POROUS MEASURES ON \mathbb{R}^n : LOCAL STRUCTURE AND DIMENSIONAL PROPERTIES

Esa Järvenpä \ddot{a}^1 and Maarit Järvenpä \ddot{a}^2

University of Jyväskylä, Department of Mathematics, P.O. Box 35, FIN-40351 Jyväskylä, Finland email: esaj@math.jyu.fi¹ and amj@math.jyu.fi²

ABSTRACT. We study dimensional properties of porous measures on \mathbb{R}^n . As a corollary of a theorem describing the local structure of nearly uniformly porous measures we prove that the packing dimension of any Radon measure on \mathbb{R}^n has an upper bound depending on porosity. This upper bound tends to n-1 as porosity tends to its maximum value.

1. Introduction and preliminaries

Porosity is a quantity that describes irregularities of fractals. The study of dimensional properties featured by porous sets was pioneered by P. Mattila. In [M] he verified the existence of a non-increasing function which gives an upper bound for Hausdorff dimension of any set in \mathbb{R}^n as a function of porosity. Furthermore, he showed that this upper bound tends to n-1 as porosity tends to its maximum value. In [S] A. Salli generalized the corresponding results for packing dimension and established the correct asymptotic behaviour for the upper bound.

For measures the following definition of porosity was introduced in [EJJ].

1.1. Definition. The porosity of a Radon measure μ on \mathbb{R}^n at a point $x \in \mathbb{R}^n$ is defined by

(1.1)
$$\operatorname{por}(\mu, x) = \lim_{\epsilon \downarrow 0} \liminf_{r \downarrow 0} \operatorname{por}(\mu, x, r, \epsilon)$$

where for all $r, \varepsilon > 0$

$$por(\mu, x, r, \varepsilon) = \sup\{p \ge 0 \mid \text{ there is } z \in \mathbb{R}^n \text{ such that } B(z, pr) \subset B(x, r)$$

$$(1.2) \qquad \qquad and \ \mu(B(z, pr)) \le \varepsilon \mu(B(x, r))\}.$$

The porosity of μ is

$$por(\mu) = \underset{x \in \mathbb{R}^n}{\text{ess sup por}(\mu, x)}$$

$$= \inf\{s \ge 0 \mid por(\mu, x) \le s \text{ for } \mu\text{-almost all } x \in \mathbb{R}^n\}.$$

We will relate porosity of measures to packing dimension defined as follows.

¹⁹⁹¹ Mathematics Subject Classification. 28A12, 28A80.

1.2. Definition. Let μ be a Radon measure on \mathbb{R}^n . The packing dimension of μ is defined in terms of upper local dimensions

$$(1.4) \quad \dim_{\mathbf{p}}(\mu) = \sup\{s \ge 0 \mid \limsup_{i \to \infty} \frac{\log \mu(D_i(x))}{\log 2^{-i}} \ge s \text{ for } \mu\text{-almost all } x \in \mathbb{R}^n\}$$

where $D_i(x)$ is the closed dyadic cube of side-length 2^{-i} containing x. Equivalently this definition can be given using packing dimensions of Borel sets with positive μ -measure

(1.5)
$$\dim_{\mathbf{p}}(\mu) = \inf \{ \dim_{\mathbf{p}}(A) \mid A \text{ is a Borel set with } \mu(A) > 0 \}.$$

Replacing "liminf" by "limsup" in (1.1) gives the upper porosity of a measure, which was studied by M. E. Mera and M. Morán in [MM]. They showed that if μ satisfies the doubling condition, that is,

$$\limsup_{r \to 0} \frac{\mu(B(x, 2r))}{\mu(B(x, r))} < \infty$$

for μ -almost all $x \in \mathbb{R}^n$, then the upper porosity of μ is either 0 or 1/2. (Above B(x,r) is the closed ball with radius r and centre x.) Furthermore, for any non-doubling measure the upper porosity equals 1. Note that the (lower) porosity may obtain any value between 0 and 1/2 for both doubling and non-doubling measures. The upper porosity is too weak for the purpose of obtaining a non-trivial upper bound for dimension; for any p=0,1/2,1 and $0 \le d \le n$ there exists a Radon measure μ with the upper porosity equal to p and with both Hausdorff and packing dimension equal to p.

In this paper we will establish a connection between porosity and packing dimension for all Radon measures on \mathbb{R}^n . The case n=1 was studied in [JJ]. In [EJJ] the emphasis was given to doubling measures on \mathbb{R}^n . For such measures the porosity can be given in terms of porosities of Borel sets with positive measure:

$$por(\mu) = \sup\{por(A) \mid A \text{ is a Borel set with } \mu(A) > 0\}.$$

(The doubling condition is necessary here, see [EJJ] for details.)

We will generalize the results of [JJ] to higher dimensions by verifying that the packing dimension of any Radon measure on \mathbb{R}^n is bounded above by a function that depends on porosity and by showing that this upper bound goes to n-1 as porosity tends to its maximum value 1/2. In particular, the packing dimension of any Radon measure on \mathbb{R}^n having porosity close to 1/2 cannot be much larger than n-1.

Our main tools are a dimension estimate obtained from the strong law of large numbers and a description of the local structure of nearly uniformly porous measures. The latter one states that for a given nearly uniformly porous measure any sufficiently small dyadic cube can be divided into three parts two of which having small measure and the remaining one being a narrow boundary of a convex set (see Theorem (2.1)).

We conclude this section by recalling the following lemma from [JJ] according to which we may replace any measure by a nearly uniformly porous measure when estimating packing dimension from above.

1.3. Lemma. Assume that μ is a Radon measure on \mathbb{R}^n such that $\operatorname{por}(\mu) \geq p$. Let $0 < \delta < 1$. Then there is a Radon measure μ_{δ} with compact support $\operatorname{spt}(\mu_{\delta}) \subset \operatorname{spt}(\mu)$ and with $\dim_{\mathbf{p}}(\mu_{\delta}) \geq \dim_{\mathbf{p}}(\mu)$ such that the following property holds: there exists $\varepsilon_{\delta} > 0$ such that for all $0 < \varepsilon \leq \varepsilon_{\delta}$ there are a Borel set $B_{\delta,\varepsilon}$ and $r_{\delta,\varepsilon} > 0$ with $\mu_{\delta}(\mathbb{R}^n \setminus B_{\delta,\varepsilon}) \leq \delta\mu_{\delta}(\mathbb{R}^n)$ and

$$por(\mu_{\delta}, x, r, \varepsilon) > p - \frac{\delta}{2}$$

for all $x \in B_{\delta,\varepsilon}$ and $0 < r \le r_{\delta,\varepsilon}$.

Proof. See [JJ, Lemma 2.2].

2. Local structure and dimensional properties

For all positive integers i we use the notation \mathcal{D}_i for the family of dyadic cubes in \mathbb{R}^n with side-length 2^{-i} . For all $Q \in \mathcal{D}_i$ and for all positive integers k, let $\mathcal{N}^k(Q) \subset \mathcal{D}_i$ be the family of the $(2k+1)^n$ neighbouring dyadic cubes of Q with side-length 2^{-i} being located symmetrically around Q (including Q itself).

For all $\delta > 0$, a δ -plate is a $\frac{\delta}{2}$ -neighbourhood of an (n-1)-dimensional affine subspace of \mathbb{R}^n . An affine δ -boundary of a polyhedron P is the union of parts of δ -plates clued on all faces of P such that the union of P and its affine δ -boundary is a polyhedron obtained by magnifying P.

The following theorem describes the local structure of porous measures by stating that in all sufficiently small dyadic cubes such measures are essentially concentrated on a narrow boundary of some convex set.

2.1. Theorem. Assume that μ is a Radon measure on $[0,1]^n$ such that $\operatorname{por}(\mu) \geq \frac{1}{2}(1-\beta)$ for $0 \leq \beta \leq \frac{1}{18}$. Let K be a positive integer. For all $0 < \delta < \frac{1}{18}$ let μ_{δ} and ε_{δ} be as in Lemma 1.3. Let $0 < \varepsilon < \varepsilon_{\delta}$. Then there is a positive integer i_0 depending on K, δ , and ε such that for all $i \geq i_0$ any cube $Q \in \mathcal{D}_i$ can be divided into three disjoint (not necessarily non-empty) parts

$$(2.1) Q = E \cup P \cup I$$

where

$$\mu_{\delta}(E) \leq C_Q^K N \varepsilon$$

for an integer N depending on K, δ , and β and for $C_Q^K = \max_{D \in \mathcal{N}^K(Q)} \mu_{\delta}(D)$, P is an affine $C_{\beta,\delta}2^{-i}$ -boundary of a convex polyhedron with $C_{\beta,\delta} = 6K(\beta + \delta) + \frac{2n}{K(1-\beta-\delta)}$, and $I \subset Q \setminus B_{\delta,\varepsilon}$. Here $B_{\delta,\varepsilon}$ is as in Lemma 1.3.

Proof. Let $r_{\delta,\varepsilon}$ be as in Lemma 1.3 and let i_0 be the smallest integer such that $(1+K)2^{-i_0} < r_{\delta,\varepsilon}$. Consider an integer $i \ge i_0$. Note that for those $Q \in \mathcal{D}_i$ which do not intersect $B_{\delta,\varepsilon}$ equality (2.1) is trivial. Let $Q \in \mathcal{D}_i$ such that $Q \cap B_{\delta,\varepsilon} \ne \emptyset$. Setting $r_x = \operatorname{dist}(x, \partial Q) + K2^{-i}$ for all $x \in Q \cap B_{\delta,\varepsilon}$, we have $B(x, r_x) \subset \bigcup_{D \in \mathcal{N}^K(Q)} D$. Lemma 1.3 implies that for all $x \in Q \cap B_{\delta,\varepsilon}$ there is a ball B_x with radius $qr_x = \frac{1}{2}(1-\beta-\delta)r_x$ such that $B_x \subset B(x, r_x)$ and

(2.2)
$$\mu_{\delta}(B_x) \le (2K+1)^n C_Q^K \varepsilon.$$

Set $a^{1/n} = 2K(1-2q)\alpha^{1/n}$ where $\alpha = \mathcal{L}^n(B(0,1))$ is the Lebesgue measure of the unit ball. Then there are integers $N(a) \geq N(a,Q) \geq 0$ for which there are $x_1, \ldots, x_{N(a,Q)} \in Q \cap B_{\delta,\varepsilon}$ such that

$$\mathcal{L}^n\Big((B_{x_j}\cap Q)\setminus \bigcup_{k=1}^{j-1}B_{x_k}\Big)\geq a\mathcal{L}^n(Q)$$

for all j = 1, ..., N(a, Q) and

(2.3)
$$\mathcal{L}^n\Big((B_x \cap Q) \setminus \bigcup_{k=1}^{N(a,Q)} B_{x_k}\Big) < a\mathcal{L}^n(Q)$$

for all $x \in Q \cap B_{\delta,\varepsilon}$ such that $x \neq x_j$ for all $j = 1, \ldots, N(a, Q)$. (We use the interpretation $\bigcup_{k=1}^{0} B_{x_k} = \emptyset$. In the case N(a, Q) = 0 we have $\mathcal{L}^n(B_x \cap Q) < a\mathcal{L}^n(Q)$ for all $x \in Q \cap B_{\delta,\varepsilon}$.)

Define

$$I_1 = \Big\{ y \in Q \setminus \bigcup_{k=1}^{N(a,Q)} B_{x_k} \mid \operatorname{dist}\Big(y, \partial\Big(Q \setminus \bigcup_{k=1}^{N(a,Q)} B_{x_k}\Big)\Big) > 2\left(\frac{a}{\alpha}\right)^{1/n} 2^{-i} \Big\}.$$

Then

$$(2.4) B_x \cap I_1 = \emptyset$$

for all $x \in I_1 \cap B_{\delta,\varepsilon}$. In fact, assuming that $B_x = B_{x_j}$ for some $j = 1, \ldots, N(a, Q)$, equality (2.4) holds. If $B_x \cap I_1 \neq \emptyset$ for some $x \in I_1 \cap B_{\delta,\varepsilon}$ with $B_x \neq B_{x_j}$ for all $j = 1, \ldots, N(a, Q)$, then, as it will be indicated shortly, the set $(B_x \cap Q) \setminus \bigcup_{k=1}^{N(a,Q)} B_{x_k}$ contains a ball with radius $(a/\alpha)^{1/n}2^{-i}$ contradicting (2.3). To find such a ball, take $z \in B_x \cap I_1$. Then $B(z, 2(a/\alpha)^{1/n}2^{-i}) \subset Q \setminus \bigcup_{k=1}^{N(a,Q)} B_{x_k}$. Since $(a/\alpha)^{1/n}2^{-i} \leq \frac{1}{2}qr_x$, the ball B_x contains a ball with radius $(a/\alpha)^{1/n}2^{-i}$ having z on its boundary such that the centre of the ball belongs to the line going through z and the centre of B_x . Clearly this ball is a subset of $Q \setminus \bigcup_{k=1}^{N(a,Q)} B_{x_k}$. This completes the proof of (2.4). Set

$$I_2 = \Big\{ y \in Q \setminus \bigcup_{k=1}^{N(a,Q)} B_{x_k} \mid \operatorname{dist}\Big(y, \partial \Big(Q \setminus \bigcup_{k=1}^{N(a,Q)} B_{x_k}\Big)\Big) > 3(\frac{a}{\alpha})^{1/n} 2^{-i} \Big\}.$$

Then $I_2 \subset Q \setminus B_{\delta,\varepsilon}$. To see this, assume that there exists $x \in I_2 \cap B_{\delta,\varepsilon}$. From (2.4) we get

$$dist(x, \partial B_x) > (\frac{a}{\alpha})^{1/n} 2^{-i} = 2K(1 - 2q)2^{-i}.$$

On the other hand $\operatorname{dist}(x, \partial B_x) \leq r_x(1 - 2q) \leq (K + 1/2)(1 - 2q)2^{-i}$. Hence $I_2 \subset Q \setminus B_{\delta, \varepsilon}$.

Let $B_{x_k} = B(z_k, qr_{x_k})$. Since $\frac{n}{qK}2^{-i}$ is an upper bound for the height of a segment of any ball with radius qr_x having chord with length at most $\sqrt{n}2^{-i}$, the intersections of each of the annuli $B(z_k, qr_x + 3(a/\alpha)^{1/n}2^{-i}) \setminus B_{x_k}$ and Q can

be included in a $C_{\beta,\delta}2^{-i}$ -plate. Adding parts of the affine $C_{\beta,\delta}$ -boundary of Q if necessary concludes the construction of P. Setting

$$I = I_2 \setminus P$$

and

$$E = Q \setminus (P \cup I) \subset Q \cap \bigcup_{k=1}^{N(a,Q)} B_{x_k},$$

equality (2.1) follows since

$$\mu_{\delta}(Q \cap \bigcup_{k=1}^{N(a,Q)} B_{x_k}) \le N(a)(2K+1)^n C_Q^K \varepsilon$$

by (2.2). \square

Let μ be a Radon probability measure on $[0,1]^n$ such that $\mu(V) = 0$ for all affine hyperplanes $V \subset \mathbb{R}^n$. Letting k be a positive integer set $I = \{1, \ldots, 2^{kn}\}$. For all positive integers j, denote by \mathbf{I}^j the set of all j-term sequences of integers belonging to I and by \mathbf{I}^{∞} the corresponding set of infinite sequences, that is,

$$\mathbf{I}^{j} = \{(i_1, \dots, i_j) \mid i_l \in I \text{ for all } l = 1, \dots, j\}$$

and

$$\mathbf{I}^{\infty} = \{(i_1, i_2, \dots) \mid i_l \in I \text{ for all } l = 1, 2, \dots\}.$$

Divide $[0,1]^n$ into 2^{kn} dyadic subcubes, enumarate them and denote them by D_j , $j=1,\ldots,2^{kn}$. Define $f:[0,1]^n\to [0,1]^n$ by setting $f(x)=2^kx$ mod 1. For each $x\in [0,1]^n$ we define a sequence $\mathbf{i}^x=(i_1,i_2,\ldots)\in \mathbf{I}^\infty$ such that $f^{l-1}(x)\in D_{i_l}$ for all $l=1,2,\ldots$. Note that for all $x=(x_1,\ldots,x_n)$ the sequence \mathbf{i}^x is unique unless x_j is a dyadic rational for some $j=1,\ldots,n$. For a positive integer l and $\mathbf{i}=(i_1,i_2,\ldots)\in \mathbf{I}^\infty$ let $\mathbf{i}|_l=(i_1,\ldots,i_l)\in \mathbf{I}^l$ be the sequence of the first l digits of \mathbf{i} and for all $j=1,\ldots,2^{kn}$ let $\mathbf{n}_j(\mathbf{i}|_l)$ be the number of j's in $\mathbf{i}|_l$.

We can attach a sequence (P_l^{μ}) of probability measures on I to μ such that for all $j = 1, \ldots, 2^{kn}$ $P_l^{\mu}(\{j\})$ gives the probability that the l:th digit (in the above representation) of a random number (with respect to μ) in $[0,1]^n$ equals j, that is,

$$P_l^{\mu}(\{j\}) = \sum_{\substack{(i_1, \dots, i_l) \in \mathbf{I}^l \\ i_l = j}} \mu(D_{i_1, \dots, i_l})$$

where $D_{i_1,...,i_l}$ is the closed dyadic subcube of $[0,1]^n$ of side-length 2^{-kl} consisting of points whose expansion begins with $(i_1,...,i_l)$. The measures P_l^{μ} are well-defined since $\mu(V) = 0$ for all affine hyperplanes $V \subset \mathbb{R}^n$. We use the notation P^{μ} for the product measure $\prod_{l=1}^{\infty} P_l^{\mu}$ on the code space \mathbf{I}^{∞} .

2.2. Proposition. Let μ be a Radon probability measure on $[0,1]^n$ such that $\mu(V) = 0$ for all affine hyperplanes $V \subset \mathbb{R}^n$. Let $p \leq 2^{-kn}$ and $L \in I$. Assume that $\limsup_{l \to \infty} \frac{1}{l} \sum_{i=1}^{l} \operatorname{P}_i^{\mu}(\{j\}) \leq p$ for all $j = 1, \ldots, L$. Then

$$\dim_{\mathbf{p}} \mu \le -\frac{1}{\log 2^k} (Lp \log p + (1 - Lp) \log (\frac{1 - Lp}{2^{kn} - L})) =: \alpha(p, L).$$

Proof. The strong law of large numbers [Fe, X.7.1] gives for all j = 1, ..., L that

$$\limsup_{l \to \infty} \frac{1}{l} \, \mathbf{n}_j(\mathbf{i}|_l) \le p$$

for P^{μ} -almost all $\mathbf{i} \in \mathbf{I}^{\infty}$. Defining

$$E_{p,L} = \{ x \in [0,1]^n \mid \limsup_{l \to \infty} \frac{1}{l} \operatorname{n}_j(\mathbf{i}^x|_l) \le p \text{ for all } j = 1, \dots, L \},$$

this implies that $\mu(E_{p,L}) = 1$. Since $E_{p,L}$ is a Borel set it is enough to prove that $\dim_{\mathbb{D}}(E_{p,L}) \leq \alpha(p,L)$.

Let ρ be a probability measure on I such that $\rho(\{j\}) = p$ for all j = 1, ..., L and $\rho(\{j\}) = (1 - Lp)/(2^{kn} - L)$ for all $j = L + 1, ..., 2^{kn}$. Let ν be the image of the infinite product of the measures ρ under the map $\pi: \mathbf{I}^{\infty} \to [0,1]^n$. Note that since $p \leq 2^{-kn}$ we have

$$-u\log p - (1-u)\log\left(\frac{1-Lp}{2^{kn}-L}\right) \le \alpha(p,L)\log 2^k$$

for all $u \leq Lp$. Let $x \in E_{p,L}$. The equality

$$\log \nu(D_{kl}(x)) = \log p \sum_{j=1}^{L} n_j(\mathbf{i}^x|_l) + \log \left(\frac{1 - Lp}{2^{kn} - L}\right) \sum_{j=L+1}^{2^{kn}} n_j(\mathbf{i}^x|_l)$$

gives

$$\liminf_{l \to \infty} \frac{1}{l} \log \left(\frac{\nu(D_{kl}(x))}{2^{-klt}} \right) \ge -\log 2^k \alpha(p, L) + t \log 2^k$$

where $D_{kl}(x)$ is the dyadic cube of side-length 2^{-kl} containing x. Thus if $t > \alpha(p, L)$ then $\lim \inf_{l \to \infty} \frac{\nu(D_{kl}(x))}{2^{-klt}} = \infty$, implying

$$\limsup_{l \to \infty} \frac{\log(\nu(D_{kl}(x)))}{\log 2^{-kl}} \le t.$$

By [Fa, Proposition 2.3 (d)] we get $\dim_{\mathbf{p}}(E_{p,L}) \leq \alpha(p,L)$. \square

Let k and i be positive integers. Dyadic cubes in \mathcal{D}_{ki} form a brood if they belong to the same dyadic cube belonging to $\mathcal{D}_{k(i-1)}$. Note that each brood consists of 2^{kn} dyadic cubes. Given a measure μ on \mathbb{R}^n , order the cubes of every brood such that $\mu(D_j) \leq \mu(D_{j+1})$ for all $j = 1, \ldots, 2^{kn}$. Let $\mathcal{D}_{ki}^j(\mu)$ be the set of the j:th cubes of all broods.

2.3. Theorem. Let μ be a Radon probability measure on $[0,1]^n$ such that $\operatorname{por}(\mu) \geq \frac{1}{2}(1-\beta)$ for $0 \leq \beta \leq \frac{1}{18}$ and $\mu(V) = 0$ for all affine hyperplanes $V \subset \mathbb{R}^n$. For all $0 < \delta < \frac{1}{18}$ let μ_{δ} be as in Lemma 1.3. Then there is an integer L with $2^{k(\beta,\delta)n} \geq L \geq 2^{k(\beta,\delta)n} - c2^{k(\beta,\delta)(n-1)}$ where c is a constant depending only on n and $k(\beta,\delta) \to \infty$ as $\delta \to 0$ and $\beta \to 0$ such that the following inequality is valid: for all $j=1,\ldots,L$ we have

$$\limsup_{l \to \infty} \frac{1}{l} \sum_{i=1}^{l} \sum_{D \in \mathcal{D}_{k,i}^{j}(\mu_{\delta})} \mu_{\delta}(D) \leq \delta \mu_{\delta}([0,1]^{n}).$$

Proof. Let k_0 be the largest integer such that $\beta + \delta \leq 2^{-2k_0}$. Set $K = 2^{k_0}$. Let $0 < \varepsilon < \varepsilon_{\delta}$ and let $i \geq i_0$ where ε_{δ} and i_0 are as in Theorem 2.1. Let k be the largest integer such that $2^{-k} > 4(6+4n)2^{-k_0}$. Then $2^{-k} > 4C_{\beta,\delta}$ where $C_{\beta,\delta}$ is as in Theorem 2.1. Consider $Q \in \mathcal{D}_{ki}$. Let $Q = E_Q \cup P_Q \cup I_Q$ be the partition of Q given in Theorem 2.1. Take any $x \in P_Q$. Then $D_{k(i+1)}(x)$ and its neighbouring cubes in $\mathcal{D}_{k(i+1)}$ cover a part of P_Q such that the \mathcal{L}^{n-1} -measure of the covered part of both inner and outer boundary of P_Q is at least $2^{-(n-1)}2^{-k(i+1)(n-1)}$. By the convexity of P_Q the \mathcal{L}^{n-1} -measure of the outer boundary of P_Q is less than $2n2^{-ki(n-1)}$. Hence we need at most $3^{2n}2n2^{n-1}2^{k(n-1)}$ cubes from $\mathcal{D}_{k(i+1)}$ to cover P_Q . Thus there are $L \geq 2^{kn} - 3^{2n}2n2^{n-1}2^{k(n-1)}$ cubes in $\mathcal{D}_{k(i+1)}$ which belong to $E_Q \cup I_Q$. Clearly $\mu_{\delta}(D_j) \leq \mu_{\delta}(E_Q \cup I_Q)$ for all $j = 1, \ldots, L$. Theorem 2.1 and Lemma 1.3 give

$$\limsup_{l \to \infty} \frac{1}{l} \sum_{i=1}^{l} \sum_{D \in \mathcal{D}_{k_{i}}^{j}(\mu_{\delta})} \mu_{\delta}(D) \leq \limsup_{l \to \infty} \frac{1}{l} \sum_{i=1}^{l} \sum_{Q \in \mathcal{D}_{k_{i}}} \mu_{\delta}(E_{Q} \cup I_{Q})$$

$$\leq \limsup_{l \to \infty} \frac{1}{l} \sum_{i=1}^{l} ((2K+1)^{n} N \varepsilon + \delta) \mu_{\delta}([0,1]^{n}) \xrightarrow[\varepsilon \to 0]{} \delta \mu_{\delta}([0,1]^{n}).$$

Since $k_0 \to \infty$ as δ and β tend to zero we may let k tend to infinity when $\delta \to 0$ and $\beta \to 0$. \square

2.4. Corollary. Assume that μ is a Radon measure on \mathbb{R}^n . If $0 < \beta \le 1$ such that $\operatorname{por}(\nu) \ge \frac{1}{2}(1-\beta)$, then $\dim_{\mathbf{p}}(\nu) \le d(\beta)$ where $d(\beta) \to n-1$ as $\beta \to 0$.

Proof. The claim follows from Theorem 2.3 and from the obvious generalization of [JJ, Lemma 3.3] (see [JJ, Corollary 3.4]) with $d(\beta) = \lim_{\delta \to 0} \alpha(\delta, L)$ where L is as in Theorem 2.3. Note that by the choices of k and k_0 in Theorem 2.3 we have $C_n(\beta + \delta)^{-1/2} \leq 2^k \leq \widetilde{C}_n(\beta + \delta)^{-1/2}$ for constants C_n and \widetilde{C}_n depending only on n. By the lower and upper bounds given in Theorem 2.3 for L we obtain that $d(\beta) \to n-1$ when $\beta \to 0$. \square

ACKNOWLEDGEMENTS

We acknowledge the financial support of the Academy of Finland (projects 46208 and 38955).

2.5. Remark. After finishing this paper we obtained the preprint [BS] from D. B. Beliaev and S. K. Smirnov where similar dimension results have been proved using different methods.

References

- [BS] D. B. Beliaev and S. K. Smirnov, On dimension of porous measures, preprint.
- [EJJ] J.-P. Eckmann, E. Järvenpää, and M. Järvenpää, *Porosities and dimensions of measures*, Nonlinearity **13** (2000), 1–18.
- [JJ] E. Järvenpää and M. Järvenpää, Porous measures on the real line have packing dimension close to zero, submitted to London Math. Soc. (http://www.math.jyu.fi/research/papers.html, number 212).
- [Fa] K. J. Falconer, Techniques in Fractal Geometry, John Wiley & Sons, Chichester, 1997.
- [Fe] W. Feller, An Introduction to Probability Theory and Its Applications, John Wiley & Sons, New York, 1950.

- [M] P. Mattila, Distribution of sets and measures along planes, J. London Math. Soc. (2) 38 (1988), 125–132.
- [MM] M. E. Mera and M. Morán, A zero-one half law for porosity of measures, preprint.
- [S] A. Salli, On the Minkowski dimension of strongly porous fractal sets in \mathbb{R}^n , Proc. London Math. Soc. (3) **62** (1991), 353–372.