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1 Introduction

This paper is a crucial part of our program to establish the fundamentals of
the theory of mappings of finite distortion [11], [1], [12], [17] which form a
natural generalization of the class of quasiregular mappings, also called map-
pings of bounded distortion. The results of this paper give sharp criteria for
topological properties, such as openness, for a mapping of finite distortion.
The theory of mappings of bounded distortion is by now well understood,
see the monographs by Yu. G. Reshetnyak [26], by S. Rickman [27] and by
T. Iwaniec and G. Martin [13]. The motivation for relaxing the boundedness
of the distortion partially arises from the fundamental works of J. Ball [2],
[3] on nonlinear elasticity. We study mappings f = (f1,.... fn) : & — R”
in the Sobolev space W11(Q,R™), where 2 is a connected, open subset of
R™ with n > 2. Thus, for almost every x € ), we can speak of the linear
transformation Df(z) : R" — R", called differential of f at z. Its norm is
defined by |Df(z)| = sup{|Df(x)h| : h € S""'}. We shall often identify
D f(x) with its matrix, and denote by J(z, f) = J¢(z) = det Df(x) the

Jacobian determinant.

Definition 1.1. A Sobolev mapping f € W11(Q,R") is said to have finite
distortion if there is a measurable function K = K(x) > 1, finite almost
everywhere, such that

IDf(@)" < K(2)J(z, f)  ae. (1.1)

We call (1.1) the distortion inequality for f. Notice that, unless we put
any extra conditions on K, we only require that J(z, f) > 0 a.e. and that
the differential D f vanishes a.e. in the zero set of the Jacobian determinant



J(z, f). It is worth recalling that the smallest such function K, referred to
as outer dilatation, is then defined by

[Df@)I" J(z, f)#0
K = (z.f) ' ’
ol ) { 1J ! it J(z, f) =0.

(1.2)
Geometrically this means that, at the points where J(z, f) > 0, the dif-
ferential takes the unit ball to an ellipsoid £ and we have Ko(z, f) =
vol Bp / vol E, where Bg is the ball circumscribed about E.

Let us begin by recalling some of the known results on mappings of finite
distortion which are relevant for our discussion. A mapping in the Sobolev
class W1 (Q,R") with finite distortion K € L>(12) is called a quasiregular
mapping or a mapping of bounded distortion. This class of mappings can
be traced back to the work of Yu. G. Reshetnyak [25]. Reshetnyak proves
the remarkable result that a mapping of bounded distortion is continuous
and either constant or open and discrete. For an exposition of the theory of
mappings of bounded distortion we refer the reader to the monographs by
Yu. G. Reshetnyak [26], by S. Rickman [27] and by T. Iwaniec and G. Mar-
tin [13]. Here continuity means that f has a continuous representative.
Openness of a continuous mapping f requires that the image of each open
set be open and the discreteness that the preimage of any point in R™ be
an isolated set of points in 2. Thus Reshetnyak’s result gives topological
conclusions from analytic assumptions.

V. Gol'dstein and S. K. Vodop’yanov showed later in [8] that even map-
pings of finite distortion in the Sobolev class W™ (2, R") are continuous.
Regarding discreteness and openness, the uniform boundedness of the dis-
tortion in the planar case was relaxed to the (local) integrability of the dis-
tortion for Sobolev mappings f € W1H2(Q, R?) by T. Iwaniec and V. Sverdk
[16]. In higher dimensions, the analog of this holds when Ko € LP(Q) for
some p >n—1and f € WE(Q,R?). It fails if p < n—1, [3], and it remains
unknown in the critical case of p = n — 1. For the positive results see the
papers [10] by J. Heinonen and P. Koskela and [19], [20] by J. Manfredi
and E. Villamor. Notice that in all these results we assume that the partial
derivatives of f are n-integrable.

The natural Sobolev setting for mappings of finite distortion is in the
space W1 (Q,R"), largely due to the wish to integrate the Jacobian deter-
minant by parts. However, matters are quite complicated if one does not
know a priori that the Jacobian is locally integrable or, even if so, whether
it coincides with the so-called distributional Jacobian. The first regularity
results below the natural setting were recently established by T. Iwaniec,
P. Koskela and G. Martin [11]. Assuming that J; € L1(Q) and e* € L1(Q)
for some sufficiently large A = A(n) they proved, among other things, that
in fact f € WH™(Q,R"). It then follows that f is continuous and either
constant or open and discrete. Also see [1] for further developments. The



standing conjecture is that one can take A = A(n) = 1 as the critical expo-
nent for the regularity conclusions; it is known that the L™-integrability of
the differential fails for any A < 1. The relevant examples are homeomor-
phic maps in W(Q,R") and, therefore, have locally integrable Jacobian
determinants.

Very recently, T. Iwaniec, P. Koskela and J. Onninen (c.f. [12]) veri-
fied that mappings with exponentially integrable distortion and integrable
Jacobian determinant are always continuous.

Theorem 1.2. Let f € WHL(Q,R™) satisfy the distortion inequality
Df(x)]" < K(x)J(z, ) ae

in Q, where K > 1 and exp(AK) is integrable for some X > 0. If the
Jacobian determinant of f is integrable, then f is continuous.

One consequence of our current work is that we also have discreteness
and openness for non-constant mappings as above.

Theorem 1.3. Let f € WHL(Q,R™) satisfy the distortion inequality
|IDf(2)|" < K(x)J(z, f) a.e.

in Q, where K > 1 and exp(AK) is integrable for some A\ > 0. If the
Jacobian determinant of f is integrable, then f is continuous and either
constant or both discrete and open. Conversely, there is a non-constant,
continuous mapping f € WH1(Q,R™) with integrable Jacobian determinant
and of distortion K with exp(AK/log®(1+ K)) integrable for some X that is
neither open nor discrete.

We will obtain Theorem 1.3 as a corollary to our more general results.
Theorem 1.3 is new even in the plane; see the work of G. David [5] for ex-
istence questions. For notational simplicity we do not formulate our results
here in the ultimate generality. See Sections 2 and 3 for even sharper results.

Theorem 1.4. Let f € WH(Q,R™) satisfy

e—0+

lim e/Q\Df(x)\”edx =0. (1.3)

If f has finite distortion K € LP(S)) for some p > n — 1, then f is con-
tinuous and either constant or both discrete and open. Conversely, there
is a continuous, non-constant f € WhHL(Q,R™) with integrable Jacobian, of
finite distortion K with exp(AK/log?(1 + K)) integrable for some X\, with
the Sobolev regqularity

limsupe/ |Df(z)|" “dr < 00
e—0+ Q

and so that f is neither open nor discrete.



Above, the assumptions in the first part of Theorem 1.4 guarantee that
the Jacobian determinant of f is (locally) integrable and that, in fact, the
point-wise Jacobian coincides with the so-called distributional Jacobian.
This fact plays a fundamental role in the proof. The continuity of f in
Theorem 1.4 is from [12].

A reader familiar with discrete and open mappings recognizes by The-
orem 1.4 that a mapping f satisfying our assumptions has to be sense-
preserving, that is, the topological degree is always strictly positive. This is
indeed part of our argument of proof for Theorem 1.4

Theorem 1.5. Let f € WHL(Q,R™) satisfy

li D "“Cdx = 0.
li e [ 1Df)"da
If f has finite distortion, then f is continuous and sense-preserving. Con-
versely, there is a continuous f € WHL(Q, R™) with integrable Jacobian, with
J(z, f) > 0 a.e., of finite distortion K with exp(AK/log?(1+ K)) integrable
for some A, with

limsupe/ |Df(x)|"¢dx < o0,
e—0+ Q

and so that f is not sense-preserving.

Theorem 1.5 gives very sharp criteria for one to conclude from analytic
assumptions that a mapping is sense-preserving. Observe from the example
giving the sharpness that the sign of the Jacobian determinant need not have
any global topological meaning, even for mappings with partial derivatives
in weak—L".

Our proofs are based on the following ingredients. First of all, our as-
sumptions guarantee that the Jacobian of f is (locally) integrable and that
the point-wise Jacobian coincides with the distributional Jacobian. This
does not only hold for f but also for certain modifications to f. Using this
we show that f preserves the divergence of smooth vector fields in a certain
distributional sense. This then results in a (weak) change of variables for-
mula that allows us to conclude that f is sense-preserving. Here we wish
to acknowledge the important contributions of T. Iwaniec and C. Sbordone
[15], V. Sverdk [28], and of S. Miiller, Qi Tang and B. S. Yan [23] that
gave us crucial ideas. The rest of the proof of discreteness and openness
follows ideas of J. Manfredi and E. Villamor [19], [20] that are a refinement
of the original argument of Yu. G. Reshetnyak [25]. Also see the work of
S. K. Vodop’yanov [30]. The example to show sharpness is based on ideas in
a construction by T. Iwaniec and G. Martin [14] and in the modification of
this construction by J. Maly [18]. We however need to substantially improve
on these previous examples.



In the next part, [17], of our program on mappings of finite distortion,
we will study the distortion of sets of measure zero under mappings of finite
distortion.

The paper is organized as follows: theorems giving sufficient conditions
for a mapping to be sense-preserving are proven in Section 2 and the results
concerning discreteness and openness in Section 3. In Section 4 we construct
a mapping that shows that our results are sharp in the above mentioned
sense.

2 Sense-preserving mappings

We consider a function space X (Q2) such that if g,h : Q — [0, 0] are mea-
surable, h € X(Q) and g < ch for some 0 < ¢ < oo, then also g € X(Q).
Furthermore, we assume that if f € WH1(Q,R™), [Df| € X(2) and J; > 0
a.e., then Jy € L1(Q) and the distributional Jacobian Det Df equals J; in
). This means that

/ 1) (@ (0 for e fu)) dr = / (@) (. f) de
Q Q

for all ¢ € C2°(€2). It suffices, for example, to require that (1.3) holds (see
[9, Corollary 4.1]). Note that then |Df| lies in a space that is between
L"log ' L and Na< 1 L"log® L (see e.g. [12, Section 2]).

We call f:Q — R" sense-preserving if deg(f, €, yo) > 0 for all domains
Q' ccQandall yg € f()\ f(O), where deg(f, ', yo) is the topological
degree of f at yo with respect to €. For the definition of the topological
degree see e.g. [7].

If A is a real n x n matrix, we denote the cofactor matrix of A by cof A.
Then the entries of cof A are a;; = (—1)""7 det A;;, where A;; is the ijth
minor of A, and cof A is the transpose of the adjungate adj A of A.

Theorem 2.1. Suppose that f € WLL(Q,R") is continuous, |Df| € X (Q)
and J; >0 a.e. and let V € C*(R",R"). Then

div((V o f)cof Df) = ((divV)o f)Jy (2.1)

holds in the sense of distributions in £, i.e.

|G @)t Dfa), Vola)) de = [ (@ V(@) o) de (2:2)
for all ¢ € C°(9).
Proof. Tt suffices to show that (2.1) holds for any Q' ccC Q.

Consider first the case V = (v,0,...,0), where v € C'(R"). Since a
general C'-function can be written, on a bounded set, as a difference of



two C'-functions whose first partial derivatives are nonnegative (take e.g.
vy (z) = v(z) +sup{|d1v(z)| : = € f()}z1 and v— = vy — v), we may, by
linearity of (2.1) with respect to V, assume that d1v > 0 on f(€'). Denote
g= (vof fo,..., fn). Then g € WHHQ,R"), |Dg| € X(Q) and J,(z) =
ow(f(x))Js(z) >0 ae. x € Q, whence J, € L' (Q') and Det Dg = J, in .
Now, for any ¢ € C°(€)'), we have

| V(@) eot D), Velal)do = [ 1) (0102, 190)) d

/

- [ e@iwg o
_ / (@ivV)(f (@) (@)olz) da

which means that (2.1) holds for V = (v,0,...,0) in .
A similar argument also applies to V = (0,...,v,...,0), and the general
case follows by the coordinate decomposition of V. O

Theorem 2.2. Let ) be bounded and suppose that V. € CHR™ R"), f €
C(QLRY) N WELQ R") and f(0Q) NsptdivV = (). Then there is ¢ €
C°(Q) such that ¢ =1 in spt((divV) o f) and

n

- [ V(@) <ot Df ), Vila)) do = [ div V() des(f Q) dy. (23)

Proof. To choose ¢, take an open set U’ C R™\ f(99) such that sptdivV C
U'and U' N f(0Q) = . Then U := f~Y(U’) cC Q is open and contains
spt((div V') o f). Now choose ¢ € C2°(€2) such that ¢ =1 in U.

If f is smooth, then the classical degree theory yields that (see e.g. [7,
Exercise 1.5])

/Q @ V@) o= [ vV de(f Q)dy. (24)

Since (2.2) holds for smooth mappings, it remains to use the assumption
that ¢ = 1 on the set where (divV)(f(x)) # 0 to conclude that (2.3) holds
for all smooth f.

In the general case, we find a sequence (f;) of smooth mollifications of f
that converges to f both uniformly in Q and in W1~ 1(G), where G CC
is an open set containing spt ¢. By uniform convergence and by the choice
of U, we have for large j that f;(92) NsptdivV =), ¢ =1 on the set where
(divV)(fj(z)) # 0, and deg(f;, 2, y) = deg(f,,y) for all y € sptdivV.
The claim follows now from by applying (2.3) to the mappings f; and letting
j tend to infinity. O



Theorem 2.3. Let Q be bounded and suppose that f belongs to C(Q,R™)N
Win=l(Q,R"), J; € LY(Q) and that (2.1) holds in the sense of distributions
for each Ve CYR™ R"). If n € C3(R") is such that f(02) Nsptn = 0,
then

/n(f(x))Jf(x) dw:/ n(y) deg(f, Q,y) dy. (2.5)
Q Rn

Proof. Let u € C?(R™) be a solution of Poisson’s equation Au = 7, that
is, div Vu = 7, and denote V' = Vu. Now the claim follows from (2.1) and
Theorem 2.2. O

Theorem 2.4. Let f € WH=1(Q,R") be continuous. Suppose that Jy €
LY(2), Jf >0 a.e. and that (2.1) holds in the sense of distributions for each
V € CYR™ R™). If f has finite distortion, then f is sense-preserving.

Proof. Let Q' cC Q and take yo € f(Q)\ f(9). We take an open ball B
centered at yg such that BN f(9Q) = () and a nonnegative smooth function n
with support in B such that 1(yg) > 0. Then by Theorem 2.3 and properties
of degree (it is constant on B)

deg(f. < o) /B n(y) dy = / n(f(2))Jy(x) dx. (2.6)

/

Denote

G={zeQ: n(f(z)) >0}
It follows from (2.6) that deg(f, €, yo) > 0. Suppose that deg(f, ', y0) = 0.
Then Jy = 0 a.e. on G and since f has finite dilatation, it follows that
|IDf| =0 a.e. on G. Hence f and thus also n o f are locally constant on G.
Since no f = 0 on G, we deduce that no f = 0 on G. This contradiction
shows that deg(f, €, yo) > 0. O

Since, by [12, Theorem 1.3], a mapping f € WH1(Q,R") of finite distor-
tion satisfying (1.3) is continuous (i.e. has continuous representative), we
obtain the first part of Theorem 1.5 as a corollary to Theorems 2.1 and 2.4.

According to [11, Section 7], a mapping f € WH(Q, R") with exponen-
tially integrable dilatation and with J; € L'(Q) satisfies (1.3), whence we
have the following corollary to Theorem 1.5.

Corollary 2.5. Suppose that f € WHL(Q,R™) has finite distortion K with

/ exp(AK (z)) dz < oo
Q

for some X\ > 0 and assume that Jp € LY(Y). Then f is continuous and
sense-preserving.

Similarly, we get the first parts of Theorems 1.3 and 1.4 as corollaries
to Theorem 3.1 below. The example of Section 4 gives the second parts of
Theorems 1.3, 1.4, and 1.5.



3 Discreteness and openness

Theorem 3.1. Let f € WH=H(Q,R") be continuous. Suppose that J; €
LY(2), J; >0 a.e. and that (2.1) holds in the sense of distributions for each
V e CYR™,R"™). If f has finite distortion K € LP(Q) for some p > n — 1,
then f is either constant or both discrete and open.

Proof. Suppose that f is not constant. By Theorem 2.4, f is sense-preserv-
ing. It suffices to prove that f is light (i.e. f~!(y) is totally disconnected for
all y € R™, that is, f~!(y) does not contain an arc) since a sense-preserving
light mapping is both discrete and open (see [29]).

We will prove that for all y € R™ there is s € (n — 1,n) such that the
s-capacity of f~!(y), denoted by cap, f~!(y), equals zero. This means that

hﬁ{/ W@P}zo
Rn

where the infimum is taken over all test functions g > 0 such that g €
Ls/(=s)(R™), |Vg| € L*(R™) and f~'(y) C int{g > 1} (for more about
capacity see e.g. [6]). Then the Hausdorff dimension of f~!(y) is smaller than
or equal to n—s < 1, and thus f~1(y) is totally disconnected. By considering
the translation f —y we may assume that y = 0, and that 0 € f(€2). Since
our argument is local in nature, we can assume that f € W1n 1(Q R"),
K € L?(Q) and that f(Q2) C B(0,e ¢) =.

Suppose that ® is a positive C?-smooth n-superharmonic function (i.e.
div(|[V®["=2V®) < 0) on the ball Q' such that ® > § > 0 and such that

Vo2V

Pn—1
is in the class C1(€),R™) with bounded partial derivatives. Since ® is n-
superharmonic, it follows that

V=

. Vo
divV < (1—n) o
Substituting this into (2.1) we obtain

diV(|vq>of|n-—2vq>of
(®o f)n~t

cof Df) = div((V o f)cof Df)

= ((divV)o f)Js
Voo f]"
=Gy

in the sense of distributions. Hence for any n € C1(Q), n > 0, we have

(VP o f)( )|"_2(V‘I’ o f)(z) -1
n/< 5 @) cof Df(x), n(x) Vn(z)>d$

/|V<1>O f)()"
f) ()"

J¢(z)n(x)" de.



It follows that

/|v<1> fzg(f J¢(x)n(x)" dx
|

o T n—1
“n—1 /Q (qu)o f)zg(c)7)1|1 | cof D f (z)|n(x)" ! |Vn(z)| dz.

Since
[cof Df ()] < e(m)| DS (@) < efn) (K (x)J5(x)) " /"

we have

/|v<1> IG Jf(:r)n(:r)”dx

|(V<I>0f)(w)|” N\ ey mm
<o) | ( o ) K@)y

Here, and subsequently, ¢(n) denotes a constant depending only on n which
might differ from occurrence to occurrence. Using the Holder inequality we
obtain

/‘vq)o (§ Jf(ﬂf)n(a:)"dxgc(n)/K(x)n1|V77(50)|nd90- (3.1)
(z Q

Now choose s € (n — 1,n) such that s/(n —s) < p. The Hélder inequality,
chain rule, and equation (3.1) yield

/Q IV (log @ o f)(«)|*n(z)* dz

< ([ wtogeo e 175 i) " ([ Ko ) o
" " s/n (n—s)/n
</ (Vo fg| |DI{'Eg| n(:c)"dx) (/S)K(I)S/(n_S)d:c)
o [ K vaord) B ([ wtr/n o a) o

Next we will employ the family ®, of functions of [20] that approximates
log(1/|z]) as a — 0, and use the functions log ®, o f as test functions for the
s-capacity of f~1(0).

(3.2)

Lemma 3.2. For each 0 < a < e~¢ there exists a function ®, : Q' — R
with the following properties:

(i) @, € C%(LY),



ii) ®,(y) > e for every y € Q,

iii) ¢, is radial,

iv) @4 (r) = @(lyl) <0,

v) @, is n-superharmonic,
vi) log(1/a) < @,(y) <log(l/a) +1/2+log2 for every |y| < a,

vii) ®4(y) = log(1/]yl) for a <yl < e,
(viil) [V®u(y)[" 2V ®a(y) € CH(,R").

Since f is non-constant in €2, there exists € € such that |f(z)| = 2b for
some b > 0. Set , = f1(B(0,b)). Then €, is open and contains f1(0).
Let U be a component of €, such that U N f71(0) # @ and K a compact
subset of U N f71(0). To show that cap, f~1(0) = 0 it suffices to show that
capy, K = 0.

Since T ¢ U, there exists g € 0U N C 9Q,NQ2. By continuity | f(zo)| =
b, and there exists ro > 0 such that |f(x)| > b/2 for every x € B(zo,r0).
Choose a ball B CC B(xg,79) NU. From the property (vii) it follows that
forx € B

(
(
(
(
(
(vi

log @4 (f(x)) = loglog(1/]f(x)]) < loglog(2/b) (3-3)

whenever a < b/2. On the other hand, by property (vi), we have that for
reK

log 4 (f(x)) = log ©4(0) > log(1/a).
Choose n € C°(U) such that n >0 and n > 1 in K. Set
n(z) log Pa(f(z))
oa(i/a)

Now V, > 0, V, > 1 in K and V, is absolutely continuous on almost all lines
parallel to the coordinate axes with the gradient

1
og7a) (V08200 N)@)n() + (og a0 )(@)Va(z)).

Moreover, V, € L"/(m=s)(R") since V, is continuous and has a compact
support. In order to use the functions V, as test functions to the s-capacity
of K we have to show that the gradient of V, is in L*(U) and estimate its
L*(U)-norm. Using (3.2) we obtain

Sy < 1)
/U|VVa(:E)| dx < Toa(1/a)

[( /U K (o) [Va(o)|" dx)S/n( /U K (2)*/9) dx)(n_S)/n (3.4)

- |(10g<1>aof)(x)\SIVn(x)\sdx]-

Va(z) =

VValz) =

10



The first term in the right hand side of (3.4) is bounded independently
of a. The second term is finite, and we will show that it is also bounded
independently of a. We will use the following standard consequence of the
Poincaré inequality.

Lemma 3.3. Let G C R” be a domain with smooth boundary and B C G
an open ball. Then there exists a constant C' such that for all u € W*(G)

we have
/G|u($)|sdx <C </G|Vu(x)|s dx+/B|u(:E)|sdx> :

Applying Lemma 3.3 to a domain G CC 2 for which sptn C G and to
the function log ®, o f we get

/ (10884 0 f)() | Vn(@)]* d < c(. 5) / (log @4 0 f)(2)|* da
v ¢ (3.5)

< cn.5,0) ([ [Vogae Nl de+ [ [tog,0 polar).

By (3.3) the second term on the right hand side of (3.5) is bounded inde-
pendently of a < b/2. This is also the case with the first term: Choose a
nonnegative 7, € C2°(Q2) for which n,|G > 1. Then by (3.2) we have

/G 1V (log @, 0 f)(z)]* dz < /Q 1V (log @, o f)(2)|n,(x)° da

< ¢(n) ( /Q K (@)™ Vi, ()" d:c>s/n < /Q K ()" =9 da:) I a6

Sc(n,s,nc)< /Q K(x)”_ldﬂc>8/n ( /Q K ()09 dx) o

Thus also the second term in the right hand side of (3.4) is bounded inde-
pendently of a, whence

/ VVa(@)|f dz — 0
U

as a — 0. This implies that cap, K = 0. U

4 An example

We will construct a continuous mapping f : Qo = [0, 1] — R™, n > 2, which
has the following properties:

(a) f € WhH(Qo,R"), f is differentiable almost everywhere, and

sup e/Q |IDf(z)["“dx < oc. (4.1)

O<e<1

11



(b) The Jacobian determinant J¢(z) is strictly negative for almost every
x € Qqp, and

/ ¢ (x)| dar < oc. (4.2)

Qo

¢) The dilatation K(z) = 2L@" is finite almost everywhere and there
|/ ()]
exists A > 0 such that

/Qo exp (%) dz < oo. (4.3)

(d) f does not satisfy Lusin’s condition N: there is a set N C Qg of measure
zero so that f(IN) has positive measure.

(e) f is neither open nor discrete.

(f) f fixes the boundary Q¢ and thus deg(f, 9Qo,y) = 1 for all y € int Q.

Let us next describe how to obtain a mapping as referred to in The-
orems 1.3, 1.4, and 1.5 using f. Let @ C R™ be any cube with sides
parallel to coordinate axes. By scaling, shifting and changing the sign of
the first coordinate function of the mapping f, we get a continuous map-
ping fo : @ — R" for which Jy, > 0 ae. in Q, (4.1), (4.2) and (4.3)
hold and fg|Q(x) = (—z1,22,... ,z,) whence deg(fg,0Q,y) = —1 for all
y € fo(@)\ fo(0Q).

Consider a finite collection @Q of closed cubes @ with pairwise disjoint
interiors and sides parallel to coordinate axes such that Q@ C Ugeo@ and
Q' C Q for some Q' € Q. Define g to be fg in each @ € Q. Then
g : © — R™ is a continuous mapping such that J, > 0 a.e. in Q, (4.1),
(4.2) and (4.3) (and (d)) hold with f replaced by g and deg(g,0Q’,y) = —1
for all y € g(Q') \ g(0Q") # (). Thus g is not sense-preserving. Moreover, by
(e), g is neither open nor discrete.

We now move on to the construction of f after introducing some nota-
tions and stating a preliminary lemma. Besides the usual euclidean norm
lz| = (23 4 ... + 22)Y? we will use the cubic norm ||z|| = max; |z;|. Using
the cubic norm, the zg-centered closed cube with edge length 2 > 0 and
sides parallel to coordinate axes can be represented in the form

Qzo,r) = {z € R": & — o] <7}

We then call r the radius of Q. Let us denote cQ(xg,7) = Q(zg, cr) if ¢ > 0.
We will use the notation a < b if there is a constant ¢ > 0 (not depending
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on (integration) variables or summation indices) such that a < ¢b, and we
write a =~ bif a < b and b < a.

We will be dealing with radial stretchings that map cubes Q(0,r) onto
cubes.

Lemma 4.1. Let p: (0,00) — (0,00) be a strictly monotone, differentiable
function. Then for the mapping

flz) = ﬁp(ﬂxm, z#0
we have
Df(2)]/e(n) < max {”(||'Lj"'), |p'<ux||>\} < e(m|Df(x)
and

A (=D edl=h"

Jf(x)/c(n) < [T

< c(n)Jy(z)

where ¢(n) depends only on n.

Proof. An elementary reasoning shows that for the mapping

g(x) = ;—|p<|x|>

we have

Dy(a)| = max{p(“j‘), |p'<\x\>\}

¢ () p(la])™
T

and

Jg(x) =
The Lemma follows by considering the decomposition f = h™! o go h, where

]l
hz)=—z=
||
(i.e. h is the matural’ stretching that maps each cube Q(0,7) onto the ball
B(0,7)). O

In the following, we will construct a sequence of continuous, piecewise
continuously differentiable mappings fi : Qo — R™. First we introduce a
sequence of compact sets in Qg whose intersection is a Cantor type set.

The unit cube Qo is first divided into 2" cubes with radius 1/4, which
are each in turn divided into a subcube with radius (1/4)/2 and a difference
of two cubes which we refer to as an annulus. The family Q; consists of
these 2" subcubes. The remainder of the construction is then self-similar.

13
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Figure 1: Families Q7 and Qs.

The subcube is divided into 2" cubes which are each in turn divided into
a subcube with radius 472/2 and an annulus. The family Qo consists of
these 22" subcubes (see Figure 1). Continuing this way, we get the families
Ok, k=1,2,3,..., for which the radius of Q € Q is 7(Q) = 4% /2 and the
number of cubes in Qy, is #Qy, = 2"F.

We are now ready to define the mappings fr. Define fo = id. We
will give a mapping f; that leaves the boundaries 9(2Q)), Q € Q; fixed,
turns each annulus 2Q) \ @ inside out and stretches the cube @ so that f; is
continuous (see Figure 2). The Jacobian determinant J; will be negative
in each annulus 2Q \ @ and positive in each cube Q. Next, fs equals f in
the annulae 2Q \ @, @ € Q;, turns each annulus 2Q \ Q, Q € Q,, inside
out, stretches the cube ) and shifts the image so that fs is continuous.
Moreover, Jg, is negative a.e. in Qg \ UQEQQ Q@ and positive in UQGQQ Q
We will then continue in this manner.

N1

Figure 2: The mapping f1 acting on 2Q, Q € Q.
To be precise, let fo =1id|Qp and for k = 1,2,3,... define

(fk—l(x) if € UQer 2Qa

T— () 1 1/log(2k)
fk(x): fk—l(Z(Q))+ak||x Z( )H (loglog || —Z( )H>

ifre2Q\Q, Qe Q.
fr—1(2(Q)) + bi(x—2(Q)) ifze@, Q€ s,
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where z(Q) is the center of the cube @ and aj and by are chosen so that fj
is continuous and fixes the boundary 0Q:

a1 = 1/(4(log log4)1/1052),
b1 = 2(log log 8/ log log 4)1/1°g2,

and, for k =2,3,4,...,

1 \1/log(2k) k
ag <log log m) =by-4"/2 and (4.4)
1\ 1/log(2k)
ay (log log H) = b_147. (4.5)

Remark. The ratio of the outer radius and the inner radius of the image
annulus in the level k is

1/log(2k)
ag <log log ﬁ)

B (log log 22k+1 ) 1/log(2k)

1 > 1/ log(2k) log log 922k

ag (log log =

that has the limit 1 as k — oo, i.e. the volume of the image annulus is small
compared to the volume of the cube fi(Q) for large k.

Next we will show that
ap ~ 27, (4.6)
By (4.4) a; ~ bp4d~*, whence it is enough to show that
by, ~ 2F. (4.7)
It follows from (4.4) and (4.5) that

log log 22k+1 ) 1/log(2k)

by, = 2bk71< log log 22k

forall k =2,3,4,.... Then

ﬁ (log log 227 +1 ) 1/log(2j)
et log log 227 ’

For (4.7) it suffices to show that the product

10—0[ <log log 22k+1 ) 1/log(2k)
log log 22k

15



converges. This happens if, and only if,
o
log log 22F+1\ 1/ log(2k)
S log <<Og0g72k> ° ) (4.8)
P log log 2

converges. Let us estimate the terms of this sum. Since logt ~t — 1 for ¢
close to 1, we have

log log 2241\ 1/1log(2k) 1 log log 22F+1
log (7> = log( )
log log 22k log(2k) log log 22k
1 loglog 2?1 —Joglog 2%¥
~ log(2k) log log 22k
1
1 log(1 + 57)
log(2k) log(2klog?2)
- 1
~ klog?(2k)
whence (4.8) converges.
Since
| frer1(@) — fr(@)] S ar(loglog(2 - 4F))1/1o8(ER) ~ ok
the sum

> N frri(@) = fi(@)]
k=1

and thus the sequence (fi) converges uniformly. Hence the limit f =
limy_, o fx is continuous. Clearly f is differentiable almost everywhere, its
Jacobian determinant is strictly negative almost everywhere, and f is abso-
lutely continuous on almost all lines parallel to coordinate axes.

To finish the proof of the properties (a) (¢) we next use Lemma 4.1 to
estimate |Df(x)| and |J¢(x)| at z € int (2Q \ Q), Q € Qx, k= 1,2,3,....
Denote 7 = ||z — 2(Q)|| = 4~ F and p(r) = ax(loglog(1/r))Y/1°8k)  Since

ol 1 p(r) ~ p(r)
[Pl = log(2k) - log(1/r) - loglog(1/r) r S T

we have

|Df(z)| = @ — %(]Oglog(l/r))l/log@k)

~ 2k(log(2k))1/log(2k) ~ 9ok
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and

@)~ (22" )

p(r) 1
( r ) IOg(Qk) : log(l/r) -log IOg(l/T‘) (4.10)
s 2kn #
klog?(2k)
Equations (4.9) and (4.10) yield
K(:L‘) = M ~ k(log(Qk))Q, (4‘11)

— r(@)
The measure of (Jgeo, 2Q is (2 4=kynonk ~ 2=kn and so for 0 < € < 1

9] oo
e/ IDf(@)|"Cdr S ey 27Fmaknm0 < ¢y "ok = ﬁ <C
Qo k=1 k=0 B

where C' < oo is a constant that does not depend on e. This proves (4.1),
and it follows that f € WbH'(Qg,R™). Alternatively, the fact that f €
W(Qp,R™) can also be seen without using the absolute continuity on
almost all lines from the above calculations because they show that the
sequence (fy) converges in WH1(Qy, R"). Similarly we prove (4.2) and (4.3):
|J¢(z)|dx S 27— ——— < — < 0.
o T 2" K(log(2k))? ~ £ k(log k)?
By (4.11) there is a constant 1 < ¢ < oo such that K(z) < ck(logk)? in
int (2Q\Q), Q € Qy, for k > 2, and since t — t/log?(1 +1) is increasing for
large ¢,

o () 25 2o (it i)

k=3
0o 00

< 22—kn eXp(/\ck) _ Z(e(:/\—nlogQ)k < 00
k=3 k=3

if we choose A > 0 such that Ac < nlog?2.
We prove the property (d) by showing that

@< (N U Q)

k=1Q€eQy

From the construction it follows that for each £k =1,2,3,...

(U@ cn( U 20 cha( U @)

QeQy QEQr+1 QEQr+1
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Since Qo C f1 (UQegl Q), denoting

Hk':UQ
QEQy

we have Qo C fr(Hy) C fi(Hy) for all I > k > 1. Now (H},) is a decreasing
sequence of compact sets, whence

Qo< N At () £ < £ () H)
k=1

k=11>k k=1

Notice that f is not open: it follows from the construction that f(9Qq) =
0Qo C f(int Qo) whence f(Qo) = f(int Qo). Because f(Qg) is a nonempty

compact set, f(int Qg) is not open. To prove non-discreteness of f let

Gk:Uf< U int2Q\Q).

Ik Qe

Then the sets Gy are dense and open, and by the Baire category theorem
their intersection is nonempty. But if y € NG, then f!(y) is an infinite
compact set and thus it is not discrete.

The property (f) is clear from the construction.

Remark. dimgy (72, Uoea, Q) =n/2 (see e.g. [21, Theorem 4.14]).
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