S
p 2 gl )

for every ball B C ). Roughly speaking, monotone functions satisfy the
maximum and minimun principles in €. This definition of monotone function
is due to Lebesgue [9].

Definition 1.1 A real valued function v € Wh(Q) is said to be weakly
monotone if for every ball B C €2 and all constants m < M such that

vi=(u—m) +(u—M)" € W' (B),

we have

m<u(z) <M

for almost every x € B.
Moreover, we say that f € WH1(Q,R™) is weakly monotone if its coordinate

functions are weakly monotone.

Weakly monotone functions were introduced by Manfredi, [12]. They form a
generalization of monotone functions in the sense of Lebesgue: a continuous

function u € W'(Q) is weakly monotone if and only if u satisfies conditions
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(1) and (2). Especially, if f : Q — Q' is a homeomorphic mapping of the class
Wh1(Q,R"), then f is a weakly monotone mapping. However is it not always
true that weakly monotone functions are continuous (see [12, example 2.1]).
Many solutions to partial differential equations are weakly monotone. For
example, if 0 < a(z) < B < oo a.e. in R?, where « is a measurable function
and f is a constant, then each W'2-solution to div A(z)Vu(z) = 0 for

Ale) = ( (1] a?x) )

are weakly monotone (see [§]).

Now we can formulate our main theorem.

Theorem 1.2 (i) Suppose that u € WH(Q) is a weakly monotone function
whose weak partial derivatives belong to L™~ (Q). Then u is differentiable
a.e.

(ii) Suppose that ¢ > 1. Then there exists a weakly monotone function v €
WHH(B(0,3)) such that |Vv| € L™ 19(B(0,3)) and v is not differentiable

12
anywhere.

Here L™4(0Q2) is the Lorenz space (see Section 2) and
LP(Q) Cc L™ VHQ) C LM(Q) ¢ L 1)

locally,ifp>n—1and 1 < ¢ <n—1 (see [17, lemma 1.8.13]). Furthermore
the above inclusions are strict.

One can prove that the following inclusion is true.
{u e WH(Q): / (Vu|"log" *"(e + |Vu|) < 00,e >0} C L"H(Q)
Q

Example 1.3 Let u : Q — Q' be a homeomorphic mapping of the class
WHH(Q,R™) where Q C R*. Then the condition

/ |Vu,;|[" log¥(e + |Vu,|) < oo
Q

for all i = 1,..,m guarantees differentiability a.e. if o« > n — 2 but not if
a<n—2.



2 Preliminaries

The notation used in the paper is standard.

) is an open subset of R, n > 2. B"(z,r) and B(z,r) will denote an n-
dimensional ball centered at x with the radius . Spheres will be denoted by
Sz, ).

The Lebesgue measure of a set F will be denoted by |E|. The characteristic
function of a set F is xg. If v : E — R is an integrable function on a set F
with 0 < |E| < 0o, we write

- :][Eu(x) do = |lf|/Eu(x) dz.

C'(a, b) will denote a positive constant that depends only on a, b. The value of
C'(a, b) is not necessary the same at each occurence; it may vary even within
a line.
The gradient Vu is understood in the distributional sense. We denote W11 (Q)
the usual Sobolev space on () consisting of functions v such that both u €
L' () and |Vu| € LY (2). WH(Q,R™) stands for the class of mappings
u : Q — R™ such that the coordinate functions belong to the space Wh!(Q).

Let u be a py-measurable function defined on X, where (X, p) is a measure
space. We denote by w the distribution function of w, namely, for ¢ > 0 we
set

w(t) = p({z € X :u(z) > t}).

Then we define the the non-increasing rearrangement u* of u by setting
u*(s) = inf{t > 0: w(t) < s}.

It is well known that if v and v are two p-measurable functions on X, then

w(X)
/X u(2)o(z) dpu(z) < / u* (5)0* (3)ds. (3)

Inequality (3) is due to Hardy, Littlewood and Pélya [5]. It follows immedi-
ately from the definition of u*(s) that

u*(w(t) < t. (4)



The Lorentz space [P1(X), 1 < p < 00, 1 < g < o0, is defined as the class of
all measurable functions on {2 for which the norm
1

(o) = (b s lwo)Fds) ', 1<g <00

sup s{w(s)]?, g =00
s>0

HUHLWI(X) =

is finite.

For further details about the Lorentz space, see e.g. [14] or [17].

3 The Oscillation Lemma

The aim of this section is to establish an oscillation estimate for weakly
monotone functions in the Lorentz space L™ 1.

The elements in the Sobolev space W11(Q) are equivalence classes of func-
tions which agree almost everywhere in ). In order to study the fine prop-
erties of a function u € WhH1(Q), it is convenient to use the representative 4,
defined by the formula

@(z) = lim sup][ u(z)dz.
B(z,r)

r—0

It is well known that if v : R® — R is locally integrable, then

lim lv(z) —v(z)|dz =0 (5)

r—0 B(.’,E,'I‘)

for almost all x € R™. Hence u is a Borel measurable representative of w.
The function @ is a natural representative of u, for example if we know that
v = u a.e. and v is a continuous function, then v = 4.

Now we can formulate our oscillation lemma.

Lemma 3.1 Let u € WhH(B(a,2r)) be a weakly monotone function such
than |Vu| € L"~YY(B(a,2r)). Then

- - _ 1
ja(z) — u(y)| < Cln)r™==1 |[Vul|n(sa,2r)

for all z,y € Bla,r).



If |Vu| € L™ (B(a,2r)), then we have the following oscillation lemma. This

Lemma holds without the assumption that v be weakly monotone.

Lemma 3.2 Letu € WY (B(z, R)) be a function so that |Vu| € L™ (B(z, R)).
Then there ezists a constant C(n) such that

a(z) — i(y)| < C(n) [|[Vul|pni (B, z—y) (6)

for ally € B(z, R).

Proof. Fix y € B(z, R) and denote r; = (\w;y|) 271l for all § € Z.

Let zy = “Qﬂ and define recursively

T — .
Ty =Ti—1 +Ti—1 7= z‘ forz >0
and
xr — .
Ty = Tjqp1 — 7'1'+1‘:C7_Z| for 7 < 0.

Then the balls B; = B(x;,7;) C B(x,|x — y|) and the points x; satisfy

(1) B(zi,r;) C B(xiy1,4r;41) when i >0,
B(x;,r;) C B(xi_1,4r;_1) when i <0,
(i) dixB <2,
(v31) T;— T asi— 0o,
T; — Yy asit— —oo,
(iv) |z; — x| <2r; when i >0 and

lz; —y| < 2r; when i <0.

From properties (7i¢) and (iv) it follows that up, — @(z) as i — oo and
up, — u(y) as i = —oo.

Because
(o]

71(m) =Uup, — Z(uBz - uBi+1)

1=0

and
— 00

a(y) = Up, — Z(UBZ - uBi_l)

=0
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we have

o —0oQ
i) — a(y)| < lus, — | + Y lup, — up, 1.
=0 =0

Applying the Poincaré inequality we obtain

i) — )| < O 3 7 ./|dez

1=—00

= Z / d(z,1) (7)

=00 {(2,t)eB; x(0,V(2))}

Let w be the distribution function of |Vu| i.e. w(t) = [{y € Bz, |z — y|) :
|Vu(y)| > t}| for all ¢ > 0. Next we split the set {(z,t) € B; x (0,V(2))} =:
E; into {(z,t) € E; : w(t) > r'} and {(2,t) € E; : w(t) < rl'}.

For i > 0 from properies (i) and (#v) it follows that

o0

> / rimd(z,t) < 37Ny / 2z — 2| ™ d(z, t)
—o J Ein{w(t)>r?} i—0 7 Bin{w(t)>3"|z—a|"}

% 7

< 2- 3”1/ |z —z|' ™ d(z, 1)

n
2 oEin{3w(t)] » >|z—x|}

< 3"1/ /B(w[w ;) |z — 2" dzdt
< amﬂ[MMMt (®)

Similarly for 2 < 0 we have that

0

Z/ rl=n d(z,1) < C(n /[w (9)
Ezﬂ{w(t)>'r"}

For the {(2,t) € E; : w(t) < r!}-part we have that

EIA “%ztszwE{wW%ww

i oo VY Ein{w(t)<r}}

1=—00

IA

L( GG

Bla,Jo-y) o
/ V() dt (10)
0

7
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The last inequality follows from (3) and (4).
We obtain from (7), (8), (9) and (10) the desired inequality (6).

We will deduce Lemma 3.1 from Lemma 3.2. For this we will employ an
approximation argument. It is well known that we can approximate Sobolev
functions by smooth functions. If a Sobolev function is weakly monotone
then it is surprising that the approximations can be in fact chosen to be
“almost” monotone. Let us give a precise statement of the result that is due
to Iwaniec, Koskela and Onninen [6].

Lemma 3.3 Let u € Wh'(B(a, R)) be a weakly monotone function and r <

R. Suppose that 6 > 0. Then there exists a number jo € N and a sequence
{u;}2, C C®(Q) such that

uj — U in WoH(B(a,R)) and

loc

uj(x) = u(x)

for all x € B(a, R).
Furthermore for all Lebesgue points zq,yo € B(a,r) it holds that

|uj(20) — u;(yo)| < osc(uy, S"7(a, 1)) + 20 (11)
for all j > jo and every r <t < R.

Now we are ready to prove lemma 3.1.

Proof of Lemma 3.1 Fix ¢ € (r,2r). Applying Lemma 3.2 on spheres for
the function u; € C*(B(a,2r)) at (11) we have that

[uj(x) —u;(y)| < C(n)||Vu||pr-115n-1(q) + 20

for all t € (r,2r).
Integrating over the interval »r < ¢ < 2r and dividing both sides by r, we



obtain

(@) = y(w)] < S / T / T (€ S M aut) £ [Vl > s} ds de

B / / </ oy 70 ) d”“(y)) ds dt
Sn— 1at

Then, applying Hélder’s inequality, we obtain

uj(z) — ui(y)| < Cln (/ /Sn . X{\Vujbs}( JAH ™ (y )dt) ids
+2

1 o ﬁ
< C(n) r 1 / (/ X{|Vy,|>s3 (¥) dy) ds +20
0 B(a,2r)
= C(n) T a1 HVUjHLn—l,l(B(a’QT)) + 26

By letting j — oo and § — 0 we conclude that

- . 1
[u(z) —a(y)| < C(n) r =1 ||Vul|pr-11(a2r)

as desired.

4 Proof of Theorem 1.2

In the proof we will use the following lemma that goes back to Stepanov [15]
(see also [11]).

Lemma 4.1 A function u : 2 — R is differentiable a.e. if and only if

ju(z) — u(y)|

limsup ——— < o© a.e.
y—T T~y

Now (i) of Theorem 1.2 follows from Lemma 3.1 and Lemma 4.1 if

hmsupr n— 1||VU||Ln L1(B(a,r))
r—0



is finite for almost every a € ).
The following lemma is due to Stein [13]. It is a consequence of the standard
estimate for the Hardy-Littlewood maximal function: If g € L'(R"), then

r>0

C(n
e s f > < S [ gwlan ()
B(z,r) R
Lemma 4.2 Suppose that f € LP*(2), 1 < p < co. Then

lim sup T_%||f||LP’1(B($,T)) < oo
r—0

for a.e. x € Q

For the convenience of the reader we give a short proof below; Stein’s proof
in [13] consists of a list of references to various estimates.

Proof. Write

My (f)(x) = Sli[g re||f] ‘Lpal(B(x,r))

for z € Q.
We will show that

| My(f)l|zreo) < Cl|f]]Le1(0)- (13)

If we take inequality (13) as known, then

n C f pp,l
|{x€QllmsupT_FHfHL,,,l(B(wr)) :OO}‘ Shmsupw_o
r—0 ’ k—o0 k‘P

as desired.

We observe that it suffices to establish inequality (13) when f = 2?21 CiX4, is
a non-negative simple function (see [17, proposition 1.8.4]). We can assume
that ¢; > ¢ca > ... > ¢p, AiNA; =0, when ¢ # j and |4;| < oo for all
ie{l,..h}.

Set cp11 = 0. Then

h
1 fllo@ = >,

i=1

h

= ) (i — cin)| Uiy Aj7. (14)

i=1

/ {zeQ: f(z) > t}]sat

i+1
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h h :
Because f =" cixa, =Y, q(ci — Cz’+1)XU§.:1Aj we obtain

h
(Dl < D26 — ) 1M 005 llseio)
=1
h . 1
< O3 (=) Uiy Ayl (15)
=1

The last inequality follows from

S =

M,(xa)(z) = sup rr |AN B(x, 7“)|171> = (supr "|AN B(z,r)|")
r>0 r>0
for arbitrary A of finite measure and inequality (12).
Now inequality (13) follows from (14) and (15).

(i1) Suppose that ¢ > 1. Then there exists a radial function f € WHYB"1(0,1))
such that |V f| € L"~4(B"*(0,1)) and lim f(z) = co. The existence of such
a function follows from [3] or [7].

The set {(z1,...,2p—1) € B* 1(0,3) : z; € Qi = 1,..,n — 1} is dense in
B (0, %) Denote those points gi, g2, g3, ... and define g;(z) = 277 f(z — ¢;).
Set

he(a) = 3 (x)

for all z € B"71(0, 3).

)
Because the space Wh!(B"71(0, 1)) is a Banach space and for j < k
k
[ — thWU(B"—l(O,%)) = || Z ginl,l(Bn—l(o,;))
i=j+1
k
< Z gillwr.1(mr-1(0,2))
i=j+1
k
< [ fllwrrsr-1(0,1) Z 27,
i=j+1

we have that the sequence (h;); converges to some h in Wh'(B™ (0, 1)). Fur-
thermore L"~14(B"~!(0, 1)) is a Banach space [14, chapter v, theorem 3.22.]
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and thus the same argument as above shows that [Vh| € L"~59(B"1(0, 1)).

Since h; — hin L'(B™7'(0, 3)), we may choose a subsequence denoted again
by hj, so that h;(z) — h(z) a.e. Thus h is finite almost everywhere but
also infinite on a dense set, and so h is everywhere discontinuous. It follows
from the construction that also every function that coincides with h a.e. is
everywhere discontinuous.
Finally set

V(@1 ey ) = B(T1, ooy Tpp1)

for all z € B"(0, 3).
It follows that the function v is weakly monotone and non-differentiable (even

discontinuous) everywhere in B"(0, 5). The proof is complete.

In 1981, Stein [13] proved that if f € WH'(Q) and |[Vf| € L™! then
f is differentiable a.e. We can give an alternate proof of the first part of
Theorem 1.2 based on this fact on spheres and some tools from nonlinear
potential theory, along the lines of the argument in [16]. This approach is
however technical and involves the notion of trace. Notice that our function

u need not be continuous.

Acknowledgement

We thank Pekka Koskela for important suggestions.

References

[1] Calder6n, A. P. (1951). On the differentiability of absolutely continuous
functions. Riv. Mat. Univ. Parma. 2, 203-213.

[2] Cesari, L. (1941). Sulle funzioni assolutament continue in due variability.
Ann. Scuola Norm. Sup. Pisa. 10, 91-101.

[3] Cianchi, A. and Pick, L. (1998). Sobolev embeddings into BMO, VMO,
and L. Ark. Mat. 36, 317-340.

12



[4] Gehring, F. W. and Lehto, O. (1959). On the total differentiability of
functions of a complex variable. Ann. Acad. Sci. Fenn. Ser. A T Math.
272, 1-9.

[5] Hardy, G. H., Littlewood, J. H. and Pélya, G. (1934). Inequalities, Cam-
bridge University Press.

[6] Iwaniec, T., Koskela, P. and Onninen, J. (2000) Mappings of finite
distortion: Monotonicity and continuity. Preprint #216, University of
Jyvaskyla.

[7] Kauhanen, J., Koskela, P. and Maly, J. (1999). On functions with deriva-
tives in a Lorentz space. Manuscripta Math. 100, no. 1, 87-101.

[8] Koskela, P. Manfredi, J. J. and Villamor, E. (1996). Regularity theory
and traces of A-harmonic functions. Trans. Amer. Math. Soc. 348, no. 2,
755-766.

[9] Lebesgue, H. (1907). Sur le probléme de Dirichlet. Rend. Circ. Palermo
27, 371-402.

[10] Lorentz, G. G. (1950). Some new functional spaces. Ann. of Math. 51,
37-55.

[11] Maly, J. (1999). A simple proof of the Stepanov theorem on differentia-
bility almost everywhere. Exposition. Math. 17, 59-61.

[12] Manfredi, J. (1994). Weakly Monotone Functions. The Journal of Geo-
metric Analysis. No 3, 393-402.

[13] Stein, E. M. (1981). Editor’s note: The differentiability of functions in
R™. Annals of Mathematics 113, 383-385.

[14] Stein, E. M. and Weiss, G. (1971). Introduction to Fourier Analysis on
FEuclidean Spaces. Princeton Univ. Press.

[15] Stepanoff, V. (1925). Sur les conditions de I’existence de la diffeérentielle
totale. Mat. Sb. 32, 511-526.

13



[16] Vaisalda, J. (1965). Two new characterizations for quasiconformality.
Ann. Acad. Sci. Fenn. Ser. A T Math. 362, 1-12.

[17] Ziemer, W. P. (1989). Weakly Differentiable Functions, Graduate Texts
in Mathematics 120, Springer-Verlag.

Department of Mathematics
University of Jyviskyla

P.O. Box 35, Fin-40351 Jyviskyla
Finland

E-mail: jaonnine@math.jyu.fi

14



