QUASIHYPERBOLIC BOUNDARY CONDITIONS
AND CAPACITY: POINCARE DOMAINS

PEKKA KOSKELA, JANI ONNINEN, AND JEREMY T. TYSON

ABSTRACT. We prove that a domain in R” whose quasihyperbolic metric satisfies a loga-
rithmic growth condition with coefficient 8 < 1 is a (g, p)-Poincaré domain for all p and
q satisfying p € [1,00) N (n — nB,n) and q € [p, Bp*), where p* = np/(n — p) denotes the
Sobolev conjugate exponent. An elementary example shows that the given ranges for p and
q are sharp. The proof makes use of estimates for a variational capacity and Frostman’s
theorem. When p = 2 we give an application to the solvability of the Neumann problem on
domains with irregular boundaries. We also discuss the relationship between this growth
condition on the quasihyperbolic metric and the s-John condition.

1. INTRODUCTION

Let 2 be a domain of finite volume in R*, n > 2, and let 1 < p < ¢ < co. We say that )

is a (g, p)-Poincaré domain if there exists a constant M, , = M, ,(Q2) so that

(1.1) ( /Q ulz) u9|qu> Y, ( /Q Vu(z)P? dac) v

for all u € C*°(Q). Here uq = [Q|™! [, u(z) dz. When ¢ = p we say that Q is a p-Poincaré
domain.

It is a problem of some interest to determine geometric conditions on a domain §2 (possibly
with a very irregular boundary) sufficient to guarantee the satisfaction of the Poincaré in-
equality (1.1). A number of geometric assumptions (cone/cusp conditions, John conditions,
etc.) have been considered in this context. Our purpose in this paper is to study sufficient
conditions for the Poincaré inequality in terms of another geometric assumption, namely, a

growth condition on the quasihyperbolic metric in (2.
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Let Q C R*, n > 2. The quasihyperbolic distance between a pair of points z,y € Q is
defined to be

ka(z,y) = igf/7 m,

where the infimum is taken over all curves v in €2 joining = to y. This metric arises naturally
in the theory of conformal geometry where, for example, it plays an important réle in the
study of the boundary behavior of quasiconformal maps. As another application, we mention
the result of Jones [11] characterizing BMO-extension domains in terms of a growth condition
on the quasihyperbolic metric. See the survey article [14] for further applications.

A connection between the quasihyperbolic metric and the global Poincaré inequality (1.1)
was first demonstrated by Jerison [9], who proved that a planar domain 2 of finite area is a

2-Poincaré domain provided
/ ko(zo, ) dx < oo
Q

for some (each) zy € Q. The analogous result in higher dimensions, due to Hurri [7] and
Smith and Stegenga [24], states that a domain Q C R" of finite volume is an n-Poincaré

domain if

(1.2) / ko(wo, z)"Hdx < 0o
0

for some (each) zo € 2. A natural question then arises: can the integrability condition (1.2)
be verified under some simpler geometric restriction on the quasihyperbolic metric?

Let 8 > 0. We say that () satisfies a 3-quasihyperbolic boundary condition if the growth
condition

diSt(xo, 89)

dist(z, 09Q) +Co

(1.3) ko (zo, ) < %log

is satisfied for all z € 2, where zy € Q is a fixed basepoint and Cy = Cy(zy) < 0.
Gehring and Martio [3] demonstrated a close connection between condition (1.3) and global
regularity (specifically, Holder continuity) of quasiconformal maps; their results generalize
previous work of Becker and Pommerenke [1] for conformal maps in simply connected plane
domains. By results from [24], [, ko(zo, )P dz < oo for all p > 1 whenever Q satisfies (1.3)
for some B > 0; it follows that such a domain is necessarily an n-Poincaré domain.

In fact, this result can be improved. Smith and Stegenga [25] (see also Hurri [7]) prove

that (1.3) implies (1.1) for some p < n; this conclusion is stronger as can be verified using
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Holder’s inequality. The exact infimum of the values of p for which (1.1) holds with ¢ = p
has been unknown until now (see Theorem 1.4).

The results of [25] provide an estimate for p in terms of the Minkowski dimension dim, OS2
of the boundary of 2, which is known to be strictly less than n in domains which satisfy (1.3).
In fact, by an observation of Edwards and Hurri-Syrjanen [2], Q is a p-Poincaré domain for
all p > dimy, 0€2. An estimate for dim;; 0€2 in terms of 8 can be derived from the work
of Jones and Makarov [12] when n = 2 and an explicit statement valid in all dimensions
was given by Koskela and Rohde [16]. Specifically, one has dimy; 9Q > n — ¢(n)8"~", where
c(n) > 0 is a constant depending only on n. In the case n = 2, Jones and Makarov further
show that the estimate dim,; 02 > 2 — ¢ is essentially sharp in the following sense: there
exist constants c¢; and ¢y with 0 < ¢; < ¢3 < o0 so that dimy; 92 > 2 — ¢35 whenever (2
satisfies (1.3) but there exist domains Q satisfying (1.3) for which dimy; 0Q < 2 — ¢, 3.

The preceding paragraphs set the stage for our main result:

Theorem 1.4. Let Q C R", n > 2, satisfy the quasihyperbolic boundary condition (1.8) for
some B < 1. Then Q is a p-Poincaré domain provided p € [1,00) N (n —nB,n).
For each 1 < p < n — np, there exist domains Q C R, n > 2, satisfying (1.3) which are

not p-Poincaré domains.

Thus the infimum of the values p > 1 for which (1.1) holds with ¢ = p is equal to
max{1,n — nB}. The boundary case p = n — nf is still open, but we conjecture that  is
also an (n — nf)-Poincaré domain in this setting.

In contrast with previous proofs of the Poincaré inequality (1.1) under the assumption of
the quasihyperbolic boundary condition, we make no use of the Minkowski dimension of the
boundary. We rely instead on an estimate for a variational capacity which is known to imply
the Poincaré inequality in quite general situations, see [6]. The use of capacity estimates in
the context of Sobolev-Poincaré inequalities is a major theme in work of Maz “ya [19], [20],
[21], [22]. Our proof of these capacity estimates as a consequence of the quasihyperbolic
boundary condition, however, is new. We use a chaining argument involving the classical
Poincaré inequality on Whitney cubes together with Frostman’s theorem. In a compan-
ion paper [15], we use this technique to solve an open problem on the global regularity of

quasiconformal mappings.



4 PEKKA KOSKELA, JANI ONNINEN, AND JEREMY T. TYSON

More generally, we prove the following:

Theorem 1.5. Let Q C R", n > 2, satisfy the quasihyperbolic boundary condition (1.3) for
some B < 1. Then 2 is a (q,p)-Poincaré domain provided p € [1,00) N (n — nB,n) and
q € [p, Bnp/(n — p)).

For each g > Bnp/(n — p), there exist domains Q C R™, n > 2, satisfying (1.8) which are

not (q,p)-Poincaré domains.

Recall that p* = np/(n — p) is the classical Sobolev conjugate exponent for p < n; the
(p*, p)-Poincaré inequality is the sharpest Sobolev embedding theorem which can possibly
hold (and does in “sufficiently nice” domains).

The structure of this paper is as follows. In section 2 we review basic results on the
quasihyperbolic metric and prove a number of technical lemmas relating to the geometry
of Whitney cubes and quasihyperbolic geodesics. Section 3 contains the proof of the afore-
mentioned capacity estimate which directly implies Theorem 1.5 by a result of Hajlasz and
Koskela [6]. Here, as mentioned above, we make use of Frostman’s theorem to construct
measures in the domain 2 with prescribed growth behaviors. In fact, this ingredient in the
proof is only necessary if we are interested in the (g, p)-Poincaré inequality for ¢ > p; to prove
the (p, p)-Poincaré inequality we may use the Lebesgue measure in € in place of the Frost-
man measure. Our technique thus yields a completely elementary proof of the p-Poincaré
inequality in domains satisfying the quasihyperbolic boundary condition for the sharp range
of exponents p € (n —nB,n).

In section 4 we consider two applications of our results. We discuss the relevance of
Theorem 1.5 for the Neumann problem on general domains and we establish Poincaré in-
equalities for simply connected planar domains for which the Riemann map from the unit
disc is globally Holder continuous.

In section 5 we consider a related geometric condition on domains: the s-John (“twisted
cusp”) condition. Hajlasz and Koskela [6] have given sharp results for the problem of deter-
mining when s-John domains are (g, p)-Poincaré domains. We observe that domains which
satisfy the quasihyperbolic boundary condition (1.3) for some 8 < 1 are %—John domains.
In spite of this fact, Theorem 1.5 is not merely a special case of the results in [6]. Indeed,

the domains which satisfy (1.3) for some § < 1 form a strict subclass of the %-John domains
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and Theorem 1.5 provides the sharp result for the question of when such domains are (g, p)-
Poincaré domains — the range of allowable exponents ¢ in Theorem 1.5 is larger than the
corresponding range for %-John domains in [6]. We discuss all of this in detail in section 5,
where we also generalize an example in [6] to prove the sharpness in Theorem 1.5 and also

to provide examples of %—John domains which do not satisfy (1.3).

1.6. Notations and definitions. We denote by R", n > 1, the Euclidean space of dimen-
sion n. For a cube Q C R" with center x and side length s(Q) and for a factor A > 0, we
denote by A(Q the dilated cube which is again centered at = but has side length As(Q)). We
denote the Lebesgue measure in R” by m, although we usually abbreviate dm(x) = dz and

write |A| for the Lebesgue measure of A.

Let  be a bounded domain in R*, n > 2. Set s(Q) = n~'/2diamQ. We denote by
W = W(Q) a Whitney decomposition of the domain € into Whitney cubes @, i.e., the cubes

in W have pairwise disjoint interiors and vertices in the set
27Ns(Q) - 2" = {(277s(Q)l, ... ,277s(Q)ln) : j €Ny, ... L1, €L}

and satisfy diam @ < dist(Q,09Q) < 4diam @ for each Q € W. For the existence of such a
decomposition, we refer to Stein’s book [26, VI.1]. For any A\, 1 < A < 5/4, the expanded
collection of cubes {AQ@ : @ € W} has bounded overlap, specifically,

sup Z xag(z) < 12" < oc.
Qew
See, e.g., [26, VI.1.3, Proposition 3]. For j € N, we let W, denote the collection of cubes
Q@ € W for which diam Q = 277 diam Q.

2. PRELIMINARY RESULTS ON THE QUASIHYPERBOLIC METRIC

Throughout this section, {2 will denote a proper subdomain in the Euclidean space R”,

n > 2. Recall that the quasihyperbolic metric kq in € is defined to be
ko(z,y) = inf ko — length(vy),
v

where the infimum is taken over all rectifiable curves v in D which join x to y and

ds
ko — length(y) = / STIVNETSY
, dist(z, 0Q2)
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denotes the quasihyperbolic length of v in D. This metric was introduced by Gehring and
Palka in [5]. A curve 7 joining z to y for which kq —length(y) = kq(z,y) is called a quasihy-
perbolic geodesic. Quasihyperbolic geodesics joining any two points of a proper subdomain
of R" always exist, see [4, Lemma 1]. If 7 is a quasihyperbolic geodesic in 2 and z',y' € 7,
we denote by (2, y') the portion of «y which joins 2’ to y'.

When z and y are sufficiently far apart, kq(x,y) is roughly equal to the number N(z,y) of
Whitney cubes () that intersect a quasihyperbolic geodesic v joining x to y. More precisely,

for all z,y € Q with |x — y| > dist(z, 9)/2, where C = C(n).

Let 8 € (0,1] and fix a basepoint xy € €. Following Gehring and Martio [3], we say that
Q) satisfies a B-quasihyperbolic boundary condition if for some (each) zy € € there exists a

constant Cy = Cy(zg) < 0o so that

(21) kQ(xo,.I) S — + C()

for all z € 2. Then  is bounded, in fact diamQ < (2/8)e“? dist(z¢, 052) by [3, Lemma
3.9]. The value of § is necessarily less than or equal to one as a consequence of the following
simple estimate (c.f. [5]):

dist(zq, 09)

2.2 > ]
(2:2) ka(o, ) 2 log dist(z, 00)
for all z € Q.

The following result of Smith and Stegenga [24, Theorem 3] is fundamental to our work.

Lemma 2.3. Let Q C R" satisfy the quasihyperbolic boundary condition (2.1). Then there
exists a finite constant C; = C1(B, Cy) so that for all z; € Q, we have

1 dist(zg, 0)
8 °8 length(vy(x,z1))

whenever v is a quasthyperbolic geodesic joining xo to r1 and x € 7.

kQ(iE(),.’E) S +Cl

For the remainder of this section, we assume that €2 satisfies the quasihyperbolic boundary
condition (2.1) for some § < 1. Our first lemma controls the number of Whitney cubes of a

given size or larger which can intersect a given quasihyperbolic geodesic.
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Lemma 2.4. Let v be a quasihyperbolic geodesic in €2 starting at the basepoint xy. Then

there exists a constant C = C(n, 3,Cy) so that
card{Q e W U---UW,:QnNy #0} <Cj
for all j > 1. Here card S denotes the cardinality of the set S.

Proof. Assume that we have N Whitney cubes @, ... ,Qy satisfying s(Q;) > 277 diamQ
and Q; N~y #0,i=1,..., N. Fix A = % so that the dilated cubes A@; have bounded
overlap. If we let v; denote the part of the curve v which lies in the cube AQ;, then the
quasihyperbolic lengths of the curves ; are uniformly bounded from below:

length(y N AQ;) S 1
sup{dist(z,09Q) : x € AQ;} — C(n)

ko — length(y;) > >0

fore=1,...,N.

In order to apply Lemma 2.3, let z1 € Qn N y. If N is chosen sufficiently large relative
to n, then one of the cubes AQ;, N/2 < i < N, will be disjoint from AQy and hence will
satisfy dist(Q;, Qn) > 277 diam 2 for some ¢ > 0. Let = denote the terminal point of exit

of v from the cube ;. By Lemma 2.3,

1 N N/2

< — ) <
3 S Z_zlkg length(vy;) < kq(zo, x)

o dist(zg, 0)
® length(7(z, 71))
dist(zq, 09)
0g—————~
dist(Qs, @)

+C

—

+ o

The lemma, follows. U

We now fix a Whitney cube @)y and assume that zy is the center of (Jy. For each cube
@ € W, we choose a quasihyperbolic geodesic v joining xy to the center of ) and we let
P(Q) denote the collection of all of the Whitney cubes @' € W which intersect y. Then we
define the shadow S(Q) of the cube @ to be

S(Q) = U Q1-

QiLEW
QeP(Q1)
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Informally speaking, our next lemma says that the amount of overlap of the shadows of

Whitney cubes of a fixed size is bounded.

Lemma 2.5. There ezists a finite constant C = C(n, 3,Cy) so that

Y. xs@@) <Cj

QEW1U--UW);

for every 7 > 1 and x € (.

Proof. Since the Whitney collection W has bounded overlap, we may without loss of gener-
ality work with the (disjoint) interiors of the Whitney cubes. If Q1,... ,Qy € WL U---UW;
are such that F' := S(Q1) N---N S(Qy) is nonempty, then F' contains an entire Whitney
cube; in particular, it contains its center point x. But then the chosen quasihyperbolic geo-
desic joining xy to x intersects each of the cubes Q;, i = 1,..., N. Then the result follows

from Lemma 2.4. O

We now estimate the size of the shadow of a Whitney cube () in terms of the size of Q.
Lemma 2.6. There exists C = C(n, 3,Cq) so that
diam S(Q) < C dist(zg, 9Q)'~# (diam Q)?
forallQ eW.

Proof. We first show that diam Q; < C dist(zg, 0Q)'~#(diam Q)? for each cube Q; C S(Q).
If Q1 = Q this is obvious so assume (); # (). Let x; denote the center of )1, let v be a
quasihyperbolic geodesic joining xg to x1, and let x be any point in Q N ~. It is clear that
the (Euclidean) length of that portion of 4 which lies in @) is at least cdiam @); for some
constant ¢ = ¢(n) > 0. We apply Lemma 2.3 together with (2.2) to deduce that

diSt(l‘o, 89) 1 diSt(l‘o, 89)
sz, 0%°) < = og U0, 97
8 dist(z,00) — ka(o, ) < 5% diam Q,

The desired result follows since dist(z, 0Q2) ~ diam Q.

+ Ch.

It thus suffices to show that the set Z consisting of all of the centers of cubes contained

in S(Q) satisfies diam Z < C dist(z¢, 92)} #(diam Q)?. To this end, let x1, 7, € Z. Choose
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points =} and x4, in v, N @ and ., N Q, respectively, where -y, denotes the chosen quasihy-

perbolic geodesic joining = to xy. Then

1 — 2| < length(yz, (21, 21)) + diam Q + length(ys, (23, 72))
< diam Q + C dist(zo, 8Q)e Pra@o21) 1 O dist(xy, OQ)e Pralzo.2)
< diam Q + C dist(xo, 99Q)'# dist(z, 0Q)7 + C dist (2o, 0Q) 7 dist(z}, 0Q)*
< (diam Q)" (diam Q)? + C dist(zo, 0Q)' 7 (diam Q)”

by Lemma 2.3 and (2.2). Since diam 2 < C(8, Cy) dist(zq, 952), the result follows. O

3. PROOF OF THEOREM 1.5

The following general result characterizing Poincaré domains in terms of a capacity-type

estimate is due to Maz "ya [22]; the formulation here is from [6, Theorem 1].

Theorem 3.1. Let Q2 be a domain in R™ andlet1 < p < g < oco. Then$2 is a (g, p)-Poincaré

domain if and only if the following holds: for an arbitrary cube Qo compactly contained in

Q there ezists a constant M = M (2, Qo,p, q) so that

(3.2) /|Vu(x)|”da: > i\AW
0 M

whenever A is an admissible subset of Q which is disjoint from Qg and u € C*(Q2) satisfies

ula > 1 and u|g, = 0.

Here, we say that a subset A C Q is admissible if A is open and if 0A N is a smooth
submanifold.
We will use Theorem 3.1 to prove Theorem 1.5 in the case p > 1; for the case p = 1 see

section 5. In fact, we will prove the following significantly more general statement.

Theorem 3.3. Let QQ C R*, n > 2, be a domain with diameter one and let 0 < B < 1. Let
max{l,n—nf} <p<nandp < q< pnp/(n—p). Fiz a Whitney cube Qy C 2 and assume

that there exists a finite constant C and a constant A < z% (% - %) so that

(34) > xsi(z) < €2V
QeEWw;
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for all j > 1 and x € Q and that
(3.5) diam S(Q) < C(diam Q)?

for all @ € W, where the shadow S(Q) of the Whitney cube Q is defined as before relative
to the fized cube Qy. Then Q is a (q,p)-Poincaré domain.

Recall that diamQ < C(8,Cy) dist(xg, 0) if 2 satisfies (2.1); thus in order to derive
Theorem 1.5 from Theorem 3.3 we may scale the domain 2 to have diameter one.

Note also that if {2 satisfies the quasihyperbolic boundary condition (2.1), then Lemmas
2.5 and 2.6 show that the hypotheses of Theorem 3.3 are satisfied. Indeed, the conclusion of
Lemma 2.5 (the maximal overlap among Whitney cubes down to the level j grows at most
linearly in j) is significantly stronger than what is needed in (3.4) (the overlap among the
Whitney cubes at the level j grows at most exponentially in 7). Thus Theorem 3.3 potentially
applies to a much greater class of domains. In fact, it is not difficult to construct examples of
domains for which conditions (3.4) and (3.5) are satisfied but for which the quasihyperbolic
boundary condition (2.1) is not satisfied. We include one such example following the proof

of Theorem 3.3.

Proof of Theorem 3.3. Let 2 C R" be a domain with diameter one which satisfies conditions
(3.4) and (3.5) for some g € (0,1]. Fix p and ¢ satisfying max{1,n — nf8} < p < n and
p < q < fnp/(n—p). We will verify that the conclusion of Theorem 3.1 is satisfied for each
admissible subset A C Q which is disjoint from @ and any u € C*°(Q2) satisfying u|4 > 1

and u|g, = 0. Let u be such a function. We divide the set A into a “good set”
Ay :={z € A:ug < 1 for some Whitney cube @ 3 z}

and a “bad set”
Ay :={z € A:ug > ; for some Whitney cube @ > z}.

(These sets may overlap slightly along the boundaries of Whitney cubes but this is immaterial
to the ensuing discussion.)
For points z in the good set A, the standard Poincaré inequality on cubes provides a

trivial estimate )
Tk

(o) selm)-
Q Q

1
—|A
Sl4nQ
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where p* = % and @ O x is a Whitney cube. Since ¢ < p* this yields

1 P
[wur = Glanar

and by summing over all such Whitney cubes we deduce that

1 P
(3.6) /Q\vu\p > LAl

The bad set A, requires more work and it is here where we will make use of the various

assumptions on 2. We will prove that

1 P
. P> _|Alqd
(3.7) /QWU\ > C‘ |

and then (3.2) follows by adding together (3.6) and (3.7).
To see why (3.7) holds, choose a Frostman measure p on A, relative to the growth function

o(r) = r™/4 je., p is a Borel measure supported on A, satisfying the conditions
(3.8) 1(Ay N Bz, 1)) < rP/4

for all balls B(z,r) and

1 o0 1 p/q
(3-9) 11(Ap) = cw 2o g(Ay) > W\AIJ /

where H3° denotes s-dimensional Hausdorff content; H°(A;) = inf ) . 77, where the infimum
is taken over all coverings of A, with balls B(z;,r;), i = 1,2,.... See, for example, [18,
Theorem 8.8]. Note that in the case when ¢ = p the measure p can be taken to be Lebesgue
measure restricted to the set A, and the use of Frostman’s theorem can be avoided.

For each x € Ay, let Q(x) denote a Whitney cube containing z for which f Q@) u(y) dy > %
Then a straightforward chaining argument involving the Poincaré inequality (c.f. [9, pp. 519-

520] or [25, Lemma 8]) shows that
(3.10) 1<C Z diam Qf \Vu(y)| dy;
QEP(Q(2)) 9

recall that P(Q(z)) consists of the collection of all of the Whitney cubes which intersect the

quasihyperbolic geodesic joining x to the center of Q(z).
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Integrating (3.10) over the set A, with respect to the Frostman measure p and applying
Holder’s inequality yields

1/p
wu(4y) < C dlam Q)I—/p (/Q\Vu(yﬂp dy) du(x).

Ap QeP

We now interchange the order of summation and integration to deduce that

1/p
) £ 0 Y us(Q) 0 ) ainmn @1~ ([ (9t ay)
Q

Qew

Applying Holder’s inequality again leads to

1-1/p
i) < C (Z u(S(Q) N Ay) 7= (diam Q)7 1&))

QeEW
1/p
(X [rra)
Qew

1-1/p
<C (Z 1(S(Q) N Ap) Y@ (diam QY%)

QeEW
< ([ 1vutr i) v

Set § = zﬁ and € = %. We require an estimate for terms of the form

(3.11)

3 u(S(Q) N 4,)+ (diam Q) P,

Qew

which we give in the following lemma:

Lemma 3.12. Let Q) be a domain in R* with diameter one and let 0 < § < 0o and 0 < € <
v < n. Assume that Q satisfies (3.5) for some 0 < 5 <1 and that Q) satisfies condition (3.4)
for some A < B6(v —¢€). Let u be a Borel measure on R* which satisfies the growth condition
w(B(z,r)) < r7. Then there exists a constant C' so that

D w(S(Q) N ) (diam Q)™ < Cu(E)

Qew

whenever E C ).



QUASIHYPERBOLIC BOUNDARY CONDITIONS AND CAPACITY: POINCARE DOMAINS 13

We defer the proof of this lemma momentarily. To complete the proof of Theorem 1.5, we

apply Lemma 3.12 in (3.11) with § = L=, e = 22 v =" and F = A, to see that
p—1 B q

1/p
W(Ay) < CulAy) =17 ( / |Vu(y>\ﬁdy)
Q
for some C' = C(n, p,q, 5, A, C). By (3.9),
1 1
[1vutlP s> Gutas) = Al

for some finite constant M = M(n, p,q, 5, A, C). This proves (3.7) and hence also (3.2). The

proof of the theorem is now complete as a consequence of Theorem 3.1. O

Proof of Lemma 3.12. The growth condition on p together with (3.5) and (3.4) yield

D u(S(@Q) NE) i (diam Q)7 <> Y u(S(Q) N E)(diam S(Q))** (diam Q) 7

Qew Ly 2o
= CZ Z w(S(Q) N E)(diam Q)P°~9
J=1 Qew;
<CY 27 Y wS(Q)NE)
=1 QeEW;
< O,U,(E) Z 2_](,35(1/—5)_)\)
j=1
< Cu(E)

O

Example 3.13. We construct a planar domain 2 which satisfies conditions (3.4) and (3.5)

but does not satisfy the quasihyperbolic boundary condition (2.1). Fix % < B < 1 and

2—208 <1< p<2. For simplicity we only consider the case when ¢ = p. We will construct
a domain €2 C C for which

(3'14) Z XS(Q) (.T) S é?Aj
QeWw;

for all 5 and for some

B 2—-p\ p—2+2p3
(3.15) /\<—<2— 3 )_ PR
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and
(3.16) diam S(Q) < C(diam Q)?

for all Q € W, but  fails to satisfy the consequence of the quasihyperbolic boundary

condition given in Lemma 2.3, namely,

1 dist (2, 012)
- < B
(3.17) bal0,2) < G108 {o iy a)) T

for all quasihyperbolic geodesics v joining 2z, to z; in ) and all points z € . The domain {2

will consist of the union of an infinite sequence of concentric annular regions. We open small
“gates” in the boundaries of these regions in order to make ) connected but we also insert
“walls” within each annular region to force certain quasihyperbolic geodesics in €2 to stay
close to the boundary over a very long (Euclidean) length. This will guarantee that (3.17)
is violated. The final domain 2 will (essentially) approximate a spiral domain centered at
the origin.

For each i = 0,1,2,...,let A; = {z € C: 27! < |z| < 27%}. Next, for each i = 1,2, ...
and each £k = 1,2,... | N;, let C;;, C A; be concentric annular regions with width ~ 277.
Thus the number N; of these regions is approximately equal to 9iz=1)_ For each of the
annular regions Cjx, open a “gate” Gy of size =~ 27% in the outer wall of Cj; and insert a

wall W;, inside Cj; joining the outer and inner boundaries of Cj;. Let €2 be the resulting

domain:
o0 Ni

Q =A0UU U(CikUGik\VVik)'

i=1 k=1

FIGURE 1. A “maze-like” domain 2
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We may arrange the gates and walls so that any curve in {2 which passes from C;;_; to
Cik+1 must travel almost all of the way around the annular region A;. The construction is
easiest to comprehend by looking at the picture in Figure 1.

Fix a basepoint zy € Ag. We claim first that (3.16) holds for each Whitney cube Q. Tt
suffices to verify this for Whitney cubes ) C A; which satisfy diam @ = 977, But it is
immediately clear from the picture that in this case S(Q) C B(0,27%) and so diam S(Q) <
diam 4; < 2! < C(diam Q)”.

Next, we show that the overlap condition (3.14) holds for some A > 0. The maximal
overlap among the shadows of Whitney cubes ) € W; is obtained when the cubes line up
along the center of the regions Cj as in Figure 2(a). Note that such a Whitney cube in Cj
must have diameter ~ 2 #. Since also diam @ ~ 277, we have i ~ 3j. It is clear that these
cubes can only appear in a bounded number of regions A; , A; 41, .. , Ai,+n. Within any
one of these regions A;, the total number of Whitney cubes ) € W, is at most N; times the
)

number of cubes in any of the regions Cj, which is again approximately equal to 9i(5—1),

Thus the total number of Whitney cubes of a given size is at most

C % 21‘(%—1) % 21‘(%—1) _ 0221(%—1)

and this yields the desired upper estimate for the overlap of the shadows S(Q), @ € W,

D Xs@(z) <02V,
QeEW;

where A = 2(1 — ).

FIGURE 2. (a) Maximal collection of Whitney cubes of a fixed size with over-

lapping shadows; (b) A quasihyperbolic geodesic 4 which threads the maze
Q
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We next verify that Q does not satisfy the quasihyperbolic boundary condition (2.1). Fix
some 7 € N. Let z; be some point contained in the final gate G, ; exiting from the region
A; and let v be the quasihyperbolic geodesic joining z; back to the basepoint z,. Let z € «
be a point contained in the first gate G, entering the region A;. See Figure 2(b). Then the
length of the portion of v joining z to z; is at least N; times the length of v within any of
the regions Cj;, and the latter quantity is comparable to 27%. Thus

1 . )
length(~(z, z1)) > 52“%_1)2_z =

On the other hand,
dist(z,00) < 277

If Q did satisfy the quasihyperbolic boundary condition (2.1), then (3.17) would hold, i.e.,

dist(zo, 0€2) 1. log(dist(zg, 0)
— <k < =1
©8 dist(z,0?) — a(20, 2) < B °8 length(y(z, 21)) TG
which would imply that
1 1/1
—log2-1—C < —= (——2) log2 -1+ C4,
3 g 3\ 3 g 1

ie.,

B\B

for all 2. Our assumption g < 1 guarantees that this cannot occur.

1/1
—(——1>log2-i§0

The final thing which we must check is that our choice of A = 2(1— f3) satisfies the required

assumption (3.15), i.e.,
p—2+20

21-p5) < P

Y

but this follows from our assumption 5 > %

4. APPLICATIONS

We discuss two applications of our main result, first, for simply connected planar domains
for which the Riemann map from the unit disc is uniformly Holder continuous, and second,

for the theory of the Neumann problem in domains satisfying (2.1).
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4.1. Conformal maps of simply connected plane domains. Let Q' C C be simply
connected and let f : D — Q' be a conformal mapping with f(0) = z,. Recall that the

hyperbolic distance from z; to a point z € ' is defined to be

_ 1+ f7'(2)|
per (20, 2) = pp(0, f'(2)) = log -
1—[f~1(2)]
The Koebe Distortion Theorem implies that
!

1—[¢] = dist(f(¢),00) — 1—[¢]*’
(see [23, 4.6(5)]) which in turn implies that

(4.2) %pgr(zo, 2) < kai(20,2) < 2par (20, 2)
for z € Q' (see [23, 4.6(5)]). (Note that our definition of the hyperbolic metric differs from
that of [23, Section 4.6] by a factor of two.)

Assume now that f : D — €' is uniformly Ho6lder continuous with exponent o < 1. By
Becker and Pommerenke [1], this is equivalent to the requirement that the hyperbolic metric
in Q' satisfy the growth condition

1 dist(z,00)

< —log ———— + (.
=a 8 dist(z, OSY') +Co

per (20, 2)

By (4.2), it follows that the quasihyperbolic metric satisfies

2 diSt(Z(), 89,)

ko (20.2) < Tlog o0

o + G
and so ' is a p-Poincaré domain for all 2 — « < p < 2 by Theorem 1.4.

On the other hand, for each & < 1 the “room-and-corridor” domain considered in section 5)
provides an example of a simply connected domain 2" C C which is not a p-Poincaré domain
for any p < 2 — 2« but for which a conformal map f : D — Q' is uniformly a-Ho6lder
continuous. Note the gap between the positive result (p > 2 — «) and the negative examples
(p < 2 — 2a) which arises because we switch between the hyperbolic and quasihyperbolic
metrics using the Koebe Distortion Theorem. We do not know what is the exact range of
p’s for which such a domain €' is a p-Poincaré domain, but we conjecture that a version of
our argument in section 3 can be carried out for the hyperbolic metric and that the sharp

value is again p = 2 — 2« in this case.
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4.3. The Neumann problem. Let 2 C R*, n > 2, be as before and let A : Q@ — R"*" be
a measurable function taking values in the space of n x n matrices satisfying the following
two conditions:

(i) A(z)T = A(z) for a.e. z € Q;

(i) there exists C' > 1 so that [£]?/C < T A(z)€ < CI€)? for all £ € R® and a.e. x € €.

Fix ¢ € [1,00). The Neumann problem associated with A is the elliptic PDE generated
by the operator L4 : L¢(Q) N W2(Q) — L7 () given by

0 ou
4.4 . .
(4.4) U~ o, (a” (x) 8%’) ,

where A(z) = (a;;(x)):;. We interpret (4.4) in the weak sense: L 4u is the function in L7 (),

q¢ = q/(¢ — 1), which satisfies

/Q o(2) Lau() dz = /Q Vu(z)T A(z) Vo) do

for all v € LI(Q) N WH2(Q).
We say that the Neumann problem associated with A is ¢-solvable if the following holds:
for each w € LY (Q) with [, w(z)dz = 0 there exists u € L1(Q2) N W?(Q2) so that

(4.5) Lau =w.

By [22, Lemma 4.10.1], the Neumann problem for A is g-solvable for some 2 < ¢ < o0
if and only if 2 is a (g, 2)-Poincaré domain. Furthermore, the spectrum of the operator
Ly : L*(Q)nWh2(Q) — L?(Q) is discrete if and only if the embedding W'2(Q) < L?(Q)
is compact. By a general version of the Rellich-Kondrachov compactness theorem (see e.g.
[22, Corollary 4.8.3.3] or [6, Theorem 5]), this holds provided W'?(Q}) embeds boundedly
into L4(Q2) for some ¢ > 2, that is, provided 2 is a (g, 2)-Poincaré domain for some g > 2.

Putting all of this together yields the following corollary to Theorem 1.5.

Corollary 4.6. Let Q C R™, n > 2, satisfy the quasihyperbolic boundary condition (2.1)

for some 1 — % < B < 1. Then the Neumann problem (4.5) on Q is g-solvable for each

q € [2,22%) and the operator L, : L2(Q) NW'2(Q) — L%(Q) has a discrete spectrum.

Conversely, for each q > % there ezist domains Q C R™ which satisfy (2.1) with exponent
B but for which the Neumann problem (4.5) is not q-solvable.
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5. COMPARISON BETWEEN THE QUASIHYPERBOLIC

BOUNDARY CONDITION AND THE s-JOHN CONDITION

For the sake of brevity, we say that a domain 2 C R*, n > 2, is a f-QHBC domain if it
satisfies the quasihyperbolic boundary condition (2.1) for 5 < 1. In this section, we compare
our results for f-QHBC domains with some known results for domains satisfying a weaker
geometric assumption: the s-John (or “twisted cusp”) condition.

Let Q C R", n > 2, be a bounded domain. We say that € is an s-John domain, s > 1, if
for some (each) zy € Q there is a constant C), = C{(xy) < 0o so that each point z € 2 can be
joined to zo (within ) by a rectifiable curve (called a John curve) v : [0,1] — Q, v(0) = =,
v(l) = zo, parameterized by arc length, and such that the distance to the boundary satisfies
(5.1) dist(+(t), 09) > —°

Co
for all ¢t € [0,1]. If s =1 then we say, for simplicity, that  is a John domain. John domains
were introduced by Martio and Sarvas [17]. F. John [10] had earlier considered a similar
class of domains.

It is well-known that a John domain is a p-Poincaré domain for all p > 1 [8, Theorem 3].
Furthermore, every John domain is a S-QHBC domain for an appropriate choice of 5 > 0.
The class of s-John domains for a fixed s > 1 is in general much larger than the class of
John domains. Smith and Stegenga [25, Thereom 10] proved that each s-John domain is
a p-Poincaré domain provided p € [1,00) N ((n — 1)(s — 1),n) and Hajlasz and Koskela
[6, Corollary 6] extended this to show that each s-John domain is a (g, p)-Poincaré domain

provided p € [1,00) N ((n —1)(s — 1),n) and

np
9.2 1<p<qg< :
2 (= Ds—(p-1)
Note that [6, Corollary 6] only covers the case g < %; the extension to the borderline

case is due to Kilpeldinen and Maly [13].

Note that a f-QHBC domain 2 C R" is a %—John domain. This is easy to prove, indeed,
the John curve may be taken to be the quasihyperbolic geodesic joining xy to z and then
(5.1) follows from Lemma 2.3 with C}) = e dist(zy, 3Q)*/#~1. Thus the fact that f-QHBC
domains are (g, p)-Poincaré domains for some values of p and ¢ can already be derived from

the results of [6]. However, the sharp result (modulo the endpoint estimate) for such domains
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is Theorem 1.5: a 3-QHBC domain is a (g, p)-Poincaré domain for all p and ¢ satisfying

(5.3) 1<p<q<pf—2.
n—p

Indeed, note that

np np
(54) G=Ds-G-1 = n-p

and that strict inequality holds in (5.4) unless p =1 or 8 = 1. (Incidentally, this explains a
point made earlier in section 3, namely, that Theorem 1.5 holds even when p = 1 although
the proof given in section 3 works only for p > 1. Note that when p = 1 the ranges (5.2)
and (5.3) coincide and so Theorem 1.5 for p = 1 is just a special case of [6, Corollary 6].)
Thus, stronger Poincaré inequalities hold for the class of 8-QHBC domains than hold for
the (possibly larger) class of %-John domains. We conclude this paper with a “room-and-
corridor”-type example which demonstrates both the sharpness in Theorems 1.4 and 1.5 and

also the strict inclusion of the class of f-QHBC domains in the class of %—John domains.

Example 5.5. Fix two parameters 0,7 > 1 and let
D=QUCnURUCrRURUCUQRsU---CR",

where, for each m = 0,1,2,..., @, is an open cube with center z,, and side length 2r,,
(ro = 1) and for each m = 1,2,..., Cy,, is a cylindrical domain with height r,,” and radius
rm?. We arrange these pieces so that the top face of (Y, is contained in the boundary of
Qo and the bottom face of Cy,, is contained in the boundary of ),,. Thus €2 consists of
a central “room” (), connected by cylindrical “corridors” CY,, to smaller adjacent “rooms”
@m as in Figure 3. We can ensure that the rooms Q,,,, m = 1,2,..., are pairwise disjoint if
we require the sequence (r,,) to decrease to zero sufficiently rapidly.

Our goal is to determine for which choices of the parameters ¢ and 7 the domain (2 is or

is not
(i) a f-QHBC domain, 8 < 1;
(ii) an s-John domain, s > 1;

(iii) a (g, p)-Poincaré domain, 1 < p < g.

Specifically, we will show that
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FIGURE 3. A “room-and-corridor type domain 2

(i) Qis a f-QHBC domain if % =0 < 7 and Q is not a f-QHBC domain for any g > 0 if
1<7<oa0;

(ii) © is an s-John domain if s = ¢ and 2 is not an s-John domain if s < ¢ (independent
of 7);

(iii) € is not a (g, p)-Poincaré domain if

np

LR R Py P ey

We will say more about why these facts are true shortly. First, let us discuss their significance.
When 7 =1 and s = 0, Q is an s-John domain which is not a (g, p)-Poincaré domain for

any

np
(n—=1)s—(p—1)

q>

This shows the sharpness in [6, Corollary 6]. (This special case of the example was already
given in [6, p. 437].)

When 7 =0 = +, Q is a f-QHBC domain which is not a (g, p)-Poincaré domain for any

1
ﬂ I
np np

B

- m-1DF—p-1F "n-p

|

This shows the sharpness in Theorem 1.5 and hence also Theorem 1.4 of this paper.

Finally, when 1 <7 <0 = %, Qisa %—John domain which is not a S-QHBC domain.
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To see that 2 is not a QHBC domain if 1 < 7 < ¢, note that the quasihyperbolic distance

from the center of )y to the center of @, is

1 o—T
k, > T—0 — -
a(T0,7) 2 7, <dist(a:m, 8(2))

which grows algebraically (rather than logarithmically) as a function of dist(z,,,9). We
leave it to the reader to verify that Q2 is a S-QHBC domain if % =o0<T.

We next show that €2 is not an s-John domain if s < o. If €2 were s-John, then each point
Zm could be joined to xy by a rectifiable curve vy, : [0, 1] = Q, Ym(0) = Zm, Ym(lm) = o,
parameterized by arc length and such that dist(7,,(¢),0Q) > t*/C} for all 0 < ¢t < l,,. Let

7 and

tm be any parameter value for which v,,(¢,) € Com. Then dist(Vy,(tm),0) = rpy
tm > dist(zm, Com) = Tm 80 1% > 1y,° /Cy for all m, which contradicts the assumption that

s < 0. Again, we leave to the reader the verification of the fact that € is s-John if s = 0.

Finally, we show that 2 is not a (g, p)-Poincaré domain if

np
(n—=1)o—(p—1)7

Define a sequence of piecewise linear functions (u,,) on € as follows: upy, =1 on Qu, Um =0

(5.6) q>

on Q\ (Qm U Com), and uy, is linear on Cy,,. Then |Vuy,| = 7" on Coyp and [Vuy,| = 0
elsewhere.

By [6, Lemma 1], if €2 is a (g, p)-Poincaré domain then

(5.7) ( /Q |um(x)\qu) oo ( /Q V()P dac) ”

for all m. Thus it suffices to show that (5.7) does not hold. We estimate

1/q
(fntalrde) " > @ule = oy
o
and
1/p
(/ |Vt (z)|? dx) = 71 |Com| P = C(n)ry, T Hn=D)/p,
Q
Thus (5.7) would lead to an inequality of the form

n (n=1)o—(p—1)r
rme < Crp, P ,

which does not hold for all m by the choice of ¢ in (5.6).
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