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ABSTRACT. We give a definition for the class of Sobolev functions from a metric measure
space into a Banach space. We give various characterizations of Sobolev classes and study the
absolute continuity in measure of Sobolev mappings in the “borderline case”. We show under
rather weak assumptions on the source space that quasisymmetric homeomorphisms belong
to a Sobolev space of borderline degree; in particular, they are absolutely continuous. This
leads to an analytic characterization of quasiconformal mappings between Ahlfors regular
Loewner spaces akin to the classical Euclidean situation. As a consequence, we deduce
that quasisymmetric maps respect the Cheeger differentials of Lipschitz functions on metric
measure spaces with borderline Poincaré inequality.
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1. INTRODUCTION

Generalizations of the theory of Sobolev spaces have become a topic of increasing impor-
tance in recent years. Several authors (Hajlasz [15], Hajlasz-Koskela [16], Koskela-MacManus
[29], Cheeger [7], Shanmugalingam [46]) have given definitions for Sobolev classes of real-
valued functions on metric measure spaces. Korevaar-Schoen [27], Reshetnyak [42] and
Ranjbar-Motlagh [40] have studied Sobolev mappings from domains in Euclidean (or Rie-
mannian) space into a complete metric space. See also [24] and the references therein. In
this paper, we give a definition for the class of Sobolev functions from a metric measure
space into a metric space that unifies many of the above approaches. As every metric space
Y may isometrically be embedded in the Banach space £*°(Y’) of bounded functions on Y, it
suffices to consider the case when the target is an arbitrary Banach space. There are several
advantages in allowing for a Banach space target. First, we can conveniently invoke the
vector-valued integration theory of Bochner and Pettis. Second, our function spaces have a
linear structure; the Sobolev spaces to be defined are themselves Banach. Third, even when
one is interested in the study of maps F' : X — Y between (nonlinear) metric spaces, it is
advantageous to regard Y as a subset of £*°(Y"), because certain discrete Lipschitz “convo-
lution” approximations to F' need not take values in Y but rather in /*°(Y’) (or in any given
Banach space containing V).

For all our considerations, the principal hypotheses are the validity of a Poincaré inequality
as defined in [21], [22], and certain growth conditions on measure. We shall prove in Section
4 that the validity of a Poincaré inequality for mappings of a metric space is independent,
of the target Banach space. In Section 6, we study embedding theorems and the Lipschitz
approximation of Sobolev functions. The latter seems to be dependent on the geometric
structure of the target; an approximation is possible if the values lie in a space that is
an absolute Lipschitz retract. We also prove that pseudomonotone Sobolev mappings in
the “borderline case” are absolutely continuous in measure (Theorem 7.2). This theorem
generalizes results of Reshetnyak [41], Maly-Martio [33], and others from R" to a general
setting of metric spaces.

Our study was partially motivated by questions in the theory of quasiconformal mappings
in metric spaces. In Euclidean space R", one derives many important properties of quasi-
conformal homeomorphisms from the fact that these maps belong to the Sobolev space I/Vlicn
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(by the analytic definition [12], [53, Theorem 34.6]). In the setting of general metric spaces,
the most natural definition for quasiconformality is the metric definition (as in [53, 34.1],
[22]). In a recent paper, Heinonen and Koskela [22] proved that a quasiconformal homeomor-
phism F': X — Y between two metric spaces belongs to the Sobolev spaces of Hajlasz and
Korevaar-Schoen, provided that X and Y are Ahlfors regular of some dimension ) > 1 and
admit a p-Poincaré inequality for some p < (). In fact, in this case F' belongs to the Sobolev
space of order @) + € for some ¢ > 0 as in the celebrated theorem of Gehring in R™ [13].
Absolute continuity of F' in measure follows easily from this higher integrability. In fact, it
was demonstrated in [22] that in this case the pull-back measure under F is A,-related to
the Hausdorff measure in the source; this implies a stronger, scale-invariant form of absolute
continuity.

It was left open in [22] whether a quasiconformal homeomorphism F : X — Y is absolutely
continuous in measure if a weaker Poincaré inequality holds on X and Y. The natural
borderline case is best described by the validity of the so-called Q-Poincaré inequality, if
X is Ahlfors Q-regular. We shall show here (Section 8) that in this case F' indeed belongs
to the Sobolev space of order (), and is absolutely continuous in measure, provided the
Hausdorff ()-measure in Y is locally finite. This follows from the aforementioned general
result about pseudomonotone Sobolev mappings. The absolute continuity is a key to showing
that the three classical definitions for quasiconformality — the analytic, metric, and geometric
definition — can all equivalently be used in a very general context. That is the context
of mappings between Ahlfors @)-regular spaces with @-Poincaré inequality (or @)-Loewner
spaces in the terminology of [21], [22]). We shall make all this precise in Section 9 below,
where generalizations, historical comments, and applications can be found.

Finally, in Section 10, we shall apply the results of the previous sections and show that
the fundamental commuting relation

(1.1) dF* = F*d

remains valid for quasiconformal homeomorphisms F' between Ahlfors Q-regular spaces with
@-Poincaré inequality. Here d is the Cheeger differential for Lipschitz functions introduced
recently by Cheeger [7]. It was shown in [7] that (1.1) is true under the stronger hypothesis
of p-Poincaré inequality for some p < @); this hypothesis was tied up with the hypotheses
needed for absolute continuity in [22]| as explained above.

Notation 1.2. We explain here the basic notation used throughout the paper. Much of the
terminology of the introduction will be explained in the course of the paper.

We denote by X = (X, d) an arbitrary metric space. For a ball B = B(z,r) in X and for
a number 7 > 0, we denote by 7B the dilated ball B(z,7r). Here B can be either open or
closed; it is assumed that 7B is of the same type.

The characteristic function of a subset £ C X will be denoted xg.

All measures ¢ on X will be assumed to be nontrivial, complete and Borel regular, and
to assign finite and positive mass to each metric ball in X. For 1 < p < oo, we denote by
LY (X) = L}, (X, ) the class of all measurable functions f : X — R such that each point
z € X has a neighborhood U for which f € LP(U).

We denote by V' an arbitrary Banach space of positive dimension. The norm of an element
v € V will be written ||v||. We write V* for the dual space of V', which we endow with the
norm

[[o*] = sup{|(v*, v)| : v € V, [|v]| < 1}.
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We shall make extensive use of the following version of the Hahn-Banach theorem: for each
v eV, v#0, we can find v* € V* with ||v*|| = 1 so that (v*,v) = ||v]|.

Finally, for a metric space Y, we denote by ¢*°(Y) the Banach space consisting of all
bounded real-valued functions on Y, which we endow with the supremum norm

[flleery := sup{|f(y)] : y € Y}
We recall that every metric space Y = (Y, d) may be isometrically embedded in ¢>°(Y"). For
example, fix a basepoint yy in Y and consider the mapping

(1.3) y— f, Y =R, fy(2) == d(y, z) — d(yo, 2).
2. BANACH SPACE-VALUED FUNCTIONS AND VECTOR-VALUED INTEGRATION

In this section, we review the basic theory of measurability and (Bochner) integrability for
vector-valued functions defined on a measure space. Throughout this section, we assume that
X = (X, p) is a o-finite and complete measure space. (We do not assume until Definition
2.8 that X is a metric space.)

Theorem 2.1. Let V be a Banach space and let F' : X — V. Then the following conditions
are equivalent:

(1) F is the pointwise a.e. limit of a sequence of simple functions;
(2) F is essentially separably valued and F~(U) is measurable for each open set U C V;
(3) F is essentially separably valued and weakly measurable.

We call a function F' : X — V a simple function if there exists a finite collection of vectors
vy, ... ,0, €V together with pairwise disjoint measurable sets F1,... , E, C X so that

n
i=1

We call F essentially separably valued if there exists Z C X with u(Z) = 0so that F/(X\Z)
is a (norm) separable subset of V.

We call F' weakly measurable if the scalar function (v*, F') : X — R is measurable for each
vt eV,

Definition 2.2. We say that F' is measurable if one (and hence each) of the three conditions
in Theorem 2.1 holds.

Remark 2.3. The condition in (2) that F' be essentially separably valued is automatically
satisfied if V' has a dense subset whose cardinal is an Ulam number, see [9, 2.1.6, 2.3.8].

The equivalence of the above three definitions of measurability is well known. See [9, 2.3.8]
for definition (2) and [8, Chapter II] for definitions (1) and (3). The equivalence of (1) and
(3) is the content of the Pettis Measurability Theorem, see [8, Chapter II, §1, Theorem 2].
The implication (2) = (3) is trivial, and the implication (1) = (2) is an easy exercise.

Definition 2.4. Let F' : X — V be a measurable function. We say that F' is (Bochner)
integrable if there exists a sequence (F,) of simple functions with ||F,|| € L*(X) so that
JxIF(z) — F,(z)| du(z) — 0. In this case, for each measurable set E C X, we define the
Bochner integral of F' over E to be the value
/ F(z)du(z) = Tim | Fy(z) du(z),
E

V—0Q E
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where (F,) is a sequence as above and [, F), dy is defined in the obvious way.

One easily verifies that this limit exists and is independent of the choice of defining se-
quence. We denote by L'(X,p : V) = L'(X : V) the collection of all Bochner integrable
functions from X to V. As usual, we identify two functions F,G € L'(X : V) for which
F =G ae.

We introduce a norm in the space L'(X : V) as follows. First, for a simple function
F=3%7" wvxg (with Ey, ..., E, disjoint sets of finite measure in X), we set

(2.5) IF|l = / |F(2)]] dua(e) Zu Vsl

We extend this norm to all of L'(X : V) by continuity. With the help of Theorem 2.1, we
can easily establish the following result (see [8, Chapter II, §2, Theorem 2]):

Proposition 2.6. A measurable function F' : X — V is Bochner integrable if and only if
IF]| € L}(X).

For 1 < p < oo, we define LP(X : V) to be the collection of (equivalence classes of)
measurable maps F' : X — V for which ||F|| € L?(X), endowed with the norm || F||, =
([ |F(2)|[P du(z))/?. Proposition 2.6 shows that this agrees with the earlier definition in
the case p = 1. We let L>(X : V') denote the collection of (equivalence classes of) essentially
bounded measurable maps from X to V, endowed with the norm || F||o, = esssup,¢ x||F(z)]].
For any 1 < p < o0, the normed space LP(X : V) is a Banach space.

We let LY (X : V) denote the collection of measurable maps F' : X — V for which
|F|| € L} .(X). Maps in L (X : V) are said to be locally (Bochner) integrable.

For F € L'Y(X : V), and for E C X so that u(E) > 0, we define the mean value of F over

FE to be the vector

(2.7) Fp = ]f Fla)du(a) = ﬁ /E F(z) du(z).

The vector FF lies in the closed convex hull co(F(F)) of F(FE). Recall that, for an arbitrary
subset A C V, @o(A) consists of those w € V' for which

inf (v*,v) < (v*,w) < sup (v*,v)
vEA vEA

for all v* € V'*.

Remark 2.8. We assume henceforth that X = (X, d, u) is a metric measure space as defined
in 1.2; recall that this includes the assumption that the measure of each ball in X is finite
and positive. We call p a Vitali measure if the conclusion of Vitali’s covering theorem holds:
whenever B is a covering of a set A C X by closed balls with inf{r : B(z,r) € B} = 0 for
each z € A, then there exist disjoint balls By, By, ... in B with p(A\ |J, B;) = 0.

For example, if p is doubling, which means that there is a constant C, > 1 such that

(2.9) w(B(z,2r)) < C, u(B(z, 7))

for each z € X and 0 < r < diam X, then p is a Vitali measure, see [9, 2.8]. Furthermore,
every Radon measure on R” is a Vitali measure, see, e.g., [35, Theorem 2.8].

If 41 is a doubling measure on X, then we call the triple X = (X, d, u) a doubling metric
measure space. Note that every doubling metric measure space X is separable, whence



6 JUHA HEINONEN PEKKA KOSKELA NAGES SHANMUGALINGAM JEREMY T. TYSON

continuous functions from X into a Banach space are measurable by parts (2) or (3) of
Theorem 2.1.

For a proof of the following proposition, see [9, 2.9.9].

Proposition 2.10. Let i be a Vitali measure on the metric space and let V be a Banach
space. If ' : X — V is locally Bochner integrable, then almost every point x € X is a
Lebesgue point of F, i.e.

(2.11) lim{  ||F(y) = F(2)l| dp(y) = 0.

r—0 B(z,r)

In particular, at each Lebesgue point x, the vectors Fp,y) converge to F(z) as r — 0.

Note that by the Hahn-Banach theorem, || [, G(y)du(y)|| < [,IG(y)|l du(y) whenever
G : X — V is a measurable function and A C X is a measurable set.

3. THE SOBOLEV SPACE N'?(X : V)

Let X = (X, d, 1) be a metric measure space as stipulated in 1.2 and let 1 < p < oc.
We first recall the definition for a Sobolev space of real-valued functions given in [46].

Definition 3.1. A measurable function f : X — R is said to be in the (Newtonian) Sobolev
space NYP(X) if f € L[P(X) and if there exists a Borel function p : X — [0,00] so that
p € LP(X) and

(3.2) VW@D—ﬂ%@NS/p%

7
for p-a.e. rectifiable curve v : [a,b] — X.

In (3.2), fv pds denotes the line integral of p along 7. A collection I' of locally rectifiable
curves in X is called p-ezceptional if there exists a nonnegative Borel function p € LP(X)
with f7pds = oo for all ¥ € T'. We say that a property of curves holds for p-almost every
(p-a.e.) curve if the collection of curves for which the property fails to hold is p-exceptional.
Alternatively, I' is p-exceptional if its p-modulus mod, I' is equal to zero, where, for each
curve family I" we define

(3.3) mod, I = inf/ pFdu,
X

the infimum being taken over all Borel functions p : X — [0, oc] that are admissible for T,
that is, fvpds > 1 for each locally rectifiable v € T'. See [53, Chapter 1] for a thorough
discussion on line integrals and modulus on R"; the discussion in [53] generalizes to metric
measure spaces in a straightforward manner. (See also [22], [46].)

A function p satisfying (3.2) for p-a.e. rectifiable curve v in X is called a p-weak upper
gradient of f. If p satisfies (3.2) for every rectifiable curve +y, we call it an upper gradient of f.
It easily follows from the definition for a p-exceptional curve family that if a function possesses
a p-integrable p-weak upper gradient p, it also possesses a p-integrable upper gradient in each
LP neighborhood of p. A standard convexity argument from functional analysis (Mazur’s
lemma) together with a lemma of Fuglede (Lemma 3.4 below) implies that, if 1 < p < oo,
there exists a minimal p-weak upper gradient py € LP(X), unique up to modification on



SOBOLEV CLASSES OF BANACH SPACE-VALUED FUNCTIONS 7

sets of measure zero. The minimality of py means that py < p a.e. for every p-weak upper
gradient p of f.
For the record, we state the following lemma due to Fuglede [10]:

Lemma 3.4. If a sequence of Borel functions (g,) converges in LP(X), then the limit func-
tion has a Borel representative g, and there is a subsequence (gn,) such that

/\gnk —g|lds =0
v

for p-a.e. curve v in X.

Remark 3.5. The above lemma is usually stated with the assumption that the sequence
(gn) converges in LP(X) to a Borel function. In our situation, it is a standard consequence of
Lusin’s theorem that the LP limit can be corrected in a set of measure zero so as to become
Borel [9, 2.3.6].

Next, we define the N*?-norm of the function f to be

(3.6) 115 = 1F1lp + inflioll,

where the infimum is taken over all p-weak upper gradients (equivalently, for all upper
gradients) p of f. If 1 < p < oo, then we have

(3.7) 1fllep = f1lp + lofllp-

To be more precise, definition (3.6) only gives a seminorm in general. In [46], the elements
of N'?(X) are defined to be equivalence classes of functions, where f; ~ fo if and only if
| f1 — fall1, = 0. We shall adopt the same convention. With the usual abuse of terminology,
the elements in N'?(X) will still be referred to as functions. One should notice, however, that
each representative f of an element in N1*(X) has well defined values up to a set of p-capacity
zero. Moreover, in many cases, e.g. for domains in R", each representative is automatically
p-quasicontinuous. It is important to notice this difference between the Newtonian Sobolev
space and the standard Sobolev space W'P; it is true that the members of WP also can be
represented by quasicontinuous functions, but that is not obvious from the definition and
non-quasicontinuous representatives of WP functions exist in each equivalence class.

The normed space N (X) is always a Banach space and agrees with the classical Sobolev
space W'P(Q)) whenever X = Q is a domain in R (with the Euclidean metric and Lebesgue
measure); in this case, the minimal p-weak upper gradient p; of a Sobolev function f agrees
with the norm of its classical gradient |V f| almost everywhere. For these facts and termi-
nology, see [46].

Remark 3.8. The above definition as well as the term Newtonian for the space N%?(X)
is due to Shanmugalingam [46]. In [7], Cheeger defined a Sobolev space H'P(X) in an
arbitrary metric measure space X by using upper gradients differently. For p > 1, these two
spaces are isometrically isomorphic by [45, Section 2.3]. Cheeger [7, Theorem 4.48] proved
the important theorem that for p > 1 the spaces H'P(X) are reflexive provided that p is
doubling and X supports the p-Poincaré inequality (see Section 4). It is not known whether
the spaces N'?(X) (for p > 1) are reflexive in general.

In [42], Reshetnyak introduces a notion of Sobolev classes for mappings from a bounded
Euclidean domain € into an arbitrary complete metric space Y = (Y, d). Earlier, Korevaar
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and Schoen [27] gave a different but equivalent definition with more general Riemannian
source space, see section 5. The definition of Korevaar and Schoen readily extends to the
case where the domain is a general metric measure space; see [22, 9.6], [40].

Reshetnyak’s definition is based on the elementary observation that postcomposition by
a Lipschitz function preserves membership in the class W'P(Q). The Reshetnyak-Sobolev
class WP( : Y) consists of those functions f : Q — Y with the following property: for
every 1-Lipschitz function ¢ : ¥ — R, the map ¢ o f : Q@ — R is in the class W?(Q);
furthermore, one requires that there exists a real-valued function w € LP(2), that does not
depend on ¢, so that the inequality |V (¢ o f)(z)| < w(z) holds for a.e. z € Q. In fact,
by [42, Theorem 5.1], it suffices to require this for the functions ¢ which are of the form
oly) =d:(y) = d(y,z), z€ Y.

We next combine the approaches of Shanmugalingam and Reshetnyak to give a definition
of Sobolev mappings from a metric measure space into a metric space. We shall only consider
the case when the target is a Banach space V'; as explained in the introduction, this entails no
loss of generality. Now there are several possible definitions of Sobolev functions in the sense
of Reshetnyak. In addition to postcomposing with Lipschitz functions on V', or functions of
the form d,, z € V, we may also use the linear functionals v* € V*. We shall see below that
all of these approaches give rise to the same class of mappings.

We shall generally consider mappings whose domains have finite mass.

Definition 3.9. Let V' be a Banach space and let X = (X, d, 1) be a metric measure space
with finite total measure. We say that a measurable map F' : X — V is in the (Reshetnyak-
Newtonian) Sobolev class N'?(X : V), if F € LP(X : V) and if there exists a Borel function
p: X —[0,00] so that p € LP(X) and that

(3.10) 1F(v(@)) — F(y()]| < / pds

Y

for p-a.e. rectifiable curve v : [a,b] — X. Each such function p is called a p-weak V -upper
gradient of F. If p satisfies (3.10) for all rectifiable curves =y, then p is called a V-upper
gradient of F. Tt is clear that every function in N'?(X : V) has a V-upper gradient in
LP(X).
When £1(X) is not necessarily finite, we define the local Sobolev class NP (X : V) to consist
of those functions F' € L (X : V) that have a (p-weak) V-upper gradient p € L} (X).
Sometimes we wish to consider mappings from X into an arbitrary metric space Y. In

this case we employ the notation

(3.11) N (X :Y)={F € N"?(X : £>°(Y)) : F(z) € Y for p-quasi-every z € X},
J(X :Y)! Here the phrase “for p-quasi-every x” means
that the set of exceptional points has p-capacity zero; recall that functions in N%(X : V)

are well defined up to sets of p-capacity zero (see, e.g., [46]). Recall also that £°°(Y") denotes
the Banach space of bounded functions on Y.

and similarly for the local space Nl1

!Note that strictly speaking the definition of N1'?(X : Y) in (3.11) depends on the choice of a basepoint yg
in Y — at least if we use the embedding of Y in £>°(Y") given in (1.3). It would thus be more precise to define
a notion of Sobolev function from a metric space X to a metric space with basepoint (Y,yo). Throughout
this paper, we will assume that a fixed choice of basepoint has been made in Y.
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We observe that N'?(X : V) is a linear space that can be (semi-)normed by
(3.12) 1 1[p = 111l + nfflpll,

where the infimum is taken over all p-weak V-upper gradients (equivalently, over all V-upper
gradients) p of F. As in the case of real-valued functions, we assume from now on that the
elements of N"P(X : V) are equivalence classes of maps, where Fy ~ F, if and only if
|Fy — F|l1p = 0. Thus we get that ||-||;, as defined in (3.12) is a norm.

The arguments in [46] can now be adopted almost verbatim to conclude the following
result:

Theorem 3.13. The normed space (N'*(X : V), |||l1p) i a Banach space. When p > 1,
every function F € NY?(X : V) has a minimal p-weak V -upper gradient pp in LP(X).

Remark 3.14. We have chosen to use the traditional terminology “Sobolev class” here
while retaining the notation N'?(X : V) so as to emphasize the special nature of its ele-
ments. Namely, it follows from the arguments in [46], that functions in N'?(X : V) are
unambiguously defined up to a set of p-capacity zero. Here p-capacity is an intrinsic (outer)
measure on X, independent of the target space V. In particular, one should keep in mind
that we are not, in general, free to change the values of the elements in N?(X : V) on sets
of measure zero. We also hope that the notation will enable the readers to distinguish be-
tween N'P(X : V) and the other burgeoning, possibly different Sobolev classes of mappings
between metric spaces.

Example 3.15. Let F': X — V be locally Lipschitz, i.e. F' is Lipschitz in a neighborhood
of each point in X. Then F € NP(X : V) for all 1 < p < oo. For future reference, we note

loc

here that the locally bounded function lip F' : X — R, defined by
lip F(z) = lirrri)iglf r ' sup ||F(z)— F(y)||
d(z,y)<r
is a V-upper gradient of f. A fortiori, the function Lip F' : X — R, defined by
Lip F(z) = limsup r* sup ||[F(z)— F(y)||

r—0 )
d(z,y)<r

is also a V-upper gradient of f.

Let us recall the standard argument which shows that lip F' is a V-upper gradient of F'
(compare [43, Lemma 1.20]). Suppose that 7 : [a,b] — X is a rectifiable curve (parameterized
by arc length) with y(a) = z and y(b) = y. Then F' is Lipschitz on the image |y| :=
v([a, b]). We may clearly assume that F(z) # F(y). Choose v* € V* with [[v*|| = 1 so that
|1F(z) = F(y)|l = {v*, F(z) = F(y)). Then the mapping
(3.16) t— (v*, (Fovy)(t))

from [a, b] to R is Lipschitz and hence differentiable at almost every ¢ € [a, b]; moreover,

(0", (F o) (b)) = (v", (F ov)(a)) =/ (v, (F o)) (t) dt

and so

1P () ||</\ (FonY(@ldt< [ipF)(0)dt= [tipFds
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since [(v*, (F o7))(t)| < (lip F)(y(t)) at every point ¢ € [a,b] where the map in (3.16) is
differentiable.

The following theorem is stated for the global Sobolev class on spaces of finite total
measure. The obvious local analog also holds.

Theorem 3.17. Let X = (X,u) be a metric measure space of finite total measure and
let V' be a Banach space. Then the following four conditions are equivalent for a function
Felr(X:V):
(1) Fe NY"»(X : V);
(2) for each 1-Lipschitz function ¢ : V — R, the map oo F : X — R is in N'?(X), and
there exists p € LP(X) that is an upper gradient of @ o F' for all such @;
(3) for each v* € V* with ||v*|| < 1, the map (v*,F) : X — R is in N'?(X), and there
exists p € LP(X) that is an upper gradient of (v*, F) for all such v*;
(4) for each z € F(X), the map d,F : X — R defined by d,F(x) = ||F(x) — z|| is in
N'?(X), and there exists p € LP(X) that is an upper gradient of d,F for all such z.
If we assume a priori that F(X) is a separable subset of V', and that 1 < p < oo, then the
above are further equivalent to
(2°) for each 1-Lipschitz function ¢ : V. — R, the map po F : X — R is in N"*(X), and
there exists p € LP(X) so that pyor < p a.e. for all such ¢;
(3’) for each v* € V* with ||v*|| < 1, the map (v*,F) : X — R is in N*?(X), and there
ezists p € LP(X) so that py-ry < p a.e. for all such v*;
(4’) for each z € F(X), the map d,F : X — R defined by d,F(z) = ||F(z) — z|| is in
N'2(X), and there exists p € LP(X) so that pg,r < p a.e. for all such z.

In this latter case, there erists a countable set of linear functionals (v}) with ||v}|| < 1
and a countable set of points (z,) in F(X) so that the following estimates for the minimal

p-weak V -upper gradient pr hold true:
(3.18) pr(x) < sup pry,F)(z)

(3.19) pr(x) < sup pq,, 7 (2)
for a.e. x in X.

Remark 3.20. In the event that X is separable and F' is p-quasicontinuous, there exists a
set Z C X of zero p-capacity for which F(X\ Z) is separable in V' and it is straightforward to
verify that this condition suffices for the second half of Theorem 3.17. Recall that separability
of X is guaranteed by the doubling condition (2.9) on the measure p.

In the following corollary, for a measure space X = (X, u) of finite total measure, the class
LP(X :Y) denotes the collection of measurable functions ' : X — Y for which d,F € LP(X),
where z € Y is a fixed basepoint; the definition of LP(X :Y') is clearly independent of the
choice of basepoint. Equivalently, LP(X : Y) may be identified with the set of functions
F e LP(X : £>(Y)) for which F(z) € Y for a.e. z € X. It is clear that this definition agrees
with the definition given in Section 2 in the case when Y = V' is a Banach space.

Corollary 3.21. Let X = (X, ) be a metric measure space of finite total measure and let
Y be an arbitrary metric space. Let F € LP(X :Y). If we replace V by Y throughout
the statement of Theorem 3.17, then conditions (1), (2) and (4) of that theorem are still
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equivalent; moreover, if we assume in addition that F(X) is separable in' Y and p > 1, then
(2°) and (4’) are also equivalent and (3.19) continues to hold.

Proof of Theorem 3.17. (1) = (2). Let p € LP(X) be an upper gradient of F, and let
@ :V — R be 1-Lipschitz. If v is a rectifiable curve in X with end points z and y, then

9o Fla) = po ) < |F(@) - FQ)I < [ pds.

v

On the other hand, because X has finite mass, we have that
lp o Flly < |1Fllp + p(X)/?|(0)] < oo

Thus ¢ o F belongs to N**(X : V) and p is an upper gradient of ¢ o F', independent of ¢.

(2) = (3), (2) = (4). These two implications are trivial, since the mappings d, : V — R,
z € V, given by d,(v) = ||[v — z|| and the mappings (v*,-) : V = R v* € V* ||[v*|| < 1, are
1-Lipschitz maps.

(3) = (1), (4) = (1). The proofs for these two implications are similar; we only show
the first implication. Thus, let F' € LP(X : V) satisfy (3), and let p € LP(X) be as in
(3). Let 7 be a rectifiable curve in X with end points = and y; we wish to show that
|F(x) — F(y)|| < f7pds. If F(xz) = F(y) this is trivial. Otherwise, let v* € V* satisfy

(v, F(z) = F(y)) = [|F(z) = F(y)ll

with ||v*|| < 1. Then, because p is an upper gradient of (v*, F), we have that

1#) ~ F)ll = (. F@) - ) < [ pds

v

as required.

Assume now that F(X) is a separable subset of V and that 1 < p < oco. Clearly, (2)
implies (2’) which in turn implies (3’) and (4’).

(3’) = (1). Let (v,) C V be a countable dense set in the difference set F'(X)—F(X) C V.
Without loss of generality we assume that v, # 0 for each n. Denote by (v}) a countable
subset of V* so that (v}, v,) = ||vs|| and that ||v}|| = 1. By assumption, inequality (3.10)
holds for p = p(ys ry, for all curves 7y outside a p-exceptional family I',. Because I'y UT';U- - -
is also p-exceptional, it follows from Lemma 3.23 below that there is a family I" of rectifiable

curves in X with mod,{y:7v ¢ '} = 0 so that

(s F)(v(a)) — (vp, F)(7(0))] < /ﬁds
v
foralln=1,2,...and y € ', v: [a,b] = X, where p is as in (3’).
Next, let v € T be a curve with end points x and y. Because the sequence (v,) is dense in
F(X) — F(X), we can find a subsequence (v,;) converging to F(z) — F(y). Thus, with an



12 JUHA HEINONEN PEKKA KOSKELA NAGES SHANMUGALINGAM JEREMY T. TYSON

obvious notation vy, we find that

17 (@) = F@)l| = Jim [lvn, |
;= (F(@) = F@)) + v, F(=) = F(y))1)

< limsu 5 Up,
(3.22) H,op(K

< limsupl|v,; — (F(z) ||+/pds—/pds

j—oo

This proves that F' belongs to NP (X : V).

The proof for the implication (4’) = (1) is similar, using the fact that
s, F(2) = du, F(y)| = |F(2) - F(3)]
for a sequence (vy,;) in F/(X) converging to F'(z).

Finally, let us prove (3.18) and (3.19). Let
pp(x) := sup pry ) (2)

for a.e. x € X, where the functionals v} are chosen as in the above proof that (3’) implies
(1). Then that proof remains true if we replace p with p}. Although we do not know that
P4 € LP(X), we may still conclude from (3.22) that p}. is a p-weak V-upper gradient of F' and
hence pr(z) < pi(z) for a.e. z € X. The statement involving the functions d,, z € F(X) is
similar.

The proof for Theorem 3.17 is now complete. 0

Lemma 3.23. Let g, h be nonnegative Borel functions on a metric measure space X with
g<hae Letp>1. Then fvgds < fyhds for p-a.e. curve 7.

Proof. Denote by I' the collection of curves v for which f7 gds > fv hds. It is clear that I is
p-exceptional, because the Borel function p = oo - max{g — h,0} both satisfies fy pds = 00
for v € I and belongs to LP(X). The lemma follows. O

Remark 3.24. The Sobolev space W'P(M : N) for maps F' : M — N between two Rie-
mannian manifolds is customarily defined via an isometric embedding of N in some Euclidean
space R”. Namely, FF € W'?(M : N) if and only if F(z) € N for a.e. x € M and the com-
ponent functions of F': M — R” belong to the standard Sobolev space W'P. Local spaces
WP(M : N) are defined similarly. Although the embedding i : N < R” is not isometric in
the same sense as the embedding N < ¢°°(N) in (1.3) is (one uses the intrinsic metric on
'(N ) C R”), it is nevertheless straightforward to verify that a map F': M — N belongs to
NP(M : N) if and only if W.?(M : N), and that inf,||p||, = ||V F||,, where the infimum is

taken over all upper gradients p of F. In particular, if M and N are compact (possibly with
boundary), then N"»(M : N) = W'?(M : N).

4. POINCARE INEQUALITIES FOR BANACH SPACE-VALUED MAPS

In this section, we discuss Poincaré inequalities for Banach space-valued maps. The prin-
cipal result (Theorem 4.3) is that the validity of a Poincaré inequality is independent of the
target space. The discussion here uses upper gradients as defined in the previous section but
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is independent of the notion of a Sobolev space. For a comprehensive theory of Poincaré
inequalities for real valued functions in the setting of general metric spaces, see [16].

In what follows, X = (X, d, ) denotes a metric measure space as in 1.2, 1 < p < oo, and
V is a Banach space. We denote by Lip,..(X : V) the class of locally Lipschitz maps from
X toV, by C(X : V) the class of continuous maps from X to V', and by M(X : V) the class
of measurable maps from X to V. We also use the self-explanatory notation Lip,, (A : V),
C(A:V), and M(A:V) for subsets A C X.

Definition 4.1. Let B be an open ballin X, 0 > 1, F € L'(¢B: V), and p: 0B — [0, o]
Borel measurable. (Recall the notation from 1.2.) We say that the pair of functions F' and
p satisfies the p-Poincaré inequality in o B if there exists a constant C'p > 0 so that

(4.2) ][B||F _ Fy|dp < Cp(diam B) (/UB ppd,u> "

Here Fg denotes the mean value of the Banach space-valued function F' on the ball B,
defined in (2.7).

Next, let S be one of the classes Lip,,., C or M. If condition (4.2) holds for all balls B
in X, for all L*-functions F € S(oB : V), and for all p-weak V-upper gradients p of F in
the ball 0B, with constants Cp and o independent of B, F', and p, we say that the pair
(X, V) supports the p-Poincaré inequality for the class S. When V =R, we just say that X
supports the p-Poincaré inequality for the class S; if § = M, we simply say that X supports
the p-Poincaré inequality.

Note the terminological difference with [22], where the term weak (1, p)-Poincaré inequality
was used. Note also that in [22], Poincaré inequalities were formulated for upper gradients
rather than weak upper gradients; the two notions are easily seen to be equivalent. For a
relationship between the different classes & in this context, see Remark 4.4 below.

For the next theorem, recall the definition for a doubling metric measure space from 2.8.

Theorem 4.3. Assume that X = (X, d, ) is a doubling metric measure space and let S be
one of the classes Lipy,.,C, M. Then the following are equivalent:

(1) For every Banach space V', (X, V') supports the p-Poincaré inequality for the class S;

(2) There exists a Banach space V' so that (X,V') supports the p-Poincaré inequality for
the class S;

(3) The space X supports the p-Poincaré inequality for the class S.

The statement 1s quantitative in that all the relevant constants depend only on each other,
on p, and on the doubling constant of L.

Remark 4.4. It is clear that the Poincaré inequality for measurable functions implies the
corresponding inequality for continuous functions, which in turn implies it for Lipschitz
functions. When V = R, the Poincaré inequality for Lipschitz functions implies the corre-
sponding inequality for measurable functions provided the metric space X is proper (closed
balls in X are compact) and path connected, and the measure u is doubling. This follows
by combining the main result of [23] with the fact that proper and path-connected spaces
are quasiconvex if the Poincaré inequality holds [16]. Consequently, by Theorem 4.3, we we
obtain a similar assertion for Banach space-valued functions.
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In general, the validity of a Poincaré inequality for Lipschitz functions does not imply
its validity for continuous functions; see [28]. We do not know what the situation is for
measurable versus continuous functions.

Proof of Theorem 4.3. (1) = (2) is trivial. To prove that (2) = (3), fix a ball B in X, a
function f € S(oB : R), and a p-weak upper gradient p of f in 0 B. Next, fix a vector e € V'
with ||e|| = 1 and define F': X — V by F(z) = f(z)e. Then F € S(¢B : V). Moreover, p is
a p-weak V-upper gradient of F' in oB. Finally, Fg = (fg)e, whence the assertion follows.

The proof that (3) = (1) is more involved. We consider (restricted) maximal functions

1/p
(4.5) Mg yh(z) = sup (f \h\pd,u>
B(z,r)

for 0 < R < oo and for h € L} (X). When p = 1 we abbreviate Mr;h = Mrh and when

loc

R = oo we further abbreviate M, = M.

The following proposition for V' = R can be found in [16, Theorems 3.2 and 3.3]. The case
of a general Banach space is no more difficult and is left to the reader to verify (Proposition
2.10 is needed here).

Proposition 4.6. Let X = (X, d, ) be a doubling metric measure space, and let Q C X be
open. If the pair of functions F € Li, (2 : V) and p : Q — [0, 00] satisfies the p-Poincaré

inequality (4.2) for each ball B such that oB C ), where o > 1 is fized, then the inequality

(4.7) [1F(x) = F(y)ll < Cd(z, y)(Maod(a,y)pP(%) + Maod(a,y)pP(y))

holds for all Lebesgue points x and y of F' in §2, where C' depends only on Cp and on the
doubling constant Cy.
Conversely, if for some pair of functions F' and p in  as above the pointwise inequality

(4.8) 1F(z) = F)ll < Cd(z,y) (Mo da,) p(2) + Mora(oy).pp(y))

holds, with C and o' fized, for almost every x,y € Q such that x,y € B, where B is ball with
30'B C QQ, then the pair F, p satisfies the p-Poincaré inequality (4.2) for each such B with
constants o = 30’ and Cp depending only on p, C, and the doubling constant C,,.

We now complete the proof of Theorem 4.3 by showing that (3) = (1). Suppose that X
satisfies the p-Poincaré inequality for the class S. Fix a Banach space V and a ball B in X.
By Proposition 4.6, it suffices to show that (4.8) holds a.e. for all functions F' € S(oB : V)
with p-weak V-upper gradient p in the ball 0 B. We distinguish two cases: (i) S = Lip,,. or
S =C and (ii) § = M.

(i) Let F be a function either in Lip, (6B : V) or in C(¢B : V) with p-weak V-upper
gradient p. We shall show that (4.8) holds for each pair of points z,y € B for some ¢’ > 1
depending only on the data. To this end, fix z,y € B (without loss of generality distinct),
and choose a functional v* € V* such that ||v*|| <1 and that

(v, F(z) — F(y)) = | F(z) = F(y)l|-
Because [{(v*, F(z)) — (v*, F(w))| < ||F(z) — F(w)|| for all z,w € 0B, we have that p is a p-
weak upper gradient of the real-valued function f(z) = (v*, F'(z)). Because f is continuous,



SOBOLEV CLASSES OF BANACH SPACE-VALUED FUNCTIONS 15

every point is a Lebesgue point of f, and so (4.8) for the function F' follows from the
assumptions and from (4.7) applied to the function f.

(ii) Let F': 0B — V be bounded and measurable and let p be a p-weak V-upper gradient
of F. Choose Zy C X, u(Zy) = 0, so that F(X \ Zy) is separable (see Theorem 2.1). Let (v,),
n > 1, be a countable set that is dense in the difference set F'(X \ Zy) — F(X \ Zy). Without
loss of generality, we assume that v, # 0 for each n. Next, for each n, choose v} € V* with
lvz]| = 1 and (v}, v,) = ||vn||, and define f,, : V' — R by f.(2) = (v}, F(2)). Asin (i) above,
we have that p is a p-weak upper gradient of f, € M(X : R). Therefore, there exists a set
Z, C B with u(Z,) = 0 so that (4.7) holds (with F' = f,,) for all z,y € B\ Z,.

Let Z = U,y Zn and let z,y € B\ Z. Choose a sequence (v, ) from our dense set

converging to F'(x) — F'(y). Then, with obvious notation v}, ,

| foe(@) = Fae @) = onell] = [fo (@) = fun (0) = (v, V)|
= [(vp,» (@) = F(y) — vn)| < [F(z) = F(y) — vn, ]| =0

as k — oo. Thus |f,, (z) — fu,(y)| = ||F(z) — F(y)|| as £ — oo, and we conclude that (4.8)
holds for all z,y € B\ Z, where p1(Z) = 0. The proof of Theorem 4.3 is complete. O

5. EQUIVALENCE OF N'?(X : V) AND THE SOBOLEV SPACE OF KOREVAAR-SCHOEN

In [27], Korevaar and Schoen define a class of Sobolev maps F' : X — Y, where X is a
Riemannian domain and Y is a complete metric space. In this section, we show that the
Sobolev space N'?(X :Y) defined in section 3 and the Korevaar-Schoen space are equivalent
in this setting. This result is not original with us; it has been announced by Reshetnyak [42,
p. 568]. For the convenience of the reader, we include a proof here. The Sobolev space of
Korevaar and Schoen can be defined more generally for abstract metric measure spaces and
this equivalence remains valid; see the remark at the end of this section.

We briefly recall the definition of the Korevaar-Schoen Sobolev space [27]. Let Q be a
connected and open subset of a Riemannian n-manifold M such that the metric completion
Q is a compact subset of M; we also assume that € has smooth boundary. For € > 0, let

Qc :={z € Q:dist(z,00) > €}.
Let Y be a complete metric space. For a map F': 2 — Y and for points z,y € €2, write
d(F (), F(v))

ec(z,y; F) = ;

For 1 < p < oo and z € €, the (nonnormalized) averaged e-approximate density function is
taiF)=f ey FPduly)
B(z,e)

where dy denotes the Riemannian measure on . If ¢ € C.(£,]0,1]) (i.e., ¢ is a compactly
supported function on (2 taking values in the interval [0, 1]) and e < dist(supp(¢p), 02), write

(g F) = / o(@)e? (z; F) du(x).

Finally, let

EP(F)= sup limsupEP(g; F).
PEC(A[0,1])  €—0
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We say that F is in the (Korevaar-Schoen) Sobolev space KS'P(Q : Y) if EP(F) < occ. By
[27, Theorem 1.5.1], if F € KS'?(Q : Y), then the measures €?(-; F')dyu converge weakly to
an “energy density” measure de?(-; F') on ) with total mass E?(F).

Theorem 5.1. Let € be as above and let Y be a complete metric space. Let p > 1. Then
N'Y?(Q:Y) and KS*(Q :Y) are equal as sets. More precisely, if F is in N'?(Q :Y), then
F has a representative in KS'?(Q :Y) and

(5.2) EP(F) < C(n,p,Q) / o dp.

Q
Conversely, if F € KSY?(Q:Y), then F has a representative in N'?(Q:Y) and
(5.3) P dp < C(n,p)deP(-; F)

as measures on §). Here pp denotes the minimal p-weak {*°(Y)-upper gradient of F (as in
section 3).

Proof. Assume first that F € N'"?(Q : Y). Then F € N'?(Q : £*°(Y)) and F(z) € Y for
p-quasi-every x € X; upon changing F' on a set of p-capacity zero, we may assume that
F(X) CY. Let pr € L?(12) denote the minimal p-weak ¢*°(Y')-upper gradient of F in (.

Since 2 C M is precompact and 0f2 is smooth, the 1-Poincaré inequality holds in €2. By
Proposition 4.6,

d(F(z), F(y)) < C(n,Q)|x — y|(Mpr(z) + Mpr(y))

for a.e. z,y € 2, where Mh denotes the (unrestricted) Hardy-Littlewood maximal function
of h € L (Q). It follows that for € > 0 and z € €.,

e

124

sammMmuw+ammfm)Mwwwmw.

For ¢ € C,(2:[0,1]

~—

and € < %dist(supp @, 02),

EP(p; F) o(x)el (x; F) du(x)

2

<

Q

(n, ) /Q Mpp ()P dp(z) + C(n, Q) ][ " )MPF(y)p dp(y)dp(x)

Q2e
< C(n,Q)/(MpF)p du,
Q

where the last inequality follows by applying Fubini’s theorem to the second term and using
the doubling property of u. Since p > 1, we may apply the Hardy-Littlewood Maximal
Theorem to conclude that

@WﬂKCmnmLﬁw

Letting € tend to zero and taking the supremum over all ¢ shows that F € KS'"?(Q : Y)
and that (5.2) holds.
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Now assume that F € KS'?(Q : V). The energy density de?(-; F) is a Radon measure
on (2 since it arises as the weak limit of the measures €?(-; F')du and each of the functions
eP(; F), e > 0, is measurable. For x € Q, let

P(B P
(5.4) h(z) = lim 2B @) F)
0 pu(B(z,7))
denote the Lebesgue derivative of the measure eP(-; F') with respect to the Riemannian
measure p (see, for example [35, Definition 2.9]). By the Lebesgue differentiation theorem
[35, Theorem 2.12], h(z) exists and is finite for p-a.e. point z in §2; moreover,

(5.5) hdp < deP(-; F)

as measures on 2.
By [27, Corollary 1.6.3], ¢ o F belongs to the standard Sobolev space W'?(Q) for each
1-Lipschitz map ¢ : ¥ — R and

(5.6) IV(po F)Pdu < C(n,p)de?(-; F)

as measures. Differentiating with respect to p in (5.6) and using the Lebesgue Differentiation
Theorem on the left hand side and (5.4) on the right hand side, we see that

(5.7) V(o F)(z)P < C(n,p)h(z)

for p-a.e. x in Q.

Since €?(-, F') has finite total mass on €, (5.5) implies that » € L'(X, 1), whence condition
(2) of Corollary 3.21 is satisfied. Thus F € N'?(Q:Y). (Note that F € LP(Q : Y) because
09 is smooth, by standard embedding theorems.) Furthermore, by (3.19),

(5.8) pr(x) < sup|V(pn o F)(z)|

©n

for p-a.e. x € €2, where the supremum is taken over a countable set of 1-Lipschitz functions
©n 1 Y = R. Now (5.3) follows by combining (5.5), (5.7) and (5.8). O

Remark 5.9. More generally, we may consider the Korevaar-Schoen definition in the case
when the source domain is replaced by an abstract metric measure space. In this setting, it
is more convenient to work with a slight modification of the definition of K'S*. For a map
F : X — Y from a metric measure space X = (X, d, u) into a complete metric space Y, we
define e?(z; F), x € X, € > 0, p > 1, as before and set

EP(F) = sup (lim sup/ el (x; F) d,u(x)) :
B e—0 B
where the supremum is taken over all metric ballsin X. Then F'is said to be in the Korevaar-
Schoen Sobolev space KSV?(X : V) if EP(F) is finite. Clearly this definition agrees with that
of Korevaar and Schoen in the case when X is proper, i.e., closed balls in X are compact.
If the metric measure space (X, 1) is doubling (Remark 2.8) and satisfies the p-Poincaré
inequality for measurable functions (Definition 4.1) with p > 1, then the Sobolev classes
N'Y?(X : V), KS"(X : V), H"(X : V), and P"?(X : V) all coincide; here, for simplicity,
we assume that the target V' is a Banach space. Moreover, there exists C' > 1 depending
only on the data of X and on p so that

& [ vty du) < B (F) < C [ pelay duto)
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whenever F': X — Y. Here H'?(X : V) denotes Cheeger’s Sobolev space (see Remark 3.8),
consisting of those functions F' € L?(X : V) for which there exists a sequence F; € LP(X : V)
with corresponding upper gradients p; € LP(X) so that (F;) converges to F' in LP(X : V)
and sup;||p;|l, < co. Also PYP(X : V) denotes the set of functions F : X — V for which
there exists a real-valued function p € L?(X) so that the pair of functions F' and p satisfies
the p-Poincaré inequality (4.2) in each ball B of X, with the constant Cp independent of B.

The equivalence of these four spaces can be proved as in [29] and [46]. More precisely, the
inclusion N*?(X : V) € P"?(X : V) is trivial, the inclusion P*?(X : V) C KS"(X : V)
follows by modifying the argument of Theorem 4.1 of [29], and the inclusion KS'?(X : V) C
H'?(X :V) is (essentially) contained in Theorem 4.5 of [29]. The equivalence of N'?(X : V)
and H%(X : V) has already been mentioned for V' = R in Remark 3.8; the general case
is similar. Note that in Theorem 4.5 of [29] it is assumed that X satisfies the g-Poincaré
inequality for some ¢ < p; this assumption, however, is only used to show the equivalence
with yet another notion of Sobolev space due to Hajlasz, which we discuss in the following
section.

6. EMBEDDING THEOREMS. DENSITY OF LIPSCHITZ MAPS.

In this section, we briefly indicate what classical embedding theorems hold true for the
Sobolev space N'(X : V) as defined in 3.9. We also discuss the density of Lipschitz
functions in NY?(X : V). In light of the theory presented in Sections 3 and 4, the discussion
here reduces to previous works in the area.

Throughout this section, X = (X,d, ) is a metric measure space as in 1.2. Recall also
the definition of the Poincaré inequality from 4.1.

We say that the measure y satisfies a local lower mass bound with exponent Q > 0 if there
exist constants Cy > 1 and Ry > 0 so that
(6.1) IU(BR) > CO_I(E)Q

1(Bry) Ry
whenever Br C Bpg, are balls in X with radius(Bg) = R < Ry = radius(Bg,). It is easy to
see that every doubling measure satisfies (6.1) for some @ > 0.

Theorem 6.2. Assume that pu is a doubling measure on X satisfying the local lower mass
bound (6.1) for some exponent Q@ > 1 and assume that X supports the p-Poincaré inequality.
Let V be a Banach space and let F € N-*(X : V) be such that F € N“*(B : V) for all balls

loc

BC X ofradius R< Ry. If 1<p<@Q and1<q<p*=Qp/(Q—p), then

(6.3) (f P = Fall 'l < C(diam B)(]/ '

for all balls B in X of radius R < Ry and all V -upper gradients p of F' in X. If p > @, then
F' has a representative that is locally Holder continuous in the following sense:

(6.4) |F(z) = F(y)ll < C(diam B)??d(x,y)'=?/" (4~ pPdp)'/”

50B
for all balls B in X of radius R < Ry, all pairs of points x,y € B, and all V -upper gradients
pof Fin X. Here C > 1 in both (6.3) and (6.4) is a constant depending only on the data
of the setting, and o > 1 as in (4.2).
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The discussion in the previous sections understood, Theorem 6.2 follows from the proof
of [16, Theorem 5.1]. More precisely, let F € N.?(X : V) be as in the theorem, let p be
a V-upper gradient of F' in X, and let B C X be a ball. Because a.e. point of X is a
Lebesgue point of F' (Proposition 2.10), we obtain by use of the p-Poincaré inequality as in

[16, Theorem 5.2] that the inequality
(6.5) IF () = F(y)ll < CJ7) p(x)

holds for a.e. x in B, where

e = Y 2 paw
) B(waZl)
2¢<2¢ diam(B)
is a generalized Riesz potential. The claimed inequalities (6.3) and (6.4) now follow from
the mapping properties of the potential Jf, ’f proved in [16, Theorem 5.3].

Remark 6.6. The crucial estimate here is (6.5). From it one obtains more precise embed-
ding information along the lines of [16, Section 5]. We have, for example, that (locally)
NP — weak —LP" | and that a Trudinger-type inequality is valid in the borderline (p = Q)
case.

We do not know, however, if the (local) embedding N'? < LP" holds under the assump-
tions of Theorem 6.2. It holds for real-valued Sobolev mappings; see [16, 5.1(21)].

Next, we discuss the density of Lipschitz functions in the class N'P(X : V).

We say that a pair of metric spaces (X,Y') has the Lipschitz extension property if there
exists a constant C' > 1 so that whenever £ C X and f: F — Y is L-Lipschitz, then f has
a CL-Lipschitz extension f: X — Y. This extension problem has been studied extensively.
It is easy to see, by using the classical McShane extension, that the pair (X, ¢>°(A)) has the
Lipschitz extension property (with C' = 1) for any space A. If the space Y is an absolute
Lipschitz retract, then (X,Y’) has the Lipschitz extension property for every metric space
X. See [3].

Theorem 6.7. Let X = (X, i) be a doubling metric measure space supporting the p-Poincaré
inequality, 1 < p < oo, and let V be a Banach space for which the pair (X,V) has the

Lipschitz extension property. Then Lipschitz maps from X to V are dense in the class
NLP (X : V).

The proof of this theorem follows along the (now standard) lines of [46, Theorem 4.1] or
[7, Theorem 4.24]. We leave the details to the reader.

Remark 6.8. Recall that we defined the Sobolev space N'?(X :Y) for maps between two
metric spaces to be the collection of maps F' in N'P(X : ¢*(Y)) for which F(z) € Y for
p-quasi-every x € X. Thus, in particular, if X supports the p-Poincaré inequality and if the
measure in X is doubling, every map from N'?(X :Y) can be approximated by Lipschitz
maps in NMP(X : £*°(Y)). It is an interesting problem to determine when one can choose
the Lipschitz approximants to have values in the target Y. The proof in [46] shows that
this can be done provided the pair (X,Y’) has the Lipschitz extension property; nontrivial
examples of such pairs have recently been exhibited by Lang, Pavlovi¢, and Schroeder [32].
The case of maps between two compact Riemannian manifolds was settled by Bethuel [4]; the
answer depends on the algebraic topology of the image. In the general case many interesting
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questions remain open. For instance, one may ask to what extent Bethuel’s results have
analogs for general spaces.

In [15], Hajlasz defined Sobolev spaces M'P(X), 1 < p < oo, for an arbitrary metric
measure space X by requiring that a function f € M'?(X) if and only if f € L?(X) and
there exists a nonnegative function g € LP(X) so that

(6.9) (@) = f(y)| < d(z,y)(9(x) + g(y))

for a.e. x,y € X. Hajlasz showed that the space M'?(Q) is isomorphic to the standard
Sobolev space W1P(Q2) whenever 1 < p < oo and 2 is a smooth bounded domain in Euclidean
space. Hajlasz’s definition (6.9) extends in a straightforward manner to maps with target an
arbitrary metric space Y'; let us denote the resulting class of maps by M'?(X : Y). Troyanov
[47] has studied the relationship between Hajlasz’s approach and Reshetnyak’s approach to
Sobolev maps between metric spaces.

The following is an easy consequence of [46, Section 4] and the results of this section.

Theorem 6.10. Let X = (X, u) be a doubling metric measure space of finite mass support-
ing the q-Poincaré inequality, 1 < g < oo, and let V be a Banach space for which the pair
(X, V) has the Lipschitz extension property. Then for each p > q, the space M'P(X : V) is
isomorphic (as a Banach space) to NYP(X,V). In particular, if Y is a metric space, then
MY (X :Y) and N'Y?(X :Y) are equal (as sets).

7. ABSOLUTE CONTINUITY OF SOBOLEV MAPPINGS

In [33], Maly and Martio called a map F : Q@ — R, where 2 is a domain in R”,
K -pseudomonotone, K > 1, if diam F'(B(z,r)) < K diam F(0B(z,r)) for all x €  and
all » < dist(z, 02). They showed that each continuous pseudomonotone mapping F' in the
Sobolev class W1™(Q) satisfies Lusin’s condition N, that is, F is absolutely continuous in
measure. Because homeomorphisms between Euclidean domains are monotone, and because
quasiconformal homeomorphisms between domains in R" are locally in W, one obtains in
particular the absolute continuity in measure of quasiconformal maps in Euclidean domains.
In this section, we prove an extension of the Maly-Martio theorem for Banach space-valued
pseudomonotone Sobolev maps, defined on a doubling metric measure space with Poincaré
inequality.

Assume that (X, ) is a metric measure space and that V' is a Banach space. Following
Maly and Martio, we call a map F' : X — V pseudomonotone if there is K > 1 and ry > 0
so that

(7.1) diam F(B(z,r)) < K diam F(0B(z,r))
forallz € X and all 0 < r < 7.

Theorem 7.2. Assume that pu is a doubling measure on X satisfying the local lower mass
bound (6.1) for some exponent @ > 1. Assume further that X supports the Q-Poincaré
inequality for continuous functions. Then every continuous pseudomonotone Sobolev map
F € Nﬁf(X : V) satisfies Lusin’s condition N in the following sense: if E C X and
w(E) =0, then Ho(F(E)) = 0.

Here (and below) Hg denotes the Hausdorff Q-measure in V.

Note that we do not stipulate any condition for the Haudorff dimension of X (although
(6.1) implies that it is at most @)). Also note that the issue is completely local, so it suffices
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to assume that something like (6.1) holds locally (that is, not necessarily uniformly for balls
of radius less than some fixed Ry).

Proof. Let E C X satisfy pu(E) = 0. Without loss of generality, we may assume that E
belongs to a fixed ball of radius R; < min{ry, Ry}, where ry and Ry are given in (7.1) and
(6.1), respectively. Moreover, we may assume that F' has an upper gradient p that is Q-
integrable in some neighborhood of E. Fix € > 0. Then fix an open superset {2 D E in X
such that

(7.3) /de,u<e.
Q

Next, fix a number A > 1, to be determined later. (A will only depend on the data of the
problem, and in particular not on e.) We define two sets Hy and P, as follows: a point z is
in H, if and only if x € E and there are arbitrarily small radii » > 0 such that

(7.4) / pdu < 2A/ ¥ du,
B(z,1007) B(z,r/5)

where o > 1 is the constant appearing in the Poincaré inequality (4.2). Put Py = E \ Hj.

Let us first show that Hg(F(Hx)) = 0. Indeed, for each © € Hy we can find r, > 0 such
that B(z,1007,;) C Q and that (7.4) holds for r = r,. It follows from an abstract Sobolev
embedding theorem on spheres, [16, Theorem 7.1], that there exists a radius r € (ry, 2r;) so
that

(7.5) IF(z) - F(w)| < Cd(z, w)l/Qr;“ng §2 dpr) /2

B(z,10074)

for each z,w € Q with d(z,z) = r = d(w,z). Here, and in what follows, C' > 1 denotes
a positive constant that depends only on the data of the problem, and in particular is
independent of z and 7.

In fact, [16, Theorem 7.1] is stated and proved for real-valued functions only, but it is
routine to check that the argument continues to work when the target is a Banach space.
(This result makes use of the Lebesgue differentiation theorem 2.10 for Banach space-valued
maps.)

Next, because F' is pseudomonotone, and because p satisfies (6.1), we obtain from (7.5)
that

(7.6) (diam F(B(z,7,)))? < C(diam F(0B(xz,r)))? < C/B( . )pQ du .

Thus Hy C Ugen, B(x,r;), where B(x,r,) satisfies (7.6). By standard covering theorems,
we can choose a countable collection {B(x;,7;)} of balls such that their union covers H,,
that the collection {B(x;,7;/5)} is pairwise disjoint, and that both

(diam F(B(z;,7;)))?¢ < C p% du

B(z;,1007;)
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and (7.4) (for r = r;) holds for each ball from the collection. We deduce that

Z(diamF(B(xi,ri)))Q < CZ/ p% du
B(z;,1007;)

§2ACZ/
i 7B

Because F'(Hp) C U;F(B(z;,1;)), we have by letting e — 0 that Ho(F (Ha)) = 0.
Next we prove that Hq(F'(Py)) = 0. To this end, it suffices to show that Hqo(F(P™)) = 0,
where P™ = P{" consists of those x € P, for which

(7.7) 2A/ de,ug/ p%du, 0<r<1/m.
B(z,r/5) B(z,1007)

1

p?du < 2AC/deu < 2ACE.
) Q

xi,ri/5

Moreover, it suffices to show that
(7.8) Ho(F(P™ N B(zy,1/10m))) =0

for a given arbitrary zo € P™. Fix z,y € P™ N B(zy,1/10m). Then 2d(z,y) < 1/m and
hence

(7.9) 1F(z) = F(y)ll < Cd(z, y)(Mi/mqp(x) + Mym,qp(y))

by Lemma 4.6. (Recall the definition for the restricted maximal function M/, o from (4.5),
and observe that every point is a Lebesgue point of F' because F' is continuous.) To estimate
Mi/m,p(z), fix 0 <7 < 1/m. Let k > 0 be the integer for which oy * ' < mr < o, *, where
0o = 500. We obtain from (7.7) and from the doubling property of u that

][ pPdp<C / p? dp
B(a,r) B(a,o3* /m)

< C(u, 0)’“/\_’“][ pdp < C(p,0,m) < oo
B(z,1/m)
if A > 1is chosen large enough (depending only on x and o). It follows that M m gp(z) <
C(u,0,m), and similarly for M, op(y). Because z and y were arbitrary points in P™ N
B(z,1/10m), we deduce from (7.9) that F is Lipschitz on P™ N B(xg,1/10m). Finally,
because p(E) = 0 implies Hg(E) = 0 by condition (6.1), we find that (7.8) holds.
The proof of Theorem 7.2 is complete. O

Remark 7.10. The above proof shows that under the assumptions of Theorem 7.2, the
Hausdorff @-measure of F(E) C V is locally finite if the Hausdorff @Q-measure of E C X
is locally finite, where @ > 1 is as in (6.1). In particular, if X has locally finite Hausdorff
@-measure, then F(X) does, too. As illustrated by (now) standard examples in R", the
assumption of pseudomonotonicity of F' is necessary in Theorem 7.2. See [33, Section 5].

8. QUASISYMMETRIC MAPPINGS AND SOBOLEV SPACES

An embedding F': X — V of a metric space X in a Banach space V is called quasisym-
metric if there exists an increasing homeomorphism 7 : [0,00) — [0, 00) so that

IF(z) - F@)ll _  (d(z.y)
IF@ - F)l =" (d<x,z>>
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for all z,y,z € X, x # 2. Naturally, F' can be an embedding of X in some other metric
space Y, but as pointed out several times in this paper, Y can always be thought of as a
subset of a Banach space. See [48] for the basic theory of quasisymmetric maps between
metric spaces.

Our goal in this section is to show that F'is in the local Sobolev space Nli’CQ(X : V), pro-
vided that X is locally compact, Ahlfors Q)-regular, and supports the ()-Poincaré inequality,
and provided that F'(X) has locally finite Hausdorff ()-measure (Theorem 8.12). A key point
to our argument is an approximation of the map F' via a sequence of “discrete convolution
approximations”. We note that this approximation procedure would not work unless it is
assumed that the target space has a linear structure of some sort.

We shall then use this fact to give two different proofs of the absolute continuity in measure
of F'. The first proof is simply a reduction to Theorem 7.2, by showing that quasisymmetric
maps are pseudomonotone in our setting. The second proof uses the modulus of curve
families and is related to the proof given in pp. 111-112 of [53].

Let F : X — V be a quasisymmetric embedding of a metric space X in a Banach space
V. Assume that X has the following doubling property: there is a constant C' > 1 so that no
ball B in X can contain more than C' disjoint balls of half the radius of B. For example, if
X carries a doubling measure, then X has the doubling property; the converse need not be
true. We begin by constructing discrete convolution approximations F; to F', following the
discussion on pp. 290-292 of [43].

Fix € > 0. Choose an e-net in X, that is, a countable collection of points (z;) in X so that
d(z;,x;) > € whenever i # j and X = U;B;, where B, = B(x;,¢€) is the open ball centered
at x; with radius e. Because X has the doubling property, the dilated balls 2B;,2B,, ...
have bounded overlap: the sum of the characteristic functions of the balls 2B; is uniformly
bounded from above by a constant depending only on the doubling constant of X (and not
on the value of €). Moreover, the family {:B;} is pairwise disjoint.

There exists a locally finite Lipschitz partition of unity, subordinate to the cover {2B;}
of X. That is, for each i, we may choose a function ¢; : X — [0,1] with the following
properties:

(i) Xipi=1;

(ii) ¢, =0 on X \ 2B;;

(iii) ¢; is C'/e-Lipschitz, where C' depends only on the doubling constant of X.
The family of functions {(p;} is locally finite (at most finitely many of these functions are
nonzero at each point of X) and so only finitely many terms in the sum in (i) are nonzero.

We define the discrete convolution approrimation F,: X — V of F' at the level € by
F(z) =) ¢i(z)F(z;).
In the following, we understand that an e-net (z;) = (zf) together with the associated
balls Bf = B(x;, €) have been given for each ¢ > 0.

Lemma 8.1. The function F, is Lipschitz on bounded sets and hence is in Nlt’CQ(X : V) for
sufficiently small € > 0.
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Proof. Let U C X be bounded. Since X has the doubling property, only finitely many of
the balls 2B; can meet U; let My be the sum of the values ||F(z;)|| over all of these indices
1. f z,y € U, then

C
IF(@) = Fl < D loile) —ilw)] - I1F(@)]| < — My d(z,y),
{2,9)N2B;#0
and the lemma follows by Example 3.15. O
Lemma 8.2. The functions F, converge to F' uniformly on bounded sets.

Proof. Again, let U be bounded in X. Since F'is quasisymmetric, it is uniformly continuous
on the set

U :={z € X : dist(z,U) < 5e};

let wy be a modulus of continuity. Next, let z € U, and choose a ball B; from the collection
{B;} such that B, contains =. Then

|Fe(x) — F(z)|| < Z 1F(z:) = F (@) - pi(x) < wpy(5e)
2Bir1213j7é(i)

and the lemma follows. O

Next, define a function p. : X — R by

where Bf = B(xf,¢). Clearly, p, is a Borel function.

Lemma 8.3. Assume that X is connected. There exists a constant C > 1, independent of
€, so that C' - p. is a V -upper gradient of F.

Proof. Fix e > 0. For simplicity, write Bf = B; and z§ = z;, etc. By remarks in Example 3.15,
it suffices to show that Lip Fy < C - p.. Let z € X and choose a ball B; from the collection
{B;} such that B, contains z. Quasisymmetry of F', together with the connectedness of X,
implies that there exists a constant C' > 1, independent of ¢, so that

1 diam F'(5B;)

D
pf(x) — C €
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Now
Lip F.(z) = limsup 7' sup ||F.(z) — F.(y)|
e d(o)<r
=limsup 1= sup 3 (¢i(x) = eily) (F(:) = F ()]
T— -
d(zy)<r *
<limsup 7" sup Y |pix) — i(y)| - | F(w:) — F(a)]
r—0 yEBj i
d(z,y)<r 2B;N2B;#0
C
< —limsupr ' sup d(z,y) Y. |F(z:)— F(z))l|
€ r—0 yEBj i
d(z,y)<r 2B;N2B;#0
C ..
< —diam F'(B(zj, 5¢)) < Cpe(x).
€
The lemma, follows. H

The following is a key proposition:

Proposition 8.4. Let (X, p) be a connected doubling metric measure space and assume that
there are constants C' > 1 and () > 1 so that

(8.5) u(Br) < CR?

whenever Bg is a ball in X of radius 0 < R < diam X. Assume that F : X — V is a
quasisymmetric embedding of X in a Banach space V' for which the Hausdorff QQ-measure on

F(X) is both locally finite and satisfies
(8.6) Ho(BrRNF(X)) > C*RY

for each ball Bg in'V of radius 0 < R < diam F'(X) and for some C > 1 independent of the
ball. Then the functions p. are in LIQOC(X ) uniformly in the following sense: each point in X
has a neighborhood U so that

sup / PP du < .
U

0<e<eo(U)
Recall that local finiteness of the Hausdorff (-measure means that every point in X has
a neighborhood U with H(F(U)) < oc.

Proof. Let U C X be a bounded set for which the Hausdorff (-measure of F'(U) is finite,
where U := {z € X : dist(z,U) < diamU}. Fix ¢ < ;sdiamU. We may cover U with
finitely many of the balls B; = B;(z;, €) from the covering associated with e. Denote these

balls B, ..., By; we may clearly assume that they all meet U. We have
/ pldu<C Z e_Q/ (diam F(B;))? dp
B; i Bj
(87) BiﬂBj;é@

< C(diam F(5B;))? < C(diam F(B;))?

by (8.5) and by quasisymmetry of F. Further, because the balls 1B;,..., 1By are disjoint,
quasisymmetry of F' implies that there is a constant 0 < A < 1, depending only on the
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quasisymmetry function of f, so that the balls
B(F (&), \diam F(By)), ..., B(F(iy), Adiam F(By))

are disjoint, where 2, is the center of B;. Thus, by (8.7) and (8.6), we have

/ dp < Z/ Qdp < CZ (diam F(B;))?

<C§)@ j), A diam F(5;)))

The proposition follows. 0

Theorem 8.8. In the situation of Proposition 8.4, F belongs to the local Sobolev class
N29(X V).

loc

Proof. We have shown above that the functions F, are elements of N>?(X : V) which
converge locally uniformly to F' and have V-upper gradients p, that are uniformly in LIOC(X )-
Following [46], one can easily verify that F' € N&)CQ (X : V); we briefly recall this argument.
First, by Mazur’s lemma, we may choose a suitable sequence of convex combinations of the
functions p, (which we continue to denote by p.) that converge to a limit Borel function p in
LlQOC(X ). The corresponding sequence of convex combinations of the functions F, continues
to converge locally uniformly to F. Fuglede’s lemma 3.4 implies that for ()-almost every

curve vy, we have f7 peds — fy pds as € — 0. We pass to the limit as € — 0 in the inequality

HR@—E@WSC/m@

to conclude that p € LIQOC(X ) is a @-weak V-upper gradient of F. The theorem follows. [J

Remark 8.9. Note that we do not know whether the pertinent Sobolev spaces are reflexive
in the generality of Theorem 8.8. The argument in the proof does not assert that they are;
the membership of F' in Nﬁ)CQ (X : V) is guaranteed by more direct means. Essentially this
is possible by Fuglede’s lemma and by the use of weak upper gradients in the definition of
the Sobolev space. Recall that Cheeger [7] has shown reflexivity under the assumption that

the underlying space supports a Poincaré inequality and V' =R

The hypotheses in Theorem 8.8 are rather mild. For example, they are valid for quasisym-
metric embeddings f : R* — R, 2 < n < N, provided f(R") has locally finite Hausdorff
n-measure (thus, @ = n here). The crucial property (8.6) was proven by Véiséld in [54].
Viisala also proves that the coordinate functions of f belong to the standard Sobolev space
I/Vli): (R™) in this case. It is interesting to compare the two proofs; the convolution argument
in [54] is replaced here by a simple discrete method.

We next show that the hypotheses are valid in much more generality.

Recall from [22] that a path-connected metric measure space X = (X, d, u) is called a

Q-Loewner space, @ > 1, if its Loewner function ¢x g : (0,00) — R is everywhere positive.
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The Loewner function of exponent ) of an arbitrary metric measure space X is defined to
be
Px,o(t) = }Enlg modg A(E, F),

where the infimum is taken over all pairs of disjoint nondegenerate continua E,F C X
satisfying dist(E, F') < tmin{diam E, diam F'}. Here A(FE, F') denotes the collection of all
curves in X joining F to F' and modg ' denotes the Q-modulus of the curve family I' as
defined in 3.1. See [22] or [49] for more discussion on the Loewner condition.

If X is a ()-Loewner space, then the (Q-measure of balls in X satisfies a uniform lower
mass bound: there exists a constant C' > 1, depending only on the Loewner data of X, so
that Ho(Bg) > C ' R? for all balls Bg in X of radius 0 < R < diam X. See [22, Section 3].
In fact, a similar bound holds for the Hausdorff ()-measure in each quasisymmetric image of
a (Q-Loewner space:

Proposition 8.10. If F' is an n-quasisymmetric embedding of a Q-Loewner space X in a
Banach space V', then there exists a constant C > 1, depending only on n and the Loewner
data of X, so that (8.6) holds for each ball Br of radius 0 < R < diam F(X).

A proof for Proposition 8.10 can be found in [51, Theorem 3.4] in the case X = R", n > 2.
The case of a general Loewner space X is similar, see [51, Remark 3.5(1)].

We are now ready to state the main result of this section. Before this, recall that a metric
space X is Ahlfors Q-reqular, () > 0, if there exists a constant C' > 1 so that

(8.11) érQ < Ho(B(z,r)) < CrO

for all balls B(z,r) in X with 0 < r < diam X; such a space necessarily has Hausdorff
dimension (). Also, X is called proper if each closed ball in X is compact.

Theorem 8.12. Let X be a proper and pathwise connected Ahlfors Q-regular metric space
supporting the Q-Poincaré inequality, Q > 1. Assume that F': X — V is a quasisymmetric
embedding of X in a Banach space V' so that the Hausdorff Q-measure on F(X) is locally
finite. Then F € N9(X : V). Moreover, F is pseudomonotone, whence F is absolutely
continuous in measure: if E C X satisfies Ho(E) =0, then Ho(F(E)) = 0.

Theorem 8.12 follows from the preceding discussion and from other known results as
follows. First, the hypotheses imply that X is a -Loewner space by [22, Theorem 5.7].
Here one needs the fact that X is quasiconvex, see [16] for a proof. By Proposition 8.10 and
Theorem 8.8 we have that F € N9(X : V). The final assertion follows from Theorem 7.2.

loc
We only need the following lemma:

Lemma 8.13. In the situation of Theorem 8.12, F' is pseudomonotone.

Proof. Let Ry < ;diamX and let B(z,r) be a ball in X with radius r < Ry. Because
X\ B(z,2r) # 0, it follows from the linear local connectivity of @Q-regular Q-Loewner spaces
[22, Theorem 3.13] that diam 0B(z,r) > Ar for some fixed A > 0 depending only on the data
of the problem. Pick y, z € dB(x,r) so that d(y, z) > Ar. Then for a € B(z,r) we have that
1F(y) = F(a)ll < n(2/MI[F(y) — F(2)]
which implies that
diam F(B(z,7)) < 2n(2/)) diam F(0B(z, 7)) .

The lemma follows. O
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As mentioned above, proper and pathwise connnected Ahlfors @)-regular spaces that sup-
port the Q)-Poincaré inequality are ()-Loewner. There is also a converse to this result: every
locally compact Q-regular Q-Loewner space supports the @Q-Poincaré inequality, see [22,
Theorem 5.12]. For completeness, we next state a result for Q-Loewner spaces.

Theorem 8.14. Let X be a locally compact Ahlfors Q-reqular QQ-Loewner space, () > 1.
Assume that F : X — V is a quasisymmetric embedding of X in a Banach space V so that
the Hausdorff Q-measure on F(X) is locally finite. Then F € Ny®(X : V). Moreover,
F' is pseudomonotone, whence F' s absolutely continuous in measure: if E C X satisfies

HQ(E) = 0, then %Q(F(E)) =0.

The Loewner condition with exponent () > 1 is quasisymmetrically invariant in locally
compact @Q-regular spaces [49]. We thus have the following corollary:

Corollary 8.15. Let X and Y be locally compact Ahifors QQ-regular spaces, QQ > 1. Assume
that X is a Q-Loewner space and let F' : X — Y be a quasisymmetric homeomorphism.
Then'Y is a Q-Loewner space and both F' and F~' are absolutely continuous with respect to
the Hausdorff (QQ-measure.

Remark 8.16. Because the conclusions in Theorems 8.8 and 8.14, and in Corollary 8.15,
are local, the hypotheses can be localized as well (we forgo precise formulations here for
simplicity). The local versions will be used in the next section.

Historical remarks. The absolute continuity result of Theorem 8.12 in the classical setting
of quasiconformal self-maps of the Euclidean space R™", n > 2, was first established by
Gehring [12] and Viiséld [52]. In [14] and [54], absolute continuity in measure was established
for locally quasisymmetric embeddings f of R” into RY, 2 < n < N < oo, for which the
Hausdorff n-measure is locally finite in f(R™). Recently, Tyson in [51] dispensed with the
assumption that the image embeds in a Euclidean space. Pansu [39] and Koranyi-Reimann
[26] considered the case of Carnot groups. A different generalization was given in [22],
where Heinonen and Koskela gave an abstract formulation of the Gehring-Vaisila theorem
in which R” was replaced by an arbitrary Ahlfors Q-regular space, () > 1, satisfying the
p-Poincaré inequality for some p < @Q); this latter assumption is quasisymmetrically invariant
in @Q-regular spaces by [29]. Theorems 8.12 and 8.14 contain all of these previously known
results.

We now give an alternative proof of Corollary 8.15 which uses only the Loewner condition
and not the @)-Poincaré inequality. We begin by recalling that Nli)’(? (X : V) maps are
absolutely continuous with respect to arc length measure along (Q-almost every curve. That
is, the collection of rectifiable curves 7 in X for which a map F' € NIE’CQ (X : V) is not
absolutely continuous with respect to arc length measure along v has ()-modulus zero.

We shall show that for quasisymmetric maps between Ahlfors Q)-regular spaces absolute
continuity along ()-almost every curve implies absolute continuity in measure. This latter
result can be found in [50, Theorem 5.9]; we repeat it here for the sake of completeness.

For a Borel set A C X, let I'} denote the collection of locally rectifiable curves vy with
positive length in A, i.e. fv xads > 0. Note that ['}; has Q-modulus zero whenever p(A4) =0
since the function p = 0o - x4 is admissible and Q-integrable. It turns out that in Loewner

spaces the converse holds. (Compare Theorem 33.1 of [53].)
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Lemma 8.17. Let X = (X, d, ) be an Ahlfors Q-reqular Q-Loewner space, @ > 1, and let
A be a Borel subset of X for which T has Q-modulus zero. Then u(A) = 0.

Lemma 8.17 follows by combining Theorem 6.2 and Lemma 6.5 of [46], see also [45,
Proposition 4.2.13] or [50, Lemma 5.10]. Corollary 8.15 follows directly by using this lemma.
Suppose that F': X — Y is as in the hypotheses of Corollary 8.15, and assume that E' C Y
satisfies Hg(E') = 0 but Ho(F '(E')) > 0. Then modg '}, = 0 and Lemma 8.17 implies
that

mOdQ F—Ff—‘*l(E’) > 0.
Since Q-exceptionality of a curve family is a quasisymmetric invariant of locally compact
Q-regular spaces, Q > 1, see [49, Theorem 1.4], we see that

modg F~'T'}, = 0.

But

F;—l(El) C F7'I'},UTNrUNac,
where I'yg denotes the collection of non-locally rectifiable curves in X and I'y4¢c denotes
the collection of locally rectifiable curves v in X such that F! is not absolutely continuous
on F'o~. Finally, both I'yg and I'y ¢ have @-modulus zero. This leads to a contradiction

and thus the proof of Corollary 8.15 is complete.

9. DEFINITIONS FOR QUASICONFORMALITY

In this section, we shall show that the three main definitions for quasiconformality in
Euclidean space can similarly be used in a general setting of (locally) Loewner metric spaces.
Here we rely on the results from the previous sections as well as on results from [22].

Definition 9.1. A metric measure space (X, p) is said to be of locally Q-bounded geometry,
@ > 1, if X is separable, pathwise connected, locally compact, and if there exist constants
Co > 1,0 < XA <1, and a decreasing function 9 : (0,00) — (0,00) so that the following
holds: each point in X has a neighborhood U such that

(9.2) 1(Br) < CoR?
whenever Br C U is a ball of radius R > 0, and that
(9.3) modq(E, F; Br) > $(t)

whenever B C U is a ball of radius R > 0 and E and F' are two disjoint, nondegenerate
continua in Byg with dist(E, F') < t min{diam E, diam F'}. For technical reasons we assume,
as we may, that U has compact closure in X.

Remarks 9.4. (a) It is not hard to see that (9.3) implies a local lower mass bound
(9.5) w(Br) > C'R°,  BrcCU,

for some C; > 1 depending only on ¢ and A (see the proof of Theorem 3.6 in [22]). Thus,
a pathwise connected, locally compact space is of locally -bounded geometry if and only
if it is locally uniformly Ahlfors @-regular and satisfies the Loewner condition (9.3) locally
uniformly. A similar but stronger (less local) condition of )-bounded geometry was given in
[5].

(b) One can replace (9.3) by the apparently weaker condition

(9.6) modg(E, F; X) > (),
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where E and F are two disjoint continua in Bg C U satisfying dist(F, F') < ¢t min{diam E,
diam F'}. Indeed, arguing as in [22, Section 3] one deduces from the volume growth condition
(9.2) that (9.6) implies (9.3).

(c) It is clear that connected open subsets of spaces of locally @-bounded geometry again
have locally @-bounded geometry (with the same data).

(d) It is also clear that every Riemannian n-manifold is of locally n-bounded geometry.
More generally, every metric space X that is locally uniformly bi-Lipschitz equivalent to a
Euclidean n-ball is of locally n-bounded geometry (with the Hausdorff n-measure in X).
More exotic examples are given in [22, Section 6] as well as in [17]; see also [6] and [31] for
examples with nonintegral dimension ¢) > 1.

We call a homeomorphism F': (X,d) — (X', d’) between metric spaces quasiconformal, or
H -quasiconformal, H > 1, if

o) i sup ST @), F) de) <7}

r—o inf{d'(F(z), F(y)) : d(z,y) > r}

for each z € X.
The following is the main result of this section:

Theorem 9.8. Let F' : X — Y be a homeomorphism between metric spaces of locally Q-
bounded geometry. Then the following four conditions are quantitatively equivalent:

(1) F is H-quasiconformal;

(2) F is locally n-quasisymmetric;

(3) Fe NS2(X :Y) and Lip F(2)° < KJp(z) for a.e. z € X;

(4) the relation

1
7 mod T < modg F(I') < Lmodg T

holds for each curve family I' in X.

Moreover, if one (each) of these conditions hold, then F is absolutely continuous in
measure and absolutely continuous along Q-a.e. curve in X, and F~! is also quasicon-
formal.

In part (3) of this theorem, Lip F'(z) is defined as in Example 3.15, and Jp(z) denotes the
volume derivative

= limsu M
(9.9) Tr(e) = lmeup = e )

whre v is the measure in Y and p is the measure in X. (Note that the limsup in (9.9) can
be replaced by lim for a.e. z € X.) Also recall that N2?(X :Y), by definition, denotes the

loc
collection of maps F' € No@(X : £>(Y)) satistying F(z) € Y for Q-quasi-every z € X (see
Section 3).
Condition (2) means that every point in X has a neighborhood where F' is n-quasisym-
metric as defined in section 8. Finally, the modulus of a curve family, modg I', was defined
in (3.3).

I

Proof of Theorem 9.8. (1) = (2). This can be proved by localizing the argument in section
4 of [22]. Note here that the assumptions for locally bounded goemetry imply uniform local
linear connectivity in a neighborhood of each point; see section 3 of [22].
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(2) = (1). This is trivial.

(2) = (3). If F: X — Y is locally quasisymmetric, then it is in N29(X : Y) by Theorem
7.8 (or rather, by its obvious local version). On the other hand, for each x € X, we easily

see by quasisymmetry together with local Q-regularity that

d'(F(z), F(y))?
Q

< C'limsup

I " u(B(z,r))
imsup sup r—0 p(B(z,r))

r—0 Y
d(z,y)<r

Thus Lip F(z)? < CJr(x) as desired.

(3) = (4). As an element in N2 (X : V), F is absolutely continuous along Q-a.e. curve .
This is obvious because there exists an upper gradient p € Lgc so that (3.10) holds (locally)
with finite right hand side for Q-a.e. curve. Because F and F'~! are, in addition, absolutely
continuous in measure by (the obvious local version of) Corollary 8.15, the required quasi-

invariance of the @-modulus follows by standard methods. See, e.g., [22, Section 7).

(4) = (1). This is a standard argument using the (uniform) local Loewner property
together with the (uniform) local linear connectivity guaranteed by the hypotheses. See, for
example, [22, Section 4] or page 79 of [53]. O

Historical remarks. The history of various definitions for quasiconformal mappings is long.
The mappings considered by Grotzsch and Teichmiiller in the 1920’s and 1930’s were smooth.
Ahlfors [1], in the third volume of J. Analyse Math. in 1954, made the first systematic study
of nonsmooth quasiconformal mappings in dimension n = 2. Gehring [11] was the first
to prove that the metric definition (9.7) in R? implies quasiconformality according to the
analytic 9.8(3) and geometric 9.8(4) definitions. In Euclidean n-space, n > 3, the equivalence
of 9.8(1)—(4) was proved by Gehring [12] and Viiséld [52]. One should note, however, that the
concept of quasisymmetry, although implicit in the early works, was not precisely formulated
before the 1980 paper of Tukia and Vaiisila [48].

Mostow [36], [37] was the first to consider quasiconformal mappings in non-Riemannian
settings, on the boundaries of rank one symmetric spaces. Various definitions for quasicon-
formal mappings on general Carnot groups were considered by Pansu [39], Kordnyi-Reimann
[25], and the Novosibirsk school [56]. The equivalence of the definitions 9.8(1)-(4) on the
Heisenberg groups was proved by Kordnyi and Reimann [26] and, for the metric definition,
by Mostow [38]. The case of general Carnot groups was settled independently by Margulis-
Mostow [34] and Heinonen-Koskela [20] (see also [18]). The abstract methods of [20] were
extended in [22] to Ahlfors Q-regular spaces that support the p-Poincaré inequality for some
p < @; although not explicitly stated in [22], Theorem 9.8 in that setting can be derived
from the results in [22].

In this paper, we have arrived at the borderline spaces, that is, spaces that are Ahlfors
Q-regular and support the Q-Poincaré inequality for some ) > 12. One should note that
Theorem 9.8 covers all of the cases mentioned in the previous paragraph. We suspect that
the conditions in Theorem 9.8 are nearly weakest (although it is hard to make this precise)

2For the record, the case @ = 1 would be false: on the real line R, the infinitesimal condition 9.8(1) does
not imply local quasisymmetry (2), and quasisymmetric maps need not be absolutely continuous and hence

in particular need not be members of WL (R).
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under which the equivalence of (1)-(4) is valid. However, the picture is nowhere near complete
for some of the individual implications which can hold in greater generality. For example,
it follows from [50] that 9.8(2) implies (4) for homeomorphisms between arbitrary locally
compact Ahlfors Q-regular spaces (regardless of whether the spaces admit rectifiable curves
or not). Also, the equivalence of 9.8(1) and (2) was shown in [19] to hold for homeomorphisms
between compact polyhedra; these polyhedra need not be Ahlfors regular nor need they
support the p-Poincaré inequality for p below or at the Hausdorff dimension. Indeed, it is an
interesting open question under what circumstances the two purely metric conditions 9.8(1)
and (2) are equivalent. Even in R™, n > 2, there is no purely metric proof known for the
fact that quasiconformality implies quasisymmetry. It is also not known whether, in R", the
distortion function 7 can be chosen to depend only on H and not on the dimension n. In
particular, the problem in infinite dimensions is still open. See [55].

Next, we prove that quasiconformal mappings between metric spaces of locally ()-bounded
geometry preserve the Sobolev space NV?. This is a well-known result in the Euclidean
(Riemannian) setting. See also [29].

Theorem 9.10. Let F : X — Y be a quasiconformal homeomorphism between metric spaces
of locally Q-bounded geometry. If u € Nﬁ)’CQ(Y), thenuoF € N&)’CQ (X). Moreover, if B C X
1 a ball with compact closure, then

(9.11) / P dpt < C/ P dv,
B F(B)

where C' > 1 depends only on the constant of quasiconformality of F' and the data associated
with X and Y.

Here p and v denote the measures in X and Y, respectively, and p, denotes the minimal
weak upper gradient as defined in 3.1.

Proof. Let u € Ny®(Y), and let B C X be a ball with compact closure B in X such that
u € NL@(Q) for some open neighborhood Q of F(B). Assume further that B is small
enough so that the @-Poincaré inequality holds in some neighborhoods of B and F'(B); it
is convenient to think of these neighborhoods as large in comparison with B and F(B). It
suffices to show that u o F € L9(B) and that

(9-12) / P dp < 0/ pedv,
B F(B)

with C' > 1 depending only on the data. Indeed, if B is an arbitrary ball in X with compact
closure, then it can be covered by finitely many balls for which (9.12) holds, and these balls
can be chosen to have bounded (depending only on the data) overlap, cf. Section 8.

The arguments in [45, Lemma 5.2.7], [44, Lemma 2.14] show that we can multiply u by

a Lipschitz cut-off function ¢ so that ¢ = 1 in a neighborhood of F(B) and that ¢ has
compact support in §; then ¢ -u € N9 (Y) and

Poulps) = Pulps) -

It follows that without loss of generality we may assume that u € N“9(Y) with compact
support, and that the (Q-Poincaré inequality holds in all of Y. Thus, u can be approximated
in N29(Y) by Lipschitz functions with supports in a fixed compact set [44, Theorem 4.8].
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Let (¢;) be such a sequence. Now consider the functions ¢; o F. Because F' is absolutely
continuous along @-a.e. curve in X by Theorem 9.8, it follows as in the proof of 3.13 that
Lip(¢; o F') is a (Q-weak upper gradient of ¢; o F. On the other hand, for z € X,

Lip(g; o F)(z) < Lipp;(F(z)) Lip F(z) < C Lip ¢;(F(z))Jr(z)"/?
so that

[ Linte; 0 P duta) < € [ Lipos(F(a)) Ur(a) duta)

- C/YLiPSOj(Z/)Q dv(y).

The last equality is valid because F' is absolutely continuous in measure. We next invoke a
result of Cheeger [7, Proposition 4.2], according to which

(9.14) Lip ¢;(y) < Cpy, (y)

for a.e. y € Y, where C' > 1 depends only on the data associated with Y. Therefore, because
©; — u in NH9(Y), we have a uniform bound (independent of j) for the integral on the left
in (9.13). Similarly, we claim that

(9.15) sup /X (g 0 F)(@)|® du(z) < oo.

Indeed, because the functions ¢; o F' have supports in a fixed compact set in X, and because
X supports (locally) the @-Poincaré inequality with (locally) a doubling measure y, it follows
from [16] that

(9.13)

/IsojoFleuéC/ Lip(g; o F)? du,
X X

and (9.15) follows from (9.13) and the remarks following it.
We have now shown that ¢; o F is in N»9(X) with a uniform bound for the norm:

supl|p; o Fl1,o < oo,
J
It now follows from [46, Lemma 4.11] that there is a function v € N»?(X) so that

(9.16) /\U|Qdu < liminf/ ;. o F|?du
and

Q < limi Q
/va du_hggglf/x Pg;, oF Al

for some subsequence (¢ ,) of (¢;)*. Indeed, v is the weak L%-limit of the sequence (p;, o F);

we may choose the subsequence so that ¢;, o F' converges to uoF' pointwise a.e. Now standard

arguments show that v = uo F' (note that the absolute continuity of F' is needed here again).
This understood, we have that u o F' € NY9(X) and that

(9.17) /X puor(2)% dp(x) < Clim inf /Y Lip ¢;, (y)? dv(y).

o0

3Note that these facts would also follow from Cheeger’s reflexivity theorem [7], upon noting the equivalence
of Cheeger’s Sobolev space with N1:7, but the argument based on weak upper gradients in [46] is much simpler
and does not use reflexivity.
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Upon observing that p,, < pu_y, + pu and that p,_,, tends to zero in L?(Y'), we obtain

from (9.17) and (9.14) that
/ Prior 11 < C/ pd dv
X Y

as desired. The proof of Theorem 9.10 is now complete. 0

Remarks 9.18. Removable sets for quasiconformal mappings and Sobolev functions in ab-
stract settings have been studied in [2] and [30], respectively. We next point out how some
of the results about mappings in [2] can be reduced, via Theorem 9.8, to the general results
found in [30].

Let X and Y be proper, pathwise connected, Ahlfors -regular metric spaces supporting
the @Q-Poincaré inequality; in this setting this is equivalent to saying that X and Y are both
Q-Loewner. (Recall that a proper space is one where closed balls are compact.) Let E C X
be a closed set of measure zero. We say that E is removable for quasiconformal mappings
if each homeomorphism F': X — Y which is quasiconformal in X \ £ (in the infinitesimal
sense of (9.7)) is in fact quasiconformal in all of X. (Note that we assume a priori that
F: X — Y is a homeomorphism; it is equally relevant but a somewhat different problem to
study removability for maps that are only defined in X \ E.)

In the present setting, we have that F € Ny%(X \ E) by Theorem 9.8. Thus F will be
quasiconformal in all of X if we know that F is remowvable for continuous Sobolev functions
in the following sense: for each z € FE there is r > 0 so that every continuous function
defined in the ball B(z,r) whose restriction to B(z,r) \ E lies in NY9(B(z,r) \ E) is in
fact an element of N»@(B(z,r)). This understood, it follows that the removability result [2,
Theorem 1.2] for quasiconformal mappings is a consequence of the removability result [30,
Theorem B] for continuous Sobolev functions. It was not clear before this how (if at all)
these two results are connected.

Finally, we mention that the problem of characterizing removable sets for quasiconformal
mappings is not fully understood even for homeomorphisms f : R* — R". In the abstract
setting, the only known results are those in [2] and [30]. Although the removable sets
described in those papers can be quite large, it is not known in what generality a rectifiable
curve, say, is removable for N%% functions in an Ahlfors Q-regular space supporting the
Q-Poincaré inequality. This is the case in R”, n > 2, and in some other nice situations. The
general case remains open.

10. CHEEGER DIFFERENTIALS

In a recent paper [7], Cheeger shows how to obtain an analog of the classical theorem of
Rademacher on differentiability a.e. of Lipschitz functions in Euclidean space on a doubling
metric measure space X that supports the p-Poincaré inequality for some 1 < p < co. In
particular, he constructs a finite-dimensional L* vector bundle F over X, certain sections
of which correspond to the differentials of Lipschitz functions. The natural norm on the
fibers of this vector bundle typically does not arise from an inner product and hence the
resulting structure does not in general correspond to a Riemannian structure. Moreover, the
“coordinate charts” are only measurable subsets of X and the transition functions only L.
Nevertheless, Cheeger’s construction does allow him to formulate a theory of differentiability
for a suitable class of maps between two such metric measure spaces which includes the case
of quasisymmetric mappings between Ahlfors ()-regular spaces supporting the p-Poincaré
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inequality for 1 < p < @ [7]. In this section, we indicate how the results we have developed
earlier in this paper extend to cover the borderline case p = Q).

We give first a slight restatement of one of the versions of the Rademacher theorem in
Cheeger’s paper, Theorem 4.38 of [7]. In what follows, by the data of the doubling metric
measure space (X, d, ;1) we mean the doubling constant of y together with the constants C
and o associated with the Poincaré inequality (4.2). We denote by Hom(R¥, R) the space of
linear functionals on R¥ and we denote the action of an element A € Hom(R*,R) on a vector
v € RF by (\,v). Recall also the definition for a minimal p-weak upper gradient p; from 3.1.

Theorem 10.1 (Cheeger). Let X = (X, d, ) be a doubling metric measure space supporting
the p-Poincaré inequality for some 1 < p < co. Then

X=Ju.uz

where (Uy) > 0 for all o, u(Z) = 0, and to each o there correspond real-valued Lipschitz
functions x¢, ..., x5 on U, satisfying the following three properties:

(i) The functions z¥,..., x5y are linearly independent on Uy, i.e. if X* = (xf,...,2¥) :
U, — R*, then for each A € Hom(R*, R) we have (\,X*) = 0 on U, if and only if
A=0;

(i) for each X € Hom(RF,R) and zy € U,, the function (\,X%) is asymptotically p-
harmonic at xo (Definition 8.1 of [7]) and x is a Lebesgue point of the function p(y xay?;
moreover, if A # 0 then pi xey(zo) > 0;

(iii) k is the mazimal integer for which (i) and (ii) hold, and k = k(o) < N, where N > 1
1S a finite integer depending only on the data.

Let f: X — R be a Lipschitz function. Then, for each «, there corresponds to almost every
point zo € U, a (unique) linear functional X = \(z, f, @) € Hom(RF(®) R) so that

(102) oy ) = Jim 700 = ) = DX =Xl

We write d*f(zg) := Mz, f,a). For fized o, the map x — d*f(z) is in L®° Uy, p :
Hom(R¥® R)). At a.e. point zo € U,, we have

(10.3) ps(T0) = pas f(ag)x) (To)-

The statement in (iii) requires some clarification. If V' is a subset of X of positive -
measure, define k(1) to be the supremum of the values k& for which there exist real-valued
Lipschitz functions ¢, ..., ¢ on V satisfying (i) and (ii). Clearly, if W is a subset of V' that
also has positive y-measure, then k(W) > k(V) (just restrict the functions ¢4, ..., @r to W).
Let us say that V' is saturated if k(W) = k(V') for all such sets W. Then (iii) can be restated
as saying that each of the sets U, is saturated. This part of the theorem is easy to guarantee.
Indeed, suppose we have found a decomposition X = U,U, U Z satisfying (i) and (ii). If
any of the sets U, is not saturated, we may decompose it further into subsets on which the
value of k(a) is increased by (at least) one. Lemma 4.37 of [7] gives an a priori finite upper
bound for the values k() that may arise and shows that this process must terminate.

Roughly speaking, (10.3) says that the “derivative” of the map f at z, agrees with the
“derivative” of its first-order Taylor approximation (d®f(z,), X?).

Note that we have restricted in (10.2) to x € U, since the function X® is a priori only
defined on U,. However, it is not hard to see that if we extend X to a Lipschitz map from
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X to R, then the limit in (10.2) is still zero if we allow z to approach zy throughout X.
Moreover, this fact is independent of what extension of X* we use.
We now introduce, at each point x4 € U,, a norm ||, 5, on Hom(RF®) R) as follows:

[AMa,zo = Porxe) (Z0)-

The fact that this is a norm follows from Theorem 10.1(ii). By (10.3), we have ps(zq) =
|d* f(20)|az,- The Banach spaces

F,, = (Hom(R¥®) R), |-

combine to give the finite-dimensional vector bundle F mentioned above. We call this bundle
the generalized cotangent bundle of X and denote it by 7" X. By using local sections d*f on
U®, one can define a derivation operator d on the algebra of locally Lipschitz functions on
X which takes values in I'(F) (the sections of the vector bundle F). We call df the Cheeger
differential of the locally Lipschitz map f.

Now suppose that X = (X,d, ) is as in Theorem 10.1 and that Y = (Y, d') is another
metric space (for now, we make no further assumptionson V). f F: X - Y and f: Y - R
are Lipschitz functions, then fo F': X — R is also Lipschitz and so by Theorem 10.1 the
differentials d*(f o F') are defined on sets U, which cover p-almost all of X. If now Y is
given a measure v so that (Y, d’,v) is also doubling and satisfies the p-Poincaré inequality,
then the differentials d°f are defined on sets Vj covering v-almost all of Y. At a.e. point
zg € F~1(V3) N U,, there exists a unique linear map

D% (z0)T : Hom(RF® | R) — Hom (R, R),
called the (transposed) Jacobian matriz of F' at z,, which satisfies the relation
(10.4) D3 (wo)" - d’ f(yo) = d*(f © F)(wo),
where yo = F'(o). The existence and uniqueness of this mapping are obvious. Indeed, taking
f= xf, j=1,...,k(B), in (10.4) and using the canonical identification of Hom(R¥ R) with

R we see that the jth column of the (k(c) X k(f)) matrix representing D% (z0)T is given
by the vector in R¥® corresponding to da(ac? o F)(zy).

a,zo)a Zo € Uou

Note, however, that the transposed Jacobian matrix is only defined on the set

UF () nUa
5ﬂ

in X. We would like to guarantee that this is a set of full measure in X but in general this
is not true. In order to ensure that this is the case, we must further assume that v(A) =0
implies u(F1A) = 0, that is, that the push-forward measure F,u is absolutely continuous
with respect to v. When this is the case, we have a natural induced map F* : T*Y — T*X
satisfying

(10.5) F*(df) = d(f o F),

where d is the Cheeger differential. When expressed in coordinate charts U, C X and
Vs C Y, F* is just the transposed Jacobian matrix D% (z4)7 and (10.5) becomes (10.4).

Now assume that X = (X,d,Hg) and Y = (Y,d,Hg) are proper and path-connected
Ahlfors Q-regular metric measure spaces, (2 > 1, both supporting the @)-Poincaré inequality,
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and assume that F': X — Y is a quasiconformal homeomorphism. Then X is a ()-Loewner
space and so the push-forward measure F,H is absolutely continuous with respect to Hg

by Corollary 8.15 and by [22]. Moreover, F € NY9(X : V), where V = £2°(Y). If p denotes

loc

a Q-weak V-upper gradient of F'in L? (X), then Lemma 4.6 implies that, locally in X,

loc

(10.6) [1F(2) = Fy)|| < Cd(@, y)(Maod(z,y),0P(%) + Maoatw.),0P(Y);

where Mpg, is the maximal function operator defined in (4.5). For A > 0 and for U a small
enough bounded neighborhood of a given point in X, define

E\(U) :={z € U : My giamuv,0p(z) < A}
Then F is Lipschitz with constant C' A when restricted to the set E,(U) by (10.6).

Lemma 10.7. Under the above assumptions,

WU\ EU) <O 9 [ 2

where U = {x € X : dist(z, U) < 40 diam U}.

This lemma is nothing more than the boundedness of the Hardy-Littlewood maximal
function from L'(X) to weak —L'(X), see e.g. [16, Theorem 14.13].

By choosing a sequence \; — oo and a sequence of bounded sets Uy that satisfy the
conclusion of Lemma 10.7 and cover almost all of X, we find that the collection of sets
Eji, := Ej,;(Uy) covers p-almost all of X. If f : Y — R is any Lipschitz function, then fo F
is Lipschitz when restricted to any of the sets EF;; and the previous discussion is valid. In
conclusion, we deduce the following result:

Theorem 10.8. Let X andY be proper and path-connected Ahlfors QQ-reqular spaces, Q > 1,
supporting the Q-Poincaré inequality, and let F : X — Y be a quasiconformal homeomor-
phism. Then there is a natural induced map F* : T*Y — T*X satisfying

F*(df) = d(f o F),
for all Lipschitz functions f : Y — R, where d is the Cheeger differential.
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