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ABsTRACT. We consider coupled map lattices close to an uncoupled expanding map
and show that typically they have infinite number of SRB-measures. In particular,
we give a counter example to the Bricmont-Kupiainen conjecture.

1. INTRODUCTION

The question of the uniqueness of SRB-measures (Sinai, Ruelle, Bowen) for cou-
pled map lattices has been around for over a decade. Bunimovich and Sinai [BS]
studied expanding maps of the unit interval with a special diffusive coupling over
one-dimensional lattice Z. They showed that the system has an invariant Gibbs
state whose projections onto finite-dimensional subsystems are absolutely continu-
ous with respect to the corresponding Lebesgue measure. In [BK1] Bricmont and
Kupiainen proved the existence of a SRB-measure for analytic expanding circle
maps in the regime of small analytic coupling over d-dimensional lattice Z¢ and
conjectured the uniqueness of this SRB-measure. In [BK2] they extended the ex-
istence result for special Holder continuous functions. They also proved that the
SRB-measure is unique in the class of measures for which the logarithm of the den-
sity is Holder continuous. In [J] it was shown that all these results remain true if
one replaces the circle by any compact Riemannian manifold. Jiang and Pesin [JP]
considered weakly coupled Anosov maps and proved the existence and uniqueness
of certain equilibrium states which they called SRB-measures.

The answer to the question of the uniqueness of SRB-measures for coupled map
lattices may depend on the definition of the SRB-measure. For finite-dimensional
expanding systems one definition for a SRB-measure is that it is an invariant mea-
sure which is absolutely continuous with respect to the Lebesgue measure. Accord-
ing to another definition it is an equilibrium state for a certain potential function
obtained from the derivative of the map. For finite-dimensional systems the unique-
ness of this equilibrium state implies the equivalence between these definitions since
the equilibrium state is ergodic and equivalent to the Lebesgue measure. Thus the
ergodic decomposition and the mutual singularity of ergodic measures implies the
uniqueness of the SRB-measure.
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For coupled map lattices the absolute continuity with respect to the Lebesgue
measure of the whole infinite system does not give a good definition for a SRB-
measure. The reason for this is that the natural candidates for uncoupled expand-
ing maps are typically singular with respect to the Lebesgue measure. A reasonable
condition, used by Bricmont and Kupiainen in [BK1,BK2], is to demand that all
the projections onto finite-dimensional subsystems are absolutely continuous with
respect to the corresponding Lebesgue measure. Jiang and Pesin in turn used an
extension of the equilibrium state definition. In statistical physics the equilibrium
states are the natural measures since the potential is the primary (physical) object
to study. However, one might argue that, although being extremely useful, po-
tentials and equilibrium states are secondary concepts in the theory of dynamical
systems. So the absolute continuity is perhaps more fundamental property and we
will concentrate on the SRB-measures & la Bricmont and Kupiainen.

In this paper we will construct a coupled map lattice which has infinite number
of SRB-measures in the sense of Bricmont and Kupiainen (see Theorem 3.4). We
also argue that our example is not just a curious artificial system but it manifests
a typical behaviour.

2. PRELIMINARIES

Our main motivation comes from the well-known projection results in R" stating
that the projections of a Radon measure p onto almost all m-planes are absolutely
continuous with respect to the m-dimensional Lebesgue measure provided that the
m-energy of p is finite [M, Theorem 9.7]. Our strategy is to use the fact that
expanding maps have small invariant sets (and measures) in the sense that their
dimensions are less than the dimension of the ambient manifold. For example, the
%—Cantor set is invariant under the map x — 3z mod 1. If one takes a finite n-fold
product of these Cantor-sets, one will obtain a set which is invariant under the
corresponding n-fold product map. Of course, the dimension of this product set
is less than n, and so the natural Hausdorff measure living on the set, although
being invariant, is not a SRB-measure since it is not absolutely continuous with
respect to the n-dimensional Lebesgue measure. However, as n grows, the dimen-
sion of the product Cantor set grows. In particular, for each integer m one can
find n such that the dimension of the n-fold Cantor set is greater than m. By the
above mentioned projection result typical projections of the n-fold Hausdorff mea-
sure onto m-dimensional subspaces are absolutely continuous with respect to the
m-~dimensional Lebesgue measure. Of course, for this system the m-dimensional
subsystems are atypical and the projections onto them are not absolutely contin-
uous. Our idea is that a small coupling will make these coordinate planes typical
ones. However, one has to be careful since in [HK] Hunt and Kaloshin proved that
these projection results are not valid in infinite dimensional spaces.

We adopt the very general formulation of projection results due to Peres and
Schlag [PS]. We begin by recalling the notation from [PS| which we will use later.

2.1. Definition. Let (X,d) be a compact metric space, @ C R™ an open connected
set, and I : Q x X — R™ a continuous map with n > m. For any multi-index
. In|
n=(M,-..,M) € N*, let|n| =3, n; be the length of it, and " = (ael)ma...n(am)”"
where € = (e1,...,&n) € Q. Let L be a positive integer and 6 € [0,1). We say that
I € CL9(Q) if for any compact set Q' C Q and for any multi-index n with |n| < L
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there exist constants Cy, o' and Cs g such that

0"T1(e, z)| < Cyp.r and sup |07 (e, z) — 0" TI(e, z)| < Cs.orle — €|
|n'|=L

foralle,e € Q' and z € X.
Next we will give a definition of a subclass of C(Q) from [PS].
2.2. Definition. Let II € CL9(Q) for some L and §. Define for allz #y € X

H(G, .’L') - H(67 y)
d(z,y)
Let B € [0,1). The set Q is a region of transversality of order B for 11 if there

exists a constant Cg such that for all e € Q and for all x # y € X the condition
@, (€)| < Cpd(z,y)P implies

gy (e) =

det(D®, ,(e)(DP, 4 (e))") > Chd(z, y)*.

Here the derivative with respect to € is denoted by D and AT is the transpose of a
matrix A.

Further, 11 is (L, d)-reqular on @Q if there exists a constant Cg s and for all
multi-indices n with |n| < L there exists a constant Cg, such that for all €, € Q
and for all distinct x,y € X

|8n¢w,y(€)| < Cﬂ,nd(wa y)_mnl

and

sup |07 ®qy(€) — 0" Dqy(€')] < Cp psle — €'’ d(z,y) PETD.
[n'|=L

2.3. Remark. Note that if the determinant in Definition 2.2 is bounded away
from zero then Q is a region of transversality of order B for all B € [0,1).

2.4. Definition. Let u be a Borel measure on X and o € R. The a-energy of u
18

Eal) = /X /X d(z, y)~dpu(z)du(y).

We denote the image of a measure g under a map f : X — Y by f.u, that
is, fap(A) = u(f~1(A)) for all A C Y. The following theorem from [PS] gives
a relation between Sobolev-norms of images of measures under C*%(Q)-mappings
and energies of original measures.

2.5. Theorem. Let Q C R" and I1 € CL9(Q) such that L+6 > 1. Let B € [0,1).
Assume that Q) is a region of transversality of order B for I1 and that 11 is (L, 0)-
reqular on Q. Let p be a finite Borel measure on X such that E,(p) < oo for some
a > 0. Then there exist a constant ag depending only on m, n, and § such that for
any compact Q' C Q

Ml 20 < ool
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for some constant C, provided that 0 < (m+2v)(1+aof) < and 2y < L+6 —1.
Here || - ||2,4 is the Sobolev norm, that is,

vl = [ 16 PlePacm

for any finite compactly supported Borel measure on R™ where

p(E) = / ) e~ %2 dy(x)

1s the Fourier transform of v.
Proof. [PS, Theorem 7.3]. O

2.6. Remark. Let v be a finite compactly supported Borel measure on R™. If
lV]|2,0 < oo then v is absolutely continuous with respect to the Lebesgue measure
L™ and its Radon-Nikodym derivative is L*-integrable, that is, D(v, L") € L*(R")
(see (3.5)). Indeed, if v € L>(R™) then by the surjectivity of the Fourier transform
[SW, Theorem 2.3 p. 17] there exists f € L2(R™) such that f = ». Thus by [T,
Definition 1.7 p. 262] f = v as a distribution meaning that f = D(v, L™). Note also
that ||v||2,y < oo for v > n + 2 implies that D(v, L™) has L*-integrable derivatives
of order vy, that is, D(v, L™) € W) (R™). So by [SW, Lemma 3.17 p. 26] D(v, L™)
18 continuously differentiable.

3. REsuLTS

Let Q = [],4 5", where d > 1 is an integer and S* C C is the unit circle. We
use the notation Q = [[, S* for all A C Z%. For A C A C Z% let mp : Q — Qa
and 74 4 : Qx — Q4 be the natural projections. Let g > 0 and let A, : Q© — €2 be

such that its lift A, : Q@ — Q, where Q =[], R, is

(3.1) A(w)i=mi+ Y a2 " g(a)
lezd
for all i € Z¢ where |- | is a metric on Z%, ¢;; € (—&g,€) for all 4,1 € Z4 and g is

continuously differentiable and 1-periodic. (We use the covering map p : Q& —
such that [],4[0,1] is a covering domain. Then Ac =po A.op~1.)

Set E = [[;ay74(—€0,€0) and denote by £ the product over Z?x Z? of normalized
Lebesgue measures on (—eg, ). It is not difficult to see that A. is invertible for
all e € E provided ¢y is small enough (depending on |g’|). We fix such &y and set
T.= Ac.o Fo A1, where F : Q — Q is the product over Z? of maps z — 23 (or

¢t — 3t mod 1 if St is viewed as [0, 1]). Let K = [[,« K and p = [[,4 H®|x where K
is the 3-Cantor set on S* (or [0, 1]) and H?®|k is the restriction of the s-dimensional

Hausdorff measure to K with s = igg?’, (Note that s is the Hausdorff dimension of
K). Now (A¢).p is clearly Te-invariant, that is, (T¢)«(Ae)spt = (Ae)sp. Our aim is
to show that for £-almost all € the projection (7). (Ae).p is absolutely continuous
with respect to the Lebesgue measure on 2, for all finite A C Z¢.

Let A C Z®* We denote the restriction of A, to Q4 by Ac A, that is,

Aca(@)i =mi+ Y a2 lg(a)
lEA
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for all i € A. Set pp = [[, M|k and Kn = [[, K. Let A C A C Z% be such
that |A|s > |A| where the number of elements in A is denoted by |A[. Let E,, z =

[1Axi(—€0,€0) and let LAXA be the restriction of £ to E, i We will first show

that for £**A-almost all ¢ € E,, ; the measure (13 , o A, 5).5 is absolutely
continuous with respect to the Lebesgue measure on 2. As it will be indicated in
the proof of Proposition 3.2 this claim follows from Theorem 2.5.

In order to apply Theorem 2.5 we have to give some conditions on g. Since g
is 1-periodic and continuously differentiable there necessarily exists ¢ty € [0, 1] such
that g'(to) = 0. In order to satisfy the transversality assumption in Theorem 2.5,
we demand that g’ # 0 on K. More precisely, let b > 0 and let g be increasing on
[0,1/6] such that g(0) = 0 and g'(¢t) > b for all ¢ € [0, ;] for some 1/9 < t; < 1/6.
Define g(t + 1/6) =g(1/6 —t) for ¢t € [0,1/6] and g(1 — t) = —g(¢) for t € [0,1/3].
We extend g to the interval [1/3,2/3] such that g is continuously differentiable,
g([0,1]) € [-1,1], for some B > b we have [g’(t)| < B for all ¢t € [0,1], and
[g'(t)| > bforallte[1/3,1/3+t2] U[2/3 — ta,2/3] where 0 < t2 < 1/9.

Consider the second step in the construction of the Cantor set K. Call the chosen
intervals I;, i = 1,...,4, that is, I; = [0,1/9], I, = [2/9,1/3], Is = [2/3,7/9], and
Iy = [8/9,1]. Let z € K and A C Z%. Define & € K in the following way: For all
i € Alet Z; = ;. Forj € A = Z4N\Aset &; = zj ifz; € [1Uly, 3 = 1/6—(2;—1/6)
if x; € I, and Z; = 5/6 + 5/6 — z; if x; € I3. Note that with these definitions
g(Z;) = g(z;) for all j € Z¢ implying that mp o A(Z) = ma o Ac(z). Further, if
xj ¢ [—t1,t1] for some j € A€ then Z; € [—t1,t4].

Let z,y € K such that x; € I1 and y; € Iy for some ¢ € A. Then

Ac(y)i — Ac(®)i > yi — i — Z ea2” " Mg(y) — g(=)|

(3.2) > — T — Z ea2 UBly — x| >y — @ — Ceo > =

for ¢ small enough since y; — z; > 1/9. Thus the cubes at the second stage of
the construction of I with 7:th side I; will not overlap with cubes with ::th side I
under the projection mp o A, provided that ¢ € A. (The same argument works in
other cases as well, see (3.3) below.) More precisely, there exists a constant ¢ > 0
such that

(3.3) |ma 0 Ac(z) — a0 Ac(y)| > ¢

for all z,y € K with z; € I, UI4 and y; € I U I3 (or z; € I and Yi € I3) for some
i € A. Further, as in (3.2) we see that there exists ¢ > 0 such that |A(z); —1/6| > ¢
for all 7 € A and z € K, giving the existence of § > 0 such that

(3-4) iy © Ae(K) N [é

1
—9,-+46]=
g ol 0
for all 7 € A. We fix ¢y and § such that the above results hold.

3.1. Lemma. Let A C A C Z? be finite such that |Als > |A|. Set X; =
[[al-t1,t1]. Define 11 : Ey z x Xz — Qa by ll(e,z) = 755, 0 A _5(x). Then
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the assumptions of Theorem 2.5 are valid for § = 0, B = 0, and for all integers
L > 1. Further, £4(p3) < 00 for any |[A] < a < |Als.

Proof. We may replace 25 by R™ where m = |A|. Let ig € A. Note that X5 is a
compact metric space equipped with the metric

d(z,y)* =) 2720 Mgy — g%,
lek

Clearly Il € C10(E, ;) for all positive integers L since all the first order partial
derivatives are constants. Note that @)’ in Definition 2.1 will not play any role here
since all the estimates are independent of @'.

To check the transversality assumption in Definition 2.2, define for all z # y €
X5

~ 1I(e, z) — (e, y)
Po(9) = dz,y)

Fixi € A, k = (k1, k2) €A x A, and z ,y € X such that z # y. Then

Do, ik = 0ip 27 li—ks| g($k2) g(ykg)
v(€)es = die d(z,y)
where 6; ; is the Kronecker’s delta. Thus for ¢,5 € A

(DB (0D ()5 = oy o271 ) — g(w)?
’ leA

> 5i,jb22—|i—i0|—|j—i0|.
By Remark 2.3 the transversality assumption is valid for 8 = 0 with the constant
Cp = b™2~ Ziea li—iol
Finally, IT is obviously (L, 0)-regular (in fact (L, d§)-regular for all § € [0,1)) on
E, . i for all positive integers L. The last assertion follows from the well-known
properties of the Hausdorff measure H®|x (see [M, Chapter 8]). O

The following absolute continuity result follows from Theorem 2.5 and Lemma
3.1.

3.2. Proposition. Let A C A C Z% be finite such that |Als > |A|. Then for
LAXM _almost all € € E, 5 the measure (5,4 © A 3)x1g 18 absolutely continuous
with respect to the Lebesque measure on €2 .

Proof. By the arguments given before stating Lemma 3.1 we may replace 23 by
Xz = [Izl-t1,t1]. Lemma 3.1 and Theorem 2.5 give ||(75 , 0 A_5)«#z]l2,0 < o0

for L% almost all € € E Ax i Which by Remark 2.6 implies the claim. [

In Proposition 3.3 we will prove that one may replace Ae’ i by Ac and pg by pin
Proposition 3.2. For this purpose we use differentiation theory of measures. Let v
and A be Radon measures on R™. Recall that the lower derivative of v with respect
to A at a point x € R" is defined by

v(B(z,r))
(3.5) D(v, A\ z) = 11£Ii)lglf NB(@.r)

where B(z, ) is the closed ball with centre at 2 and with radius 7. If the limit exists
it is called the Radon-Nikodym derivative of v with respect to A and is denoted

by D(v, A, x). Further, v is absolutely continuous with respect to A if and only if
D(v, A\, z) < oo for v-almost all z € R™ [M, Theorem 2.12].
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3.3. Proposition. Let A C A C Z% be finite such that |A|s > |A| and let €, €
E,, i such that the conclusion of Proposition 3.2 is valid. Then for all € € E with
EaxA = €1 we have

D((ma 0 Ae)ups, LM, 2) < 00

for (ma o Ac)wp-almost all x € Q5. Here LA s the Lebesgue measure on 2p and
EAxA = (5ij)(i,j)eAx[x-

Proof. Let €,¢9 € E such that €,,z = €1, €5, = (€0)ixi> and (€0)gagze =
(€0)fexza = 0. Set ve = (ma 0 Ac)up and vo = (75 0 A 5)+pz- Then ve and v
are Radon measures with compact supports [M, Theorem 1.18]. It follows directly
from (3.1) that (A z)spz = (75 0 Ae,)«p, meaning that vg = (ma 0 Agy)«p. By
Proposition 3.2 the measure vy is absolutely continuous with respect to £, Set
m = |A|. We will first show that there exists a constant C' > 0 such that for all
r>0

(3.6) /Q Ve(B(z,7))dve(x) < C/Q vo(B(z,v/mr))dvy(z).

By [FO, Lemma 2.6] it is enough to prove that

(3.7) Y ow@<C Y w@)?

QEeD(r,A) QED(r,A)

where D(r,A) is the family of r-mesh cubes in R*, that is, cubes of the form
[lyr, (Iy +1)r) X -« X [Lyr, (I, + 1)7) where [; € Z for alli =1,...,m.

Let » > 0. Consider the cubes at the n:th stage of the construction of IC where
37" < r. Call this n:th stage approximation K(n). Setting Vo = A_ ;(Kz(n)) X
Kie(n) = A_z(Ki(n)) x Kze(n), we get Ae,(sptp) C Vo implying that sptvg C
wA(Vp). Here the support of a measure A is denoted by spt A.

Ifi € A and =,y € X = [[ga[—t1,t1] such that 23, = yy, for all k € A, then

(3.8) Ac(w)i — Acy)i = Y ea2 "M (G(@) — a(w))-

l€Ac

(Recall the discussion before Lemma 3.1 according to which we can assume that
z; € [—t1,t1] for all i € Z%). Note that the difference in (3.8) depends only on x;
for j € A°. Defining V, = Ac(K(n)), we have sptve C wa(Ve). Further, A.(x); =
A_j(z); for all i € A if 2; = 0 for all j € A° meaning that the restriction of V.
to the subspace Q5 C (2 equals A_z(Kz(n)) = A 3(Kz(n)). So by (3.8) V¢ is
obtained from Vj by tilting the rows of “cubes” above each “cube” in A_z(Kz(n))
in such a way that the amount of translation does not depend on z; for i € A. Thus
V. is obtained from vy by spreading around the “cubes” defining vy.

Let @Q € D(r,A). If there is Q' € D(r, A) such that a part of the “cubes” above
it in V are tilted above @} then the corresponding “cubes” above @ (in Vp) are
removed away by (3.8). Define

Ag ={Q € D(r,A) | WA(Ae(A;}\(Q' X X)) X X5.)) N Q # 0}
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Then for all Q' € Ag with ma(Ve) N ’/TA(AG(AZ}X(QI X Xj\a) X X3:)) NQ # 0 we
have Vo N (Q' x Xac) # (. Further,

(3.9) Q X Xpe = U Po(Q)
Q'eD(r,A)
QEAQ/
where

Po(Q) = {z € Q x Xae | ma(Ac(A_}(25) x 25.)) € Q'}.

€,

Observe that

(3-10) (Aeo)+1(Po(Q)) = (Ae)em(A(AZ (PR(Q"))))-

Note that by (3.8) the geometric shape of this partition is independent of @,
that is, if Q1 € D(r, A) with

QxXpe= |J Po(@),
Q'eD(r,A)
Q1€AQ/

then for all Q2 = 7(Q1) € D(r,A) (7 is a translation) we have

Q2 X Xpe = U (P, (Q"))-

Q'eD(r,A)
Ql EAQI

Naturally, this partition can be restricted to V5. Hence for all Q € D(r, A) there

are non-negative numbers pg(Q’) = VO(IQ) (Aey)+14(Po(Q")) adding to 1 such that

10(Q) = (Aep)s (@ X Xne) = Y (Ag)ut(Po(Q"))

Q'eD(r,A)
QEAQI
(3.11) = E Pe(Q)(Q).
Q'eD(r,A)
QEAQI

This gives by (3.10) that

(3.12) ve(Q) = D (Ae)uti(Per (@) = Y po(Qno(Q").

Q'€Aq Q'€eAq

The numbers pg(Q') depend on both @ and Py (Q'). Enumerating the partition
of @ x X given in (3.9) we get Q x Xpe = U; Po(i), where the geometric shape
of Pg(i) may vary as i varies. However, for all 4 and Q,Q € D(r,A) we have

P (1) = 7(Pq(i)) where 7 is the translation with @ = 7(Q). Hence the differences
in Pg(%) as Q varies and ¢ is kept fixed are due to the fact that the measure is not
evenly distributed inside horizontal |A|-dimensional slices of @ x Xc. Note that if

such a horizontal slice intersects an element Pg(Q’) of the partition (3.9), then, by
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(3.8), it may intersect only the elements Py(Q") where Q" is a neighbour of Q' in
D(r,A). Let N = 32l be the number of neighbours. We say that Q' and Q" are
related (Q' ~ Q") if there exists () such that Q',Q"” € Ag. Then by (3.11) and
(3.12)

NY @ Y w@)

QED(r,A) QED(r,A)

=N > > Y. 2e(@)pe(@")n(Q)?

QeD(r,A) Q'€D(r,A) Q" €D(r,A)
QEAy QEAgnH

- > D> D pe(Qpor(Q)re(Q)rn(Q")

QeD(r,A)Q'EAQ Q"EAQ

= > Y e (Qper(Q)(1(Q) — (@) +P >0

Q',Q"€D(r,A) QED(r,A)
QINQII Q’,QHEAQ

since the remainder P (which is due to the occasionally very generous compensation
factor V) is non-negative. This concludes the proof of (3.7).

Let o be the £A-measure of the m-dimensional unit ball. By [M, Theorem 2.12]
D(vp, L2, ) exists and is finite for £A-almost all 2. By Proposition 3.2 the same
is true for vg-almost all z. By Remark 2.6 we can choose D(vy, £*) as smooth as
we like by increasing A. In particular, it can be chosen to be uniformly continuous
so that one can find 79 > 0 such that vo(B(z, 7))o~ 'r~™ < max{2D(vy, LA, ), 1}
for all 0 < 7 < 79 and z € Q. Thus using Fatou’s lemma, (3.6), the theorem of
dominated convergence, and Theorem 2.5 together with Plancharel’s formula [SW,
Theorem 2.1 p. 16], we have

r—0

/ D(ve, L2, x)dve(z) = / lim inf v (B(z, 7))o tr ™dv, ()
< lim inf / ve(B(z,r))a " 'r~™dv. ()
guminfc/ o(B(,v/mr))a~r—dvy ()
_ /D vo, L2, 2)dvo(z)
/D(VO,EA )2dLA () < o0

Thus D(ve, £, z) is finite for ve-almost all z. O
3.4. Theorem. For L-almost all € the map T, has infinitely many SRB-measures.
Proof. For all finite A C Z¢, let

E,(A) = {e € E | (ma 0 A.).pu is absolutely continuous with respect to £*}.
By Propositions 3.2 and 3.3 and [M, Theorem 2.12] we get for all finite A C Z¢

L(By(A)) = 1.
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Defining

Acz?

|[Al<oo
we have L(FE,) = 1. Further, for all € € E; the measure (ma o A¢).p is absolutely
continuous with respect to £ for all finite A C Z%. Since by (3.4) the measure
(Ac)s«p is different from the SRB-measure constructed by Bricmont and Kupiainen
there are at least two SRB-measures. Instead of considering the standard Cantor
set one can study the Cantor set where the first two intervals are chosen and the
third one is removed. Defining g properly the above proofs work for both of these
sets. Since at each direction one can choose either of these Cantor sets and each
choice gives a different measure there are infinite number of SRB-measures. [

3.5. Remarks. 1) Note that if one takes any coupled map lattice which is close
to Ty in the sense that it has an invariant set close to K, one can repeat the above
arqguments. Thus one can decompose a suitable space of coupled map lattices into
leaves such that inside each leaf almost every system has infinitely many SRB-
measures. Thus the uniqueness of the SRB-measure is a very atypical situation.

2) One can use similar methods for coupled aziom A diffeomorphisms and show
that typically the projections of a SRB-measure onto finite dimensional subsystems
are absolutely continuous with respect to the corresponding Lebesque measure.

3) Note that by Theorem 2.5 and Remark 2.6 the densities of (mp o Ac)«pt are
smooth, in particular, Holder continuous. The uniqueness proof of Bricmont and
Kupiainen fails for these measures because there are regions where the density is
zero (see (3.4)) and thus one cannot take the logarithm of the densities.
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