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ABsTRACT. We study dimensional properties of porous measures on R™. As a corol-
lary of a theorem describing the local structure of nearly uniformly porous measures
we prove that the packing dimension of any Radon measure on R™ has an upper
bound depending on porosity. This upper bound tends to n — 1 as porosity tends to
its maximum value.

1. INTRODUCTION AND PRELIMINARIES

Porosity is a quantity that describes irregularities of fractals. The study of
dimensional properties featured by porous sets was pioneered by P. Mattila. In [M]
he verified the existence of a non-increasing function which gives an upper bound
for Hausdorff dimension of any set in R” as a function of porosity. Furthermore,
he showed that this upper bound tends to n — 1 as porosity tends to its maximum
value. In [S] A. Salli generalized the corresponding results for packing dimension
and established the correct asymptotic behaviour for the upper bound.

For measures the following definition of porosity was introduced in [EJJ].

1.1. Definition. The porosity of a Radon measure p on R* at a point x € R" is
defined by

(1.1) por(u, x) = lim lim inf por(u, z, r, €)
el0 rlO

where for all r,e > 0

por(p, xz,r,e) = sup{p > 0| there is z € R* such that B(z,pr) C B(z,r)
(1.2) and p(B(z,pr)) < ep(B(z,7))}.
The porosity of u is
por(u) = ess sup por(u, z)
TzER™
(1.3) = inf{s > 0 | por(p, ) < s for p-almost all x € R" }.
We will relate porosity of measures to packing dimension defined as follows.
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1.2. Definition. Let p be a Radon measure on R™. The packing dimension of u
i1s defined in terms of upper local dimensions

(1.4) dimp(p) =sup{s > 0 | limsup M

—~ > s for p-almost all x € R"}

1—00 1Og 2-
where D;(x) is the closed dyadic cube of side-length 2=¢ containing x. Equivalently
this definition can be given using packing dimensions of Borel sets with positive
[-measure

(1.5) dimp (p) = inf{dim,(A) | A is a Borel set with u(A) > 0}.

Replacing “liminf” by “limsup” in (1.1) gives the upper porosity of a measure,
which was studied by M. E. Mera and M. Mordn in [MM]. They showed that if u
satisfies the doubling condition, that is,

. w(B(z,2r))
e B r)

for p-almost all z € R™, then the upper porosity of p is either 0 or 1/2. (Above
B(z,r) is the closed ball with radius r and centre z.) Furthermore, for any non-
doubling measure the upper porosity equals 1. Note that the (lower) porosity may
obtain any value between 0 and 1/2 for both doubling and non-doubling measures.
The upper porosity is too weak for the purpose of obtaining a non-trivial upper
bound for dimension; for any p = 0,1/2,1 and 0 < d < n there exists a Radon
measure p with the upper porosity equal to p and with both Hausdorff and packing
dimension equal to d.

In this paper we will establish a connection between porosity and packing di-
mension for all Radon measures on R”. The case n = 1 was studied in [JJ]. In
[EJJ] the emphasis was given to doubling measures on R"™. For such measures the
porosity can be given in terms of porosities of Borel sets with positive measure:

por(u) = sup{por(A) | A is a Borel set with pu(A) > 0}.

(The doubling condition is necessary here, see [EJJ] for details.)

We will generalize the results of [JJ] to higher dimensions by verifying that the
packing dimension of any Radon measure on R" is bounded above by a function
that depends on porosity and by showing that this upper bound goes to n — 1 as
porosity tends to its maximum value 1/2. In particular, the packing dimension of
any Radon measure on R™ having porosity close to 1/2 cannot be much larger than
n— 1.

Our main tools are a dimension estimate obtained from the strong law of large
numbers and a description of the local structure of nearly uniformly porous mea-
sures. The latter one states that for a given nearly uniformly porous measure any
sufficiently small dyadic cube can be divided into three parts two of which having
small measure and the remaining one being a narrow boundary of a convex set (see
Theorem (2.1)).

We conclude this section by recalling the following lemma from [JJ] according
to which we may replace any measure by a nearly uniformly porous measure when
estimating packing dimension from above.
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1.3. Lemma. Assume that p is a Radon measure on R™ such that por(u) > p.
Let 0 < § < 1. Then there is a Radon measure ps with compact support spt(us) C
spt(p) and with dimy(ps) > dimy(p) such that the following property holds: there
exists €5 > 0 such that for all 0 < ¢ < g5 there are a Borel set Bs. and r5. > 0
with ps(R™ \ Bse) < dus(R™) and

)
por(us, ¢, r,€) > p — 3

forallz € Bse and 0 <7 <7s,.

Proof. See [JJ, Lemma 2.2]. O

2. LOCAL STRUCTURE AND DIMENSIONAL PROPERTIES

For all positive integers ¢ we use the notation D; for the family of dyadic cubes
in R* with side-length 27¢. For all Q € D; and for all positive integers k, let
N*(Q) C D; be the family of the (2k + 1)" neighbouring dyadic cubes of Q with
side-length 27% being located symmetrically around @ (including Q itself).

For all § > 0, a §-plate is a $-neighbourhood of an (n — 1)-dimensional affine
subspace of R". An affine §-boundary of a polyhedron P is the union of parts of
o-plates clued on all faces of P such that the union of P and its affine §-boundary
is a polyhedron obtained by magnifying P.

The following theorem describes the local structure of porous measures by stating
that in all sufficiently small dyadic cubes such measures are essentially concentrated
on a narrow boundary of some convex set.

2.1. Theorem. Assume that j is a Radon measure on [0,1]™ such that por(u) >
%(1 —pB) for0 < g < 1—18. Let K be a positive integer. For all 0 < 6 < % let ps
and €5 be as in Lemma 1.3. Let 0 < € < €5. Then there is a positive integer g
depending on K, §, and € such that for all i > iy any cube Q € D; can be divided
into three disjoint (not necessarily non-empty) parts

(2.1) Q=FEUPUI

where
/1,5(E) < CgNE

for an integer N depending on K, 6, and 8 and for Cg = maxpenk (@) Ms(D),
P is an affine 05,52_i—b0undary of a convex polyhedron with Cg s = 6K (8 + 6) +
m, and I C Q\ Bse. Here Bs. is as in Lemma 1.3.

Proof. Let 75, be as in Lemma 1.3 and let ¢y be the smallest integer such that
(1+K)27% < 5. Consider an integer ¢ > 4. Note that for those @ € D; which do
not intersect By . equality (2.1) is trivial. Let @ € D; such that QNBs e # 0. Setting
ry = dist(z,0Q) + K27 for all € Q N Bs., we have B(z,7,) C Upenx(g)D-
Lemma 1.3 implies that for all x € Q N Bs, there is a ball B, with radius ¢r, =
3(1 = B — &)ry such that B, C B(z,r;) and

(2.2) us(Ba) < (2K +1)"Cle.
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Set a/™ = 2K (1 — 2¢)a!/™ where a = L"(B(0,1)) is the Lebesgue measure of
the unit ball. Then there are integers N(a) > N(a,Q) > 0 for which there are
T1,---,TN(a,Q) € QN Bse such that

j—1
£((Bo, NN\ | By ) = a£™(@)
k=1
forall j=1,...,N(a,Q) and
N(a,Q)
(2.3 e (Bn@\ U Ba) <a"(@
k=1

for all x € Q@ N Bse such that z # z; for all j = 1,...,N(a,Q). (We use the
interpretation UY_; B, = 0. In the case N(a, Q) = 0 we have L"(B,NQ) < aL™(Q)
for all z € QN Bs.)

Define
N(a,Q) N(a,Q) . |
L= {y €Q\ |J B, |dist (y,a(Q\ U Bwk)) S 2(5)1/712—1}.
k=1 k1
Then
(2.4) B, AL =0

for all x € I; N Bs . In fact, assuming that B, = B,, for some j = 1,..., N(a,Q),
equality (2.4) holds. If B, NI # @ for some z € I, N Bs . with B, # By, for all
j=1,...,N(a,Q), then, as it will be indicated shortly, the set (BmﬂQ)\Usz((i’Q)Bmk
contains a ball with radius (a/a)/?2~* contradicting (2.3). To find such a ball, take
z € ByNI;. Then B(z,2(a/a)Y/"27%) C Q\UkN:((i’Q)Bmk. Since (a/a)t/"27¢ < Lgr,,
the ball B, contains a ball with radius (a/a)'/?2~* having z on its boundary such
that the centre of the ball belongs to the line going through z and the centre of B,.
Clearly this ball is a subset of @ \ Usz(‘;’Q)Bmk. This completes the proof of (2.4).
Set

N(a,Q) N(a,Q)

I, = {y eQ\ |J B, |dist (y,a(Q\ U Bxk>> > 3(%)1/"2—1}.
k=1 k=1

Then I C @\ Bs,. To see this, assume that there exists € Iy N B;s .. From (2.4)
we get
a

dist(z,0B,) > (=)Y/"27" = 2K (1 — 2¢)27".

o

On the other hand dist(z,0B,) < 7,(1 —2q) < (K + 1/2)(1 — 2¢9)2~%* Hence
I, C Q \ B5’5. '
Let B, = B(zk,qrs,). Since qLK2_Z is an upper bound for the height of a

segment of any ball with radius ¢r, having chord with length at most /n27,
the intersections of each of the annuli B(zy, gr; + 3(a/a)/"27%) \ B,, and @ can
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be included in a C’ﬂ,52_i—plate. Adding parts of the affine Cg s-boundary of @ if
necessary concludes the construction of P. Setting

I=L\P
and
N(a,Q)
E=Q\(Pulc@n (J B,
k=1
equality (2.1) follows since
N(a,Q)
ps(QN | Bs) < N(a)2K +1)"C§e
k=1

by (2.2). O

Let u be a Radon probability measure on [0, 1]™ such that u(V') = 0 for all affine
hyperplanes V' C R". Letting k be a positive integer set I = {1,...,2%"}. For all
positive integers j, denote by I’ the set of all j-term sequences of integers belonging
to I and by I°° the corresponding set of infinite sequences, that is,

13:{(21,,ZJ)|Zl€IfOI'aHl:1a’J}

and
I°° = {(iy,i9,...) | g e [ foralll =1,2,...}.

Divide [0, 1] into 2*" dyadic subcubes, enumarate them and denote them by Dj,
j=1,...,2F" Define f :[0,1]" — [0,1]" by setting f(x) = 2¥x mod 1. For each
z € [0,1]" we define a sequence i® = (iy,ia,...) € I*® such that f=1(z) € D;,
for all I = 1,2,.... Note that for all x = (z1,...,x,) the sequence i* is unique
unless z; is a dyadic rational for some j = 1,...,n. For a positive integer [ and
i= (i1,d9,...) € I® let i|; = (i1,...,4;) € I' be the sequence of the first I digits of
iand for all j = 1,...,2%" let n;(i|;) be the number of j’s in i|;.

We can attach a sequence (P) of probability measures on I to p such that for
all j = 1,...,2% P¥({j}) gives the probability that the l:th digit (in the above
representation) of a random number (with respect to p) in [0, 1]™ equals j, that is,

Pr{iD = Y  wDi,.)
(i1,--i1) €L
Ww=j
where D, . ;, is the closed dyadic subcube of [0, 1]™ of side-length 27*! consisting of
points whose expansion begins with (i1,...,4;). The measures P} are well-defined
since u(V') = 0 for all affine hyperplanes V' C R®. We use the notation P* for the
product measure Hfil P/ on the code space I*°.

2.2. Proposition. Let p be a Radon probability measure on [0,1]™ such that
(V) = 0 for all affine hyperplanes V. .C R*. Letp < 27%" and L € 1. Assume that
lim sup;_, o, %2221 PY{j}) <p forallj=1,...,L. Then

. 1 1—Lp
dimy, p < “log 2k (Lplogp + (1 — Lp) log(2kn — L)) =: a(p, L).
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Proof. The strong law of large numbers [Fe, X.7.1] gives for all j = 1,..., L that

1
lim sup - n;(ifr) <p

l—o0

for P#-almost all i € I°°. Defining

Epr={z€l0,1]" | lifnsup%nj(imh) <pforalj=1,...,L},
— 00

this implies that p(E, ) = 1. Since E, 1, is a Borel set it is enough to prove that

dim,(Ep 1) < a(p, L).

Let p be a probability measure on I such that p({j}) = p forall j =1,...,L
and p({j}) = (1 — Lp)/ (2" — L) for all j = L +1,...,2%". Let v be the image of
the infinite product of the measures p under the map 7 : I*° — [0, 1]". Note that
since p < 27%" we have

1—Lp
—ulogp — (1 —u) log(2kn —7

) < a(p, L) log 2*

for all u < Lp. Let x € E} 1. The equality

L 2kn

. 1-Lp .
log v(Dyi(x)) = longnj(lﬂl) + log (an — L) Z n;(i%);)
=1 j=L+1
gives
ool (D () . K
hlrg(l;lf 7 log (W) > —log2”a(p, L) + tlog2

where Dy () is the dyadic cube of side-length 27*! containing z. Thus if ¢t > «a(p, L)

then lim inf;_, ”(gf,iﬁf’” = 00, implying

log(v(D
lim sup og(v( kzk(l:v))) <t
l—o0 1Og2_

By [Fa, Proposition 2.3 (d)] we get dimy(Ep 1) < a(p,L). O

Let k£ and 7 be positive integers. Dyadic cubes in Dg; form a brood if they belong
to the same dyadic cube belonging to Dy;_1). Note that each brood consists of 2kn
dyadic cubes. Given a measure p on R", order the cubes of every brood such that
p(D;) < u(Djyq) for all j =1,...,2%" Let Di (1) be the set of the j:th cubes of
all broods.

2.3. Theorem. Let u be a Radon probability measure on [0, 1]™ such that por(u) >
(1 =) for 0 < B < & and u(V) = 0 for all affine hyperplanes V. C R™. For
all 0 < 0 < 1—18 let us be as in Lemma 1.3. Then there is an integer L with
2k(B:0)n > [, > ok(B.0)n _ 9k(B,0)(n=1) yhere ¢ is a constant depending only on n
and k(B,6) — oo as § — 0 and B — 0 such that the following inequality is valid:
forall 3 =1,...,L we have

l
timsup s > 0 us(D) < dus([0, 1),

l—o00 P -
=1 DEDi,i(l"é)
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Proof. Let ko be the largest integer such that 8 + 6 < 272k, Set K = 2ko, Let
0 < e < es and let ¢ > 15 where €5 and iy are as in Theorem 2.1. Let k& be the
largest integer such that 2% > 4(6 + 4n)27%. Then 27% > 4Cp 5 where Cp 5 is
as in Theorem 2.1. Consider Q € Dy;. Let () = Eg U Py U Ig be the partition of
Q given in Theorem 2.1. Take any x € Pg. Then Dy;11)(z) and its neighbouring
cubes in Dg;41) cover a part of Py such that the L" 1-measure of the covered
part of both inner and outer boundary of Py is at least 2~ ("~ 2-kG+1)(n=1) By
the convexity of Py the £"!-measure of the outer boundary of P is less than
2n2k(n=1)  Hence we need at most 32"2n27~12k("=1) cybes from Dy (i41) to cover
Pgy. Thus there are L > 2k — 32n2p2n=12k("=1) cubes in Dy ;1) which belong to
Eq U lg. Clearly ps(Dj) < ps(Eq Ulg) for all j = 1,...,L. Theorem 2.1 and
Lemma 1.3 give

l l
. 1 . 1
h?_l,igpj Z Z ps(D) < limsup 7 Z ps(Eq U Ig)

=1 DEDfﬂ-(M&) 1=1 QEDy;
l

1

<limsup 7 > ((2K +1)"Ne + 6)5([0, 1]") — dp5([0, 1]").
e—0

l—o0 l i—1

Since kg — oo as 0 and [ tend to zero we may let k£ tend to infinity when 6 — 0
and 8 — 0. O

2.4. Corollary. Assume that i is a Radon measure on R*. If0 < 8 < 1 such
that por(v) > 1(1 — ), then dim,(v) < d(B) where d(8) > n—1 as B — 0.

Proof. The claim follows from Theorem 2.3 and from the obvious generalization
of [JJ, Lemma 3.3] (see [JJ, Corollary 3.4]) with d(8) = lims_,o (9, L) where L is
as in Theorem 2.3. Note that by the choices of k and ko in Theorem 2.3 we have
Cn(B+ 6)"Y2 < 28 < C,(B + 6)~/2 for constants C, and C,, depending only
on n. By the lower and upper bounds given in Theorem 2.3 for L we obtain that
d(8) > n—1when g —-0. O
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