ACL homeomorphisms and linear
dilatation
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1 Introduction

Let D be a domain in R®, n > 1, and f: D — R"™ a homeomorphism. For x € D
and 0 < r < d(z,0D) we set

L(xa [ 7') = sup{|f(a:) - f(y)‘ ‘Y€ aB(x,T)},

Uz, f,r) = inf{[f(z) — f(y)] : y € OB(z,7)}.

where B(z,r) stands for the open ball centered at x and radius r and 0B(z,r) for

its boundary. The linear dilatation of f at x is defined as

H(z, f) =limsup H (z, f,)

r—0

where H(z, f,r) = L(x, f,r)/l(x, f,r). At every point z € D, H(z, f) € [1,00] and
H(z, f) = |f"(=)||/l (f'(z)) provided that f is differentiable at x with [ (f'(z)) > 0.
Here the norm || f'(z)|| of the derivative f'(z) of f at x is defined as

1" @)|l = sup [f(z)h
h|=1

and the minimum norm [ (f'(x)) as

L(f'(=)) = inf |f'(z)h]

Ih|=1

A well known result of Gehring [G1] says that if a homeomorphism f has the linear

dilatation H(z, f) uniformly bounded in D, then f is a quasiconformal mapping.
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In particular f is ACL. The ACL property means that f is absolutely continuous
on almost every line segment parallel to the coordinate axis in D. In [T2] Tukia

conjectured that the condition
(1.1) m({x e D:H(x,f) >t}) <ct ™

for some a > 3 is sufficient for the ACL property of a plane homeomorphism f.
Indeed, this was proved in [FA| together with a space analogue. In this paper
we show that @ > 2 in (1.1) implies the ACL property in the plane case with a
corresponding improvement in space. Our proof is based on the Gehring method in

(G1].

Theorem 1.2 Suppose that a homeomorphism f: D — R", D C R" a domain, a
subset S of D and s € (1,00] satisfy the conditions

(1.8) s >n/(n—1),
(1.4) H(z, f) < oo for each x € D\ S,

(1.5) H(z, f) € Lj,.(D),

loc

(1.6) S has o-finite (n — 1)-Hausdorff measure.

Then f is ACL.

Remarks 1.7 (a) The asumption (1.3) rules out the case n = 1, see Section 2.

(b) The asumption (1.6) means that the set S is of the form S = [JS; where
H™1(S;) < 0o and H"! refers to the (n — 1)-dimensional Hausdorff measure. For
the definition of the Hausdorff measure see e.g. [G1] or [V].

In Section 2 we consider some properties of homeomorphisms f: D — R"™ satis-
fying H(z,f) < oo a.e. in D. In Corollary 2.4 we show that f' € L} (D),
p =sn/(n — 1 + s), under the conditions of Theorem 1.2. In particular this
implies that f is ACLP. The section also contains some examples. Section 3 is
devoted to the proof of Theorem 1.2.



2 Mappings with H(z, f) < oo a.e.

If a homeomorphism f:D — R" satisfies H(z,f) < oo a.e. x € D or even
esssup,cpH(z, f) < oo, then f need not be ACL. The well known example is con-
structed from the Cantor staircase function g: [0,1] — [0, 1], i.e. g is an increasing
function with the property ¢'(z) = 0 for a.e. z € [0,1]. Now f:(0,1) x (0,1) —
(0,2) % (0,1) defined as f(z,y) = (g9(x)+x,y) is a homeomorphism with H(z, f) =1
a.e. but f is not ACL. Moreover, no boundedness condition, except H(z, f) = 1 for
all x, in the case n = 1 implies absolute continuity. Indeed, an increasing homeo-

morphism f: R — R is called K-quasisymmetric if it satisfies
1 _ S+t - i)
K~ flz)= flz—1)
for all z € R and ¢t > 0. If f is K-quasisymmetric, then H(z, f) < K for all z € R.
Now Beurling and Ahlfors [BA] constructed for each K > 1 a K-quasisymmetric

IN

K

mapping f which is not absolutely continuous. For more striking examples of such
mappings see [T1]. Hence no integrability condition for H(z, f) like (1.5) implies
absolute continuity for n = 1.

However, homeomorphisms which satisfy H(z, f) < co a.e. have some nice proper-
ties.

Theorem 2.1 Suppose that a homeomorphism f: D — R™ satisfies H(z, f) < oo
a.e. in D. Then f is a.e. differentiable.

Proof. Fix an open set G CC D and let ®(F) = |f(F)| for each Borel set F C G.
Then @ is a finite Borel measure on G' and hence it has a finite derivative

o 9(B)
¥ =1 T,

at a.e. x € G. Here and in the following |A| means the Lebesgue measure of a set
ACR™

Now at an almost every point z of G, ®'(z) exists and H(z, f) < co. Fix such a
point z. Let y € G with 0 < |z — y| < d(z,0G). Now

|f(33)—f(y)| " L(x,f,\y—xD " l(x,f,\y—m\) "
<|ww|> S(mww—w)( P )
o b= o) g,y =)
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and letting y — x we see that

v sup 7 0) = F@)

< H(z, f)® (z)7 < oo.
wsup L0 < i, provayt <

By the Rademacher-Stepanov theorem the mapping f is a.e. differentiable in G.
The theorem follows.

Theorem 2.2 Suppose that a homeomorphism f:D — R"™ satisfies H(z, f) €
L; (D), s € [1,00]. Then f" € L} (D) withp = sn/(n—1+s) and p = n if

s = OQ.

Proof. We may assume that f is sense-preserving. Since H(z, f) < oo a.e. in D,
Theorem 2.1 implies that f'(z) exist a.e. If f is differentiable at x and H (z, f) < oo,

then an elementary argument shows that

(2.3) If' @)™ < H(z, /)" (2, f)

where J(z, f) is the jacobian determinant of f'(x).
Fix an open set G CC D. For s < oo (2.3) and the Holder inequality imply

(n—p)

[1r@rie < [ H ) @, 0k s
< [/C;H(x,f)%dx] [/GJ(x,f)dx]%
[ Herpa] ™ @) <o0

IN

as required. For s = oo the proof is similar. Note that the inequality
| I@.ndz < 15(G)
always holds for an a.e. differentiable homeomorphism, see [RR].

Corollary 2.4 Under the condition of Theorem 1.2 f is a.e. differentiable and
frelLl (D), p=sn/(n—1+s). In particular f is ACLP.

loc

3 Proof for Theorem 1.2

We prove Theorem 1.2 in the case S = (). By the theorem of Gross, see e.g. [V,

p. 103], the condition (1.6) implies that S meets almost every line parallel to some
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coordinate axis in a countable set only. For a continuous function a countable set
E does not destroy absolute continuity if an estimate like (3.8) below holds for
compact sets F' in the complement of E. Thus the case S # () does not lead to
essential difficulties, see [G1].

Pick a closed cube () CC D whose sides are parallel to the coordinate axes and write
Q = %Q for the cube with the same center as () and side length half of that of Q.
In order to show that f is ACL it suffices to show that f is absolutely continuous on
almost every line segment of )’ parallel to the coordinate axes. Renormalizing we
may assume that @Q = [—2,2]" and by symmetry it is sufficient to consider segments
parallel to the z,-axis. Let P:R™ — R""! denote the projection P(z) = x —z-e,e,
and for y € P(Q) C R" ! write I = I(y) = Q' N P~*(y) for the line segment parallel
to the z,-axis in Q)'.

Next for a Borel set £ C P(Q) write

®(E) =[f(QNPH(E))| < [f(Q)] < oo

Then ® is a finite Borel measure on P(Q) and hence it has a finite derivative ®'(y)
for almost all y € P(Q'). We choose y € P(Q') such that (i) ®'(y) exists and (ii)
H(z, f) € L*(I(y)). The last assertion follows from the Fubini theorem. It suffices
to show that f is absolutely continuous on I(y).

To this end let F' C I(y) be a compact set. For each £ =0,1,2,... write

F,={r € F:2" < H(z, f) < 28}

Then Fy is a Borel set and F = |J Fy because of (1.4) and our assumption S # .
Note also that H(z, f) > 1 for every x. We first derive the following estimate

(3.1) H'(fF,) < C2*HY(F,)"+

where C' = (2219/ (y)) /.
For (3.1) fix k£ and for each j = 1,2,... consider the set

Fpj={z € Fy: Lz, f,r)" < 2”(k+1)\fB(x,T)\/Qn for0<r <1/j}

where Q, = |B(0,1)|. The sets F} ; are Borel sets and Fy ; C Fy ;1 with

(32) Fk = U Flc,j-
j=1



To see (3.2) let x € Fy. Then H(x, f) < 2¥*! and hence there is j such that
L(z, f,r)/l(z, f,r) < 2F*!
for all 0 < r < 1/j and we obtain
Lz, f,r)" < 20D, f,r)™ < 27CHD| £ B(z, )| /.

This shows that = € Fj, ; and (3.2) follows.

By the monotonicity and (3.2) it suffices to prove (3.1) for Fj ; instead of Fj. Fix
j and let F' be an arbitrary compact subset of Fj ;. Let € > 0 and ¢ > 0. The
continuity of the mapping (z,r) — L(z, f,r) gives §, 0 < § < 1/j, such that
L(z, f,r) < t/2for 0 < r < ¢ and for all z € F'. By a well known covering
lemma for sets on a real line, see [G1, Lemma 1, p.6], for each sufficiently small
r > 0,0 < r < J, there exists a covering of F’ by a finite number of open balls
B; = B(z;,7r),i=1,...,1, where (a) z; € F', i =1,...,1, (b) each point of R" lies
in at most two B; and (c) Ir < H'(F') + ¢. Note that the normalizing condition
gives

(3.3) B;c QNP (B)

where B = B" !(y,r).

The union of the sets f(B;) covers f(F') and

dia(fB;) < 2L(z;, f,r) <t
Hence .
H(fF') <Y dia(fB))
i=1

where
H}(A) = inf{Sdia(4;) : UA; D A, dia(4;) < t}

and the Holder inequality together with the definition of Fy ; yields

l n l

H}(fF\™ < (Zdia(fBi)> <"1y dia(fB;)"
i=1 i=1

n— 12n2n(k+1

(3.4 < oS i< ST S )
=1

Since f is a homeomorphism, we obtain from (b) and (3.3) that

! !
Y IfBi| < 2| fBi| < 29(B)
=1 =1



and thus (3.4) and (c) yield

Hi(fF)" < 2" (HY(F') + )"~ ®(B)/H"™(B)
< EETHY(F ) + €)' ®(B)/H" (B).

Since H}(fF') — H'(fF') as t — 0, letting first 7 — 0, then ¢ — 0, and finally
t — 0 we obtain
(3_5) Hl(fFl)n < Qn(k+2)+1H1(Fk,j)n_l(bl(y).

Now F' is an arbitrary compact subset of Fy ; and hence (3.5) holds for Fj, ; on the
left hand side of (3.5). This leads to the estimate (3.1).
Since fF = UfFg, (3.1) implies

(3:6) H'(fF) <3 H'(fF) < CY 2'H'(F)™ .
The sets Fy, k =1, ..., are disjoint and hence the integral estimate
(3.7) S 2B HY(F) < / H(z, f)° dan

k=0 F

is elementary. From (3.6), (3.7) and from the Holder inequality we obtain
) 2=l

Hl(fF) < O (Z 2ksH1(Fk)> <z 2k(ns(nl))>
k=0 k=0

n—1

(3.8) < G [ Hpde) T

1
n

where Cy depends only on n, s and ®'(y). Note that the series

00
Z 2lc(n—s(n—1))
k=0

converges because s > n/(n — 1) and hence n — s(n — 1) < 0. The inequality (3.8)
shows that f is absolutely continuous on I(y) as required.
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