ACL homeomorphisms and linear dilatation

S. Kallunki* and O. Martio

1 Introduction

Let D be a domain in \mathbf{R}^n , $n \geq 1$, and $f: D \to \mathbf{R}^n$ a homeomorphism. For $x \in D$ and $0 < r < d(x, \partial D)$ we set

$$L(x, f, r) = \sup\{|f(x) - f(y)| : y \in \partial B(x, r)\},\$$

$$l(x, f, r) = \inf\{|f(x) - f(y)| : y \in \partial B(x, r)|\}.$$

where B(x,r) stands for the open ball centered at x and radius r and $\partial B(x,r)$ for its boundary. The linear dilatation of f at x is defined as

$$H(x, f) = \limsup_{r \to 0} H(x, f, r)$$

where H(x, f, r) = L(x, f, r)/l(x, f, r). At every point $x \in D$, $H(x, f) \in [1, \infty]$ and H(x, f) = ||f'(x)||/l(f'(x)) provided that f is differentiable at x with l(f'(x)) > 0. Here the norm ||f'(x)|| of the derivative f'(x) of f at x is defined as

$$||f'(x)|| = \sup_{|h|=1} |f'(x)h|$$

and the minimum norm l(f'(x)) as

$$l(f'(x)) = \inf_{|h|=1} |f'(x)h|.$$

A well known result of Gehring [G1] says that if a homeomorphism f has the linear dilatation H(x, f) uniformly bounded in D, then f is a quasiconformal mapping.

⁰1991 Mathematics Subject Classification: 30C65

^{*}Partially supported by the foundation Vilho, Yrjö ja Kalle Väisälän rahasto.

In particular f is ACL. The ACL property means that f is absolutely continuous on almost every line segment parallel to the coordinate axis in D. In [T2] Tukia conjectured that the condition

(1.1)
$$m(\{x \in D : H(x, f) > t\}) < ct^{-\alpha}$$

for some $\alpha > 3$ is sufficient for the ACL property of a plane homeomorphism f. Indeed, this was proved in [FA] together with a space analogue. In this paper we show that $\alpha > 2$ in (1.1) implies the ACL property in the plane case with a corresponding improvement in space. Our proof is based on the Gehring method in [G1].

Theorem 1.2 Suppose that a homeomorphism $f: D \to \mathbf{R}^n$, $D \subset \mathbf{R}^n$ a domain, a subset S of D and $s \in (1, \infty]$ satisfy the conditions

$$(1.3) s > n/(n-1),$$

(1.4)
$$H(x, f) < \infty$$
 for each $x \in D \setminus S$,

(1.5)
$$H(x, f) \in L^{s}_{loc}(D)$$
,

(1.6) S has σ -finite (n-1)-Hausdorff measure.

Then f is ACL.

Remarks 1.7 (a) The assumption (1.3) rules out the case n = 1, see Section 2. (b) The assumption (1.6) means that the set S is of the form $S = \bigcup S_i$ where $H^{n-1}(S_i) < \infty$ and H^{n-1} refers to the (n-1)-dimensional Hausdorff measure. For the definition of the Hausdorff measure see e.g. [G1] or [V].

In Section 2 we consider some properties of homeomorphisms $f: D \to \mathbb{R}^n$ satisfying $H(x, f) < \infty$ a.e. in D. In Corollary 2.4 we show that $f' \in L^p_{loc}(D)$, p = sn/(n-1+s), under the conditions of Theorem 1.2. In particular this implies that f is ACL^p . The section also contains some examples. Section 3 is devoted to the proof of Theorem 1.2.

2 Mappings with $H(x, f) < \infty$ a.e.

If a homeomorphism $f\colon D\to \mathbf{R}^n$ satisfies $H(x,f)<\infty$ a.e. $x\in D$ or even $\operatorname{ess\,sup}_{x\in D}H(x,f)<\infty$, then f need not be ACL. The well known example is constructed from the Cantor staircase function $g\colon [0,1]\to [0,1]$, i.e. g is an increasing function with the property g'(x)=0 for a.e. $x\in [0,1]$. Now $f\colon (0,1)\times (0,1)\to (0,2)\times (0,1)$ defined as f(x,y)=(g(x)+x,y) is a homeomorphism with H(z,f)=1 a.e. but f is not ACL. Moreover, no boundedness condition, except H(x,f)=1 for all x, in the case n=1 implies absolute continuity. Indeed, an increasing homeomorphism $f\colon \mathbf{R}\to \mathbf{R}$ is called K-quasisymmetric if it satisfies

$$\frac{1}{K} \le \frac{f(x+t) - f(x)}{f(x) - f(x-t)} \le K$$

for all $x \in \mathbf{R}$ and t > 0. If f is K-quasisymmetric, then $H(x, f) \leq K$ for all $x \in \mathbf{R}$. Now Beurling and Ahlfors [BA] constructed for each K > 1 a K-quasisymmetric mapping f which is not absolutely continuous. For more striking examples of such mappings see [T1]. Hence no integrability condition for H(x, f) like (1.5) implies absolute continuity for n = 1.

However, homeomorphisms which satisfy $H(x, f) < \infty$ a.e. have some nice properties.

Theorem 2.1 Suppose that a homeomorphism $f: D \to \mathbf{R}^n$ satisfies $H(x, f) < \infty$ a.e. in D. Then f is a.e. differentiable.

Proof. Fix an open set $G \subset\subset D$ and let $\Phi(E) = |f(E)|$ for each Borel set $E \subset G$. Then Φ is a finite Borel measure on G and hence it has a finite derivative

$$\Phi'(x) = \lim_{r \to 0} \frac{\Phi(B(x,r))}{|B(x,r)|}$$

at a.e. $x \in G$. Here and in the following |A| means the Lebesgue measure of a set $A \subset \mathbf{R}^n$.

Now at an almost every point x of G, $\Phi'(x)$ exists and $H(x, f) < \infty$. Fix such a point x. Let $y \in G$ with $0 < |x - y| < d(x, \partial G)$. Now

$$\left(\frac{|f(x) - f(y)|}{|y - x|}\right)^{n} \leq \left(\frac{L(x, f, |y - x|)}{l(x, f, |y - x|)}\right)^{n} \left(\frac{l(x, f, |y - x|)}{|y - x|}\right)^{n} \\
\leq H(x, f, |y - x|)^{n} \frac{\Phi(B(x, |y - x|))}{|B(x, |y - x|)|}$$

and letting $y \to x$ we see that

$$\limsup_{y \to x} \frac{|f(y) - f(x)|}{|y - x|} \le H(x, f)\Phi'(x)^{\frac{1}{n}} \le \infty.$$

By the Rademacher-Stepanov theorem the mapping f is a.e. differentiable in G. The theorem follows.

Theorem 2.2 Suppose that a homeomorphism $f: D \to \mathbf{R}^n$ satisfies $H(x, f) \in L^s_{loc}(D)$, $s \in [1, \infty]$. Then $f' \in L^p_{loc}(D)$ with p = sn/(n-1+s) and p = n if $s = \infty$.

Proof. We may assume that f is sense-preserving. Since $H(x, f) \leq \infty$ a.e. in D, Theorem 2.1 implies that f'(x) exist a.e. If f is differentiable at x and $H(x, f) \leq \infty$, then an elementary argument shows that

$$||f'(x)||^n \le H(x,f)^{n-1}J(x,f)$$

where J(x, f) is the jacobian determinant of f'(x).

Fix an open set $G \subset\subset D$. For $s < \infty$ (2.3) and the Hölder inequality imply

$$\int_{G} |f'(x)|^{p} dx \leq \int_{G} H(x,f)^{\frac{p(n-1)}{n}} J(x,f)^{\frac{p}{n}} dx
\leq \left[\int_{G} H(x,f)^{\frac{p(n-1)}{(n-p)}} dx \right]^{\frac{(n-p)}{n}} \left[\int_{G} J(x,f) dx \right]^{\frac{p}{n}}
\leq \left[\int_{G} H(x,f)^{s} dx \right]^{\frac{(n-p)}{n}} |f(G)|^{\frac{p}{n}} < \infty$$

as required. For $s=\infty$ the proof is similar. Note that the inequality

$$\int_{G} J(x, f) \, dx \le |f(G)|$$

always holds for an a.e. differentiable homeomorphism, see [RR].

Corollary 2.4 Under the condition of Theorem 1.2 f is a.e. differentiable and $f' \in L_{loc}^p(D)$, p = sn/(n-1+s). In particular f is ACL^p .

3 Proof for Theorem 1.2

We prove Theorem 1.2 in the case $S = \emptyset$. By the theorem of Gross, see e.g. [V, p. 103], the condition (1.6) implies that S meets almost every line parallel to some

coordinate axis in a countable set only. For a continuous function a countable set E does not destroy absolute continuity if an estimate like (3.8) below holds for compact sets F in the complement of E. Thus the case $S \neq \emptyset$ does not lead to essential difficulties, see [G1].

Pick a closed cube $Q \subset\subset D$ whose sides are parallel to the coordinate axes and write $Q'=\frac{1}{2}Q$ for the cube with the same center as Q and side length half of that of Q. In order to show that f is ACL it suffices to show that f is absolutely continuous on almost every line segment of Q' parallel to the coordinate axes. Renormalizing we may assume that $Q=[-2,2]^n$ and by symmetry it is sufficient to consider segments parallel to the x_n -axis. Let $P: \mathbf{R}^n \to \mathbf{R}^{n-1}$ denote the projection $P(x) = x - x \cdot e_n e_n$ and for $y \in P(Q) \subset \mathbf{R}^{n-1}$ write $I = I(y) = Q' \cap P^{-1}(y)$ for the line segment parallel to the x_n -axis in Q'.

Next for a Borel set $E \subset P(Q)$ write

$$\Phi(E) = |f(Q \cap P^{-1}(E))| \le |f(Q)| < \infty.$$

Then Φ is a finite Borel measure on P(Q) and hence it has a finite derivative $\Phi'(y)$ for almost all $y \in P(Q')$. We choose $y \in P(Q')$ such that (i) $\Phi'(y)$ exists and (ii) $H(x, f) \in L^s(I(y))$. The last assertion follows from the Fubini theorem. It suffices to show that f is absolutely continuous on I(y).

To this end let $F \subset I(y)$ be a compact set. For each $k = 0, 1, 2, \ldots$ write

$$F_k = \{x \in F : 2^k \le H(x, f) < 2^{k+1}\}.$$

Then F_k is a Borel set and $F = \bigcup F_k$ because of (1.4) and our assumption $S \neq \emptyset$. Note also that $H(x, f) \geq 1$ for every x. We first derive the following estimate

(3.1)
$$H^{1}(fF_{k}) \leq C2^{k}H^{1}(F_{k})^{\frac{n-1}{n}}$$

where $C = (2^{2n+1}\Phi'(y))^{1/n}$.

For (3.1) fix k and for each $j = 1, 2, \ldots$ consider the set

$$F_{k,j} = \{x \in F_k : L(x, f, r)^n \le 2^{n(k+1)} | fB(x, r)| / \Omega_n \text{ for } 0 < r < 1/j \}$$

where $\Omega_n = |B(0,1)|$. The sets $F_{k,j}$ are Borel sets and $F_{k,j} \subset F_{k,j+1}$ with

$$(3.2) F_k = \bigcup_{j=1}^{\infty} F_{k,j}.$$

To see (3.2) let $x \in F_k$. Then $H(x, f) < 2^{k+1}$ and hence there is j such that

$$L(x, f, r)/l(x, f, r) < 2^{k+1}$$

for all 0 < r < 1/j and we obtain

$$L(x, f, r)^n < 2^{n(k+1)} l(x, f, r)^n \le 2^{n(k+1)} |fB(x, r)| / \Omega_n.$$

This shows that $x \in F_{k,j}$ and (3.2) follows.

By the monotonicity and (3.2) it suffices to prove (3.1) for $F_{k,j}$ instead of F_k . Fix j and let F' be an arbitrary compact subset of $F_{k,j}$. Let $\epsilon > 0$ and t > 0. The continuity of the mapping $(x,r) \mapsto L(x,f,r)$ gives δ , $0 < \delta < 1/j$, such that L(x,f,r) < t/2 for $0 < r < \delta$ and for all $x \in F'$. By a well known covering lemma for sets on a real line, see [G1, Lemma 1, p.6], for each sufficiently small r > 0, $0 < r < \delta$, there exists a covering of F' by a finite number of open balls $B_i = B(x_i, r)$, $i = 1, \ldots, l$, where (a) $x_i \in F'$, $i = 1, \ldots, l$, (b) each point of \mathbf{R}^n lies in at most two B_i and (c) $lr \leq H^1(F') + \epsilon$. Note that the normalizing condition gives

$$(3.3) B_i \subset Q \cap P^{-1}(B)$$

where $B = B^{n-1}(y, r)$.

The union of the sets $f(B_i)$ covers f(F') and

$$dia(fB_i) \le 2L(x_i, f, r) < t.$$

Hence

$$H_t^1(fF') \le \sum_{i=1}^l \operatorname{dia}(fB_i)$$

where

$$H_t^1(A) = \inf\{\Sigma \operatorname{dia}(A_i) : \bigcup A_i \supset A, \operatorname{dia}(A_i) < t\}$$

and the Hölder inequality together with the definition of $F_{k,j}$ yields

$$(3.4) H_t^1(fF')^n \leq \left(\sum_{i=1}^l \operatorname{dia}(fB_i)\right)^n \leq l^{n-1} \sum_{i=1}^l \operatorname{dia}(fB_i)^n \\ \leq l^{n-1} 2^n \sum_{i=1}^l L(x_i, f, r)^n \leq \frac{l^{n-1} 2^n 2^{n(k+1)}}{\Omega_n} \sum_{i=1}^l |fB_i|.$$

Since f is a homeomorphism, we obtain from (b) and (3.3) that

$$\sum_{i=1}^{l} |fB_i| \le 2|\bigcup_{i=1}^{l} fB_i| \le 2\Phi(B)$$

and thus (3.4) and (c) yield

$$H_t^1(fF')^n \le 2^{n(k+2)+1}(H^1(F')+\epsilon)^{n-1}\Phi(B)/H^{n-1}(B)$$

 $\le 2^{n(k+2)+1}(H^1(F_{k,j})+\epsilon)^{n-1}\Phi(B)/H^{n-1}(B).$

Since $H_t^1(fF') \to H^1(fF')$ as $t \to 0$, letting first $r \to 0$, then $\epsilon \to 0$, and finally $t \to 0$ we obtain

(3.5)
$$H^{1}(fF')^{n} \leq 2^{n(k+2)+1}H^{1}(F_{k,j})^{n-1}\Phi'(y).$$

Now F' is an arbitrary compact subset of $F_{k,j}$ and hence (3.5) holds for $F_{k,j}$ on the left hand side of (3.5). This leads to the estimate (3.1).

Since $fF = \bigcup fF_k$, (3.1) implies

(3.6)
$$H^{1}(fF) \leq \sum H^{1}(fF_{k}) \leq C \sum 2^{k} H^{1}(F_{k})^{\frac{n-1}{n}}.$$

The sets F_k , k = 1, ..., are disjoint and hence the integral estimate

(3.7)
$$\sum_{k=0}^{\infty} 2^{ks} H^1(F_k) \le \int_F H(x, f)^s \, dx_n$$

is elementary. From (3.6), (3.7) and from the Hölder inequality we obtain

$$(3.8) H^{1}(fF) \leq C_{1} \left(\sum_{k=0}^{\infty} 2^{ks} H^{1}(F_{k})\right)^{\frac{n-1}{n}} \left(\sum_{k=0}^{\infty} 2^{k(n-s(n-1))}\right)^{\frac{1}{n}} \leq C_{2} \left(\int_{F} H(x,f)^{s} dx_{n}\right)^{\frac{n-1}{n}}$$

where C_2 depends only on n, s and $\Phi'(y)$. Note that the series

$$\sum_{k=0}^{\infty} 2^{k(n-s(n-1))}$$

converges because s > n/(n-1) and hence n - s(n-1) < 0. The inequality (3.8) shows that f is absolutely continuous on I(y) as required.

References

- [BA] Beurling, A. and Ahlfors, L.V., The boundary correspondence under quasiconformal mappings, Acta Math. **96** (1956), 125–142.
- [FA] Fang Ainong, The ACL property of homeomorphisms under weak conditions, Acta Math. Sin., New Series 14.4 (1998), 473–480.
- [G1] Gehring, F.W., The definitions and exceptional sets for quasiconformal mappings, Ann. Acad. Sci. Fenn. Ser. AI **281** (1960), 1–28.
- [G2] Gehring, F.W., Lower dimensional absolute continuity properties of quasiconformal mappings, Math. Proc. Camb. Phil. Soc. **78** (1975), 81–92.
- [RR] Rado, T. and Reichelderfer, P.V., Continuous transformations in analysis, Die Grundlehren der matematischen Wissenschaften 75, Springer-Verlag, 1955.
- [T1] Tukia, P., Hausdorff dimension and quasisymmetric mappings, Math. Scand. **65** (1989), 152–160.
- [T2] Tukia, P., Compactness properties of μ -homeomorphisms, Ann. Acad. Sci. Fenn. Ser. AI Math. **16** (1991), 47–69.
- [V] Väisälä, J., Lectures on n-dimensional quasiconformal mappings, Lecture Notes in Mathematics 229. Springer-Verlag, 1971.

S. Kallunki University of Jyväskylä Department of Mathematics P.O. Box 35 FIN-40351 Jyväskylä Finland O. Martio
Department of Mathematics
P.O. Box 4
FIN-00014 University of Helsinki
Finland