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1 Introduction

We study mappings f = (fi, ..., fn) : = R" in the Sobolev space VVllo’cl(Q, R™),
where () is a connected, open subset of R® with n > 2. Thus, for almost ev-
ery x € €2, we can speak of the linear transformation Df(z) : R* — R,
called differential of f at x. Its norm is defined by |Df(z)| = sup{|Df(z)h| :
h € S™'}. We shall often identify D f(z) with its matrix, and denote by
J(z, f) = det D f(z) the Jacobian determinant. Thus, using the language of

differential forms, we can write
J(z, f)de = dfi A ... Ndfy

Most of the time the Jacobian determinant will be nonnegative and we shall
refer to such mappings as orientation preserving (this need not have a topo-

logical interpretation).

Definition 1.1 A Sobolev mapping f € I/Vlf)’cl(Q,R") is said to have finite
distortion if there is a measurable function K = K(x) > 1, finite almost

everywhere, such that

[Df(x)* < K(2)J (=, ) a.e. (1)
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We call (1) the distortion inequality for f. It is worth recalling that the
smallest such function K, refered to as outer dilatation, is defined by

Tog (@, f)#0

Ko(z, f) = { I (@) (2)

1 if J(z,f) =0

Geometrically this means that at the points where J(z, f) > 0 the differential
takes the unit ball to an ellipsoid E and we have Ko(z, f) = vol Bp / vol E,
where By is the ball circumscribed about E. Similarly, the ratio K;(x, f) =
vol E / vol By, where By is the ball inscribed in E, is known as the inner

dilatation of f. Precisely, we have

[Df (@)~ J(x, f) i J(z, f) #0

1 if J(z,f)=0 3)

Kl(th):{

There are, of course, other distortion functions of interest but we shall confine
ourselves to only these basic ones. There have been remarkable advances
made towards understanding and developing a theory of mappings with finite
distortion. The noticeable growth of applications, especially in nonlinear
elasticity, necessitates thorough revision of the foundation of this theory.
It is the objective of the present paper to give a complete account of the
continuity properties of mappings with finite distortion. We investigate them
under minimal possible assumptions on the degree of integrability of the
differential. The main trust of our results is that no additional assumptions
on the distortion function are made here.

We shall take a little time now to point out some of the advances in
the current literature. The origin of mappings with finite distortion can be
traced back to the work of Yu. G. Reshetnyak [26] but our account begins
with the paper of V. Goldshtein and S.K. Vodopyanov [8], in which they
showed that mappings of finite distortion in the Sobolev class W, (Q, R*)
are actually continuous. Most recently, F.W. Gehring and T. Iwaniec [7] ver-
ified that the limit mapping f of a weakly convergent sequence of mappings
f; € Wh™(Q,R") with finite distortion K = K(z) also has finite distortion.
While substantial progress has been made on the limit theorems, many ques-
tions still remain unanswered. Let us next discuss some results for mappings
in W2 (Q, R*) under suitable integrability conditions on the distortion func-

loc

tion. First, T. Iwaniec and V. Sverak [17] proved that non-constant mappings
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in W?(Q, R?) with locally integrable distortion are open and discrete. In
higher dimensions, the analog of this holds when Ko € L? () for some
p>n—1and f € W' (QR). It fails if p < n — 1 (see [3]), though
it remains unknown in the critical case of p = n — 1. Let us observe that
Ki(z, f) < K& (x, f), a.e. We believe that in all dimensions the noncon-
stant mappings f € W™(Q, R*) with K; € L} () are open and discrete.
The initial steps towards solution of this problem were made by J. Heinonen
and P. Koskela [12] while more definite answers were given later by J. Man-
fredi and E. Villamor [20], [21].

The natural Sobolev setting for mappings of finite distortion is in the
space I/Vllocn (Q,R™), largely due to the wish to integrate the Jacobian determi-
nant by parts. However, matters are quite complicated if one does not know
a priori that the Jacobian is locally integrable or, even if so, whether it coin-
cides with the so-called distributional Jacobian. The first regularity results
below the natural setting were recently established by T. Iwaniec, P. Koskela
and G. Martin [14]. Assuming that J(z, f) € L} (Q) and e’ € L} .(Q) for
some sufficiently large A = A(n) they proved, among other things, that in
fact f € W, (Q,R™). Also see [1] for further developments. The standing
conjecture is that one can take A\ = A(n) = 1 as the critical exponent for the
regularity conclusions; it is known that the L™-integrability of the differen-
tial fails for any A < 1. The relevant examples are homeomorphic maps in
I/Vlf)cl (©2, R™) and, therefore, have locally integrable Jacobian determinants.

One message from the present paper is that mappings of exponentially
integrable distortion, regardless of the size of A, always have a continuous
representative. More precisely, such mappings coincide almost everywhere
with a continuous map. Here and in the sequel, for brevity, we simply say

that the mappings in question are continuous.

Theorem 1.2 Let f € WHY(B,R") satisfy the distortion inequality
[Df(z)|" < K(z)J (=, f) a.e.

in a ball B = B(0, R), where e*¥ is integrable for some A > 0. If the Jacobian

determinant is integrable, then f is continuous and we have the modulus of



continuity estimate

n o< CK(nv/\) fBJ(xvf) dx
log log (e+ﬁ)

for all z,y € B(0, §).

An explicit bound for the constant here is:

Cie(n, ) < C(n) ][ @) (5)
B

where f;, stands for the integral average over the ball B. Theorem 1.2 is a
consequence of our more general results concerning continuity of mappings
(of arbitrary finite distortion) in the Orlicz-Sobolev classes W1 (2, R*). The
point is that the assumption e*¥ € L1(Q), together with the integrability of
the Jacobian determinant, implies that f € WbH%(Q,R*) with the Orlicz
function ®(t) = ﬁ. This is exactly what we need for Theorem 1.2. In
this connection, we should point out that the Jacobian determinant of an
orientation preserving mapping in WH®(Q, R") is always locally integrable
[16], and coincides with the distributional Jacobian [9]. The summability of
nonnegative Jacobians is the heart of our ideas. Two categories of Sobolev
mappings are well suited for the question of summability of the Jacobian;

the Orlicz-Sobolev spaces W1 (2, R*) with
 §(t) dt
/1 gt (6)

and the so-called grand Sobolev space W™ (Q,R*). The latter consists
of mappings whose differential belongs to the space VL"(Q2) of vanishing

mobulus of integrability. Without getting into technicalities, this means that

lim e/Q Df()"< dz = 0 (7)

e—0+

see Section 2 for details. Let us first consider continuity in the case of the

grand Sobolev space.



Theorem 1.3 Mappings f € W™ (B,R") of finite distortion in a ball B =
B(0, R) satisfy the continuity estimate

f(2) ()] < C(n)R £ (Df; log™ ‘x—ffm) ®

for allz,y € B(0,£). Here, L"(Df;t) stands for the modulus of integrability
of Df:

LMDf;t) = [][|Df\” trt 0<t<n-—1 9)

In many ways this result is sharp. To see this, consider the mapping

flx)=z+ 727~ An elementary computation reveals that IDf(z)] =1+ ﬁ,

J(z, f) = (1 + ﬁ)n_l and K;(z, f) =1+ ﬁ We then see that the differ-
ential belongs to the Marcinkiewicz space weak — L™(B) and, consequently,
has bounded (though not vanishing) modulus of integrability. The reader is
referred to Section 3 for the discussion of this example.

Theorem 1.3 covers Orlicz Sobolev mappings f € WH®(Q, R") as well,
but only if

o(t) > ct

" Togle 1) uo

confront this with Proposition 2.1.
This and other continuity results for Orlicz-Sobolev mappings with fi-
nite distortion require estimates below the dimension. For an orientation

preserving mapping f = (f1, ..., fn) in WH"¢(B) we have

/ IDF|~Sdfy A ... Adf, < C’(n)e/ IDf ()"~ da (11)
B B

provided one of the coordinate functions vanishes on 0B in the sense of
distributions. This inequality is part of a more general spectrum of integral
estimates concerning wedge products of differential forms [16], [10] and [13].
The key is to average (11) with respect to € to gain estimates that yield
continuity of mappings f € WH%(Q2, R*) with finite distortion. This can be
done for a class of the Orlicz functions ® satisfying (6). Notice that (6) is
necessary because of the example f(z) = z + ‘%‘ The reason why we have
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not been able to deal with all Orlicz functions ® satisfying (6) is basically
that it is not known if the pointwise Jacobian of an orientation preserving
Orlicz-Sobolev mapping always coincides with the distributional Jacobian

under condition (6). To illustrate our results let us state here some of them.

Theorem 1.4 Mappings f € WL (B, R") with finite distortion are contin-

wous if

(1) > ¢
~ log(e +t) loglog(e + t)

(12)

Sharp estimates on the modulus of continuity are also available. For instance,
if (12) holds as equality, then

C)R [|Dfle

[f(z) = fy)] < ; (13)
! y log loglogn (e + ﬁ)
If ®(t) = t"log® '(e +t) and a > 0, then
(o) - f) < DTl (14)
logn (e-l— ‘z_y‘)
If ®(t) = t"log (e +t), then
C
£(@)  £(5)] < — O 1Tl (15)
loglog™ (e + W)

Here z,y € B(0, £), where ||Df||¢ stands for the Luxemburg ®-norm of the
differential.

A very powerful method when dealing with continuity properties of func-
tions is furnished by the notion of monotonicity, which goes back to H.
Lebesgue [18] in 1907. Monotonicity for a continuous function u in a do-

main {2 C R” simply means that
osc(u, B) < osc(u, 0B) (16)

for every ball B C 2. Roughly speaking, u satisfies both the maximum and
minimum principles in {2. Hence the relevance for elliptic PDEs is clear. How-
ever, to effectively handle very weak solutions to the differential inequalities
such as (1) one needs to adopt a definition of the so-called weakly monotone
functions, due to J. Manfredi [19].



Definition 1.5 A real valued function v € WH*(Q) is said to be weakly
monotone if for every ball B C ) and all constants m < M such that

= (u—M)" —(m—u)* e W;*(B), (17)

we have
m<u(z) <M

for almost every x € B.

Without saying it so every time, we are working under the integral condition
(6) on the Orlicz function ®. It will also be required that the function
T — ®(¥/1) is convex for some p > n — 1. Note that (6) is equivalent to

/01 o (%) ds™ = o (18)

To accomodate explicit bounds we define the ®-modulus of continuity
w = we(t), 0<t<1

where w is determined uniquely from the equation

1 :/1<I> (%) ds" (19)

For example, if ®(t) = t"log® (e + 1), a > 0, then we(t) ~ log™» (e+1).

Theorem 1.6 Letu € Wh®(B) be weakly monotone in the ball B = B(0, R).

Then for all Lebesgue points z,y € B(0, g) it holds that

(o)~ u()| < Con) R [Vullawe (1) 20

In particular, u has a continuous representative.

The use of weakly monotone functions is essential for our approach: The-
orem 1.4 and a more general version of it will be deduced from Theorem
1.6 and the weak monotonicity of mappings of finite distortion in the Orlicz-
Sobolev class Wh®(Q, R"). Also the proof of Theorem 1.3 is based on similar



reasoning. For a discussion of weak monotonicity of mappings of finite distor-
tion in Orlicz-Sobolev classes see Section 4 that also deals with the question
of sharpness.

There are many related works that have not been mentioned above. First
of all the interesting paper [5] of G. David gives existence theorems for map-
pings of exponentially integrable distortion in the plane. These results are
obtained using the Beltrami equation. Theorem 1.2 gives new information
even in this setting. Papers related to David’s result include [4], [24], [27] and
[29]. Also see the references in these papers. In higher dimensions references
not discussed yet include [11] and [22].

2 Grand and Orlicz spaces

In this section we briefly review some known function spaces that will be
used in the sequel. We will give sharp results on the inclusions between
Orlicz spaces and grand Lebesgue spaces.

Let €2 be an open bounded region in R*. The average of a function

u € L'(Q) is denoted by
uQ :][ u(z)dz.
Q

For p > 1 we shall consider functions
we (] L(9),
1<s<p

and define their modulus of integrability by

1

LP(uje) = [e][ |u|p€] p_e, 0<e<p-1.
Q

The space BLP(Q2) of functions with bounded modulus of integrability, also
known as the grand Lebesgue space LP)(Q) [16], is furnished with the norm

ullpy = sup LP(use).
0<e<p—1

BLP(Q) is a Banach space. It then follows that the closure of LP(§2) with

respect to this norm, denoted by V' LP(S2), consists of functions with vanishing
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modulus of integrability. Namely

lim LP(u;€e) =0
e—0+

whenever u € VLP(2).
Next recall the Marcinkiewicz space weak — LP(Q2) which consists of all

measurable functions u : {2 — R” such that

sup |[{z € Q : u(z) > t}t* < oc.
£>0

We note that weak — LP(S2) is contained in BLP(2) but not in VLP(), see
[16]. The spaces weak — LP(S2) and V LP(§2) are not comparable [9].

A continuous and strictly increasing function ® : [0,00] — [0, co] with
®(0) = 0 and ®(c0) = o0, is called an Orlicz function. The Orlicz space
L®(Q) is made up of all measurable functions u on € such that

|ul
Pl — | <
for some positive k = k(u). L*(Q) is equipped with the nonlinear Luzemburg

llul|o = inf{k > 0 :]{Zcp ('%') <1}

If @ is convex, then || - || defines a norm in L®(€2). The Orlicz space L® ()
with

functional

O(t) = tPlog*(e + t),

also denoted by LPlog®L(f2), will play special role in our investigation. In [9]
L. Greco examined relations between LPlog®L(2) and the grand Lebesgue

spaces. He proved that

LP(Q) € LPlog ' L(Q) C VIP(Q) € BLP(Q) € () L”log*L(Q).
a<—1
The aim of this section is to improve on this result. The interplay between
the Orlicz spaces and BLP(Q2) is both satisfying and indispensible for the

forthcoming results. In this regard, we give the following sharp inclusions.



Proposition 2.1 If1 < p < oo, then
IPlog™'L(N) C VIP(Q) C BLP(Q) C LY (),

for all Orlicz functions ¥ such that the function t — V(t)t~? logt, with large
t, decreases to zero fast enough to satisfy

/00 %dt < 0. (21)

Convergence of this integral is necessary for the latter inclusion. There are
no Orlicz spaces between LPlog™ and BILP.

Proof. We will first show that L? log™' L(€) is property contained in V LP(Q).
Let h € LPlog 'L(Q). Fix 6 > 0 and a € (1,00) so big that

|h|P dx
log(e +1 / — <.
( ) (€9 h(z)|>a} L0g(e + |h])

Then, by the elementary inequality (e + t)¢ < e + t¢, we obtain

e/|h|”_€dx _ e/ |h|”_€+e/ B
“ {ze:h(z)<a} {z€Q:h(z)>a}

A" log(e + |h])

< e ¢ +e/
o ogle + [])  |h"
{ze:h(z)>a}

h[” log(e + [A[)

< e + /
- H log(e+|h])  |h|*
{zeQ:h(z)>a}

1 t J
< e’ ¢|Q] + sup ogle+1)
t>1 t log(e + 1)
< eaP™c|Q| + 6.

Thus
0< limsupe/ |h|P~¢dz < 6.
Q

€—0
Since 0 > 0 was arbitrary, we conclude with lir%e Jo |h[P=¢dz = 0, as desired.
€E—>
We shall now show that

L*(Q) ¢ VIP(Q).
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for any Orlicz function ®(t) = % such that hm 1nf H(t) = 0. For this,
we must construct a function f € L*(Q) which is not in VL?(Q).

Since lign inf H(t) = 0, one can find k) € N and numbers ¢, > e such that
—00
H(ty) = 27%, for k > ko. Clearly, there is a subsequence {k;}3*, for which

For instance, choose #;; large enough to satisfy t,lcj_p logty, < 27719

To each t, we associate the number
a; = min{kj, tlcj}-

It is clear that there exist mutually disjoint measurable subsets E; C €2 such
that
|Ej‘ = ajtlsz log tkj-

Having disposed of these terms we are now in a position to define the function
f by the formula

x) = Zt’“fXEf (x), for all z € Q.

Then we have that

[ PHOD do
J s = | N

On the other hand

lim sup ¢ / fPede > / |f|’°
=0 Q J—>oo logtk,




Hence f ¢ VLP(Q), as required.
Next suppose that an Orlicz function W satisfies the conditions stated in

Proposition 2.1. For notational convenience we write F'(t) = W (t)t"?logt.

Thus
/°° F(t) dt /°° U(t)
< < 00
. tlogt .ttt

We notice, by using the Integral Test, that for sufficiently large N
o . *C F(t) dt
ZF(eek>§/ F(ee)dxz/ *) < o
0 . tlogt

[e.e]
k=N
Now, consider an arbitrary v € BLP(Q2) and its level sets

U={ze: e <|u@)<e} (k=0,1,2,..).

It involves no loss of generality in assuming that ||u||, = 1.

For every z € (), we have e < |u(z)|¢" < e°. Therefore, for k > N, we can

. . . N
since F'(u) is decreasing for u > e® .

write

By the definition of the grand LP-norm we obtain

/ U(u)dz < u " F(eek) ek/ ur e "

Qp Qf,

e p—ek ek e ek

e [|ully F(e )zeF(e )

Summing up we conclude with the desired estimate

/ U(u) < ee/ F(t) dt < 00
MZeeN e tlogt

which shows that u € LY ().
In order to see that condition (21) is necessary, we consider the function
w(z) = |z|7% in the unit ball Q = {z : |z| < 1}. Note that

IN

6][ lu(z) P~ dz = p.
"
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Hence u belongs to BLP(£2). Suppose now that u € LY(€) for some Orlicz
function ¥. An elementary computation reveals that

/loo‘fp—si):%]{z\ll(u)<oo.

We end this section with two more definitions. The completion of the

Sobolev space W'?(Q2) under the norm
[l + 11V - )

will be called the grand Sobolev space and denoted by W' (). Thus

lime/ [VulP~¢=0
e—0 Q

whenever v € W) (€2). We do not introduce the space of functions with
|Vu| in BLP(Q) as the need will not arise. The Orlicz-Sobolev space W®(£2)
consists of function u € W'(Q) such that Vu € L*(Q).

3 Example

Mappings with finite distortion in the Sobolev space W (2, R") are known
to be continuous. At this point it is worthwhile to recall the familiar example
of a map that forms a cavity at the origin |2]

f:B\{O}—)]R":xHx+;—|

where B denotes the unit ball in R". This example indicates that, in order
to preserve continuity, one should not go too far from W1 (Q).
Clearly, the function f cannot be redefined in a set of measure zero to become

continuous at the origin. By an easy calculation, we get

1 TR
Df(fﬂ):(l"‘m)l—w,

where x ® z is the n X n matrix whose 4, j-entry equals z;x;. Hence

1
IDf(z)| =1+ 2]

13



and
1

det Df(z) = (1+ Tl

)nfl_

Thus the outer dilatation function Ko(z) = 1+ ‘17‘ belongs to weak — L™ (B).
We see at once that |Df(x)| € BL"(B) and

lime][ lz|" =1
e—0 B
Thus f ¢ W™ (B, R"). Moreover,

ﬁ@(ﬁ)dm - /100 i(ff d.

Hence |Df(z)| € L*(B, R) if and only if the defining Orlicz fuction ® satisfies

/Oo M) 4 < . (22)

tn—|—1

This example suggests that, in order to conclude with any sort of continuity
estimate for a mapping f of finite distortion, we must assume that f €
WL (Q,R*) or in f € WH?(Q,R*), with [ 28 dt = co.

1

4 Monotonicity in W'"(Q, R")

Unlike in the classical approach, we can easily prove without getting into
PDEs that the coordinate functions of the map f = (fi, ..., fn) € WH*(Q, R?)
of finite distortion are weakly monotone. It is rewarding and illuminating to
outline this simple proof.

Let B be a ball in €2 and suppose that for some coordinate function, say the

first one, we have
vi=(fi —M)" = (m— f1)" € Wy"(B).
Then

Vo(z) 0 iftm < fi(z) <M
v(z) =
Vfi(z), otherwise (say, on the set E C B).

14



Hence, in view of the distortion inequality (1), we can write

[Vo(z)|" |Df()]"
A K@) @ /. K(x) ™
< /dfl/\dfg/\.../\dfn

< /dv/\dfg/\.../\dfnzo,
B

by Stokes” Theorem. Thus v = 0 on B, which simply means that m <
fi(z) < M for almost every x € B, as desired.

Similar considerations apply to the John Ball class of mappings:
IDf| € L" () and |AdjDf| € L#1(Q) (23)

which has been studied by several people in nonlinear elasticity and calculus
of variations [28], [23], [15], [12] and [11].
A slight change in the above proof leads to a result that is known to specialists

in nonlinear elasticity.

Proposition 4.1 Under the integrability hypotheses stated at (23), mappings

of finite distortion are weakly monotone.

The key here is the isoperimetric type inequality for mappings in the John
Ball class:

n

/Bdet Df(z)dz < C(n)[] (/a

k=1 B

n

(dfs A e Adf Ao A dfn|n“1>

for almost every ball B € () centered at the given point of 2. This follows
from an analogous estimate in [23| by analysis of homogeneity. As before, we
find that [ gdv Adfs A... Ndf, =0, by applying this isoperimetric inequality
instead of Stokes” Theorem, details being left to the reader.

Matters are quite different if f ¢ W'"(Q, R") because one does not
know, a priori, that the Jacobian determinant is locally integrable. First

we take on stage the mappings of finite distortion in the grand Sobolev space
WL (Q,R?).
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5 Monotonicity in W™ (Q,R")
Essential to our development is to establish inequality (11).

Lemma 5.1 Let f: B — R", be a mapping of Sobolev class W1 ¢(B,R"),
0<e<1, in aball B. Then

/BIDf(x)\‘ J(z, f) doz < C(n)e/B |Df(z)|" “dx

provided one of the coordinate functions for f = (fi, ..., fn) belongs to Wol’n_e(B).

This inequality is part of a more general spectrum of integral estimates con-

cerning wedge products of differential forms [13]| and [16].

Proof. We may certainly assume that 0 < e < %, since the inequality always
holds with constant 1 in place of C'(n)e. Suppose f; € W, “(B). As in [16]

we begin with the Hodge decomposition
dfi|™ dfi = dp+v

where ¢ € Wol’ﬁ(B) and v € L= (B). It is important to realize that +

becomes small as € tends to zero. Precisely, we have

1l ) < e I3 ) < Cln)e DS

see [16].
By Stokes’ Theorem we find that

dfil € d LA, = dfs... Ndf, < Df" !
/B|f1| oA A /BMszf</B|v||f|

DFIPt < Cn)e /B Df(x)" de

< ||7||7;%
It remains to observe that
\Df|~J(z, f) de = |dfi|"dfs A ... Adfp — (|df1|7 = |Df]7) dfs A ... Adfy,
< o nendio+ (102E 1) ) g

|df1 ¢
S |df1‘_6df1/\/\dfn+€ |Df|n_6
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which follows from the elementary inequality A — 1 < e\, for A > 1. The

lemma is proved.

Now, we are ready to prove the following extension of V. Goldstein, Yu.
G. Reshetnyak and S.K. Vodop’yanov result [25] and [8]; L™-integrability of
the differential being relaxed.

Proposition 5.2 Coordinate functions of mappings with finite distortion in

the grand Sobolev space Wl’”)(Q,R") are weakly monotone.

Let us stress explicitly that this result covers mappings for which

Df ()"
| ot D < (24)

as it is easy to see from Proposition 2.1.

Proof. By symmetry, it suffices to prove that f; is weakly monotone.
Let B be a ball in © and m < M be real numbers such that v = (f; — M)*" —
(m — f1)* € Wy ¢(B) for every € € (0,1). We have to show that

m < fi(z) <M

for almost every = € B.
As in Section 4, we calculate

p 0 ifm<fi<M
v =
dfi otherwise (say, on a set F C B)

Applying Lemma 5.1 to the mapping (v, fo, ..., fn) : B — R", we obtain

\IDf(z)|"¢ e
| PR e < [ D@ de
< C(n)e/B|Df(x)|n—f dz

Therefore, since € [ |Df|"“dz — 0, as e = 0 and 1 < K(z) < oo for almost
every x, by the Monotone Convergence Theorem we infer that D f vanishes
almost everywhere in E. This implies that v = 0, completing the proof of

Proposition 5.2.
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6 Monotonicity in W®(Q, R")

The Jacobian determinants of orientation preserving mappings in WH®(Q, R")
are known to be locally integrable for a considerable class of Orlicz functions

®(t) = o(t™). What we actually need, to prove monotonicity, is the identity

/dfl/\.../\dfn =0 (25)
B

for f = (f1, ..., fn) € WH®(B,R"), with one coordinate function in W, ®(B).
Since we assume that J(z, f) > 0, identity (25) simply means that df; A ... A
df, = J(z,f) dx =0in B. The affirmative answer to this question follows
from Lemma 5.1 and it is our goal here to show how.

Consider a nonnegative decreasing function ¢ € C*(0, 1] such that sl_i)lgl+ o(s)

= oo. Having disposed of Lemma 5.1 we can write, as a starting point, the

[ 2D ([ s dets))

<o [ ZRIA ([ pp) o)) @ (eo)

for all 0 < € < 1. We want to pass to the limit as ¢ — 0. By the Fatou

inequality

Lemma and L’Hopital’s Rule this procedure is perfectly valid for the left
hand side, yielding the estimate

/BJ(x,f) dr < C(n) lim B% (/1 s |Df(x)]* d¢(3)> dz (27)

The latter limit is equal to zero once we can use the Lebesgue Dominated

Convergence Theorem. Indeed, by L’Hopital’s Rule we would obtain

[ s ds<ow [ CEps@pca=o @)

We are, therefore, left with the task of justifying the use of the LDCT. To
this effect, we only need to show that there is a function M € L!(B) such
that

1o n-s
_m[ s|Df (@)™ ds < M(x) (29)
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for sufficiently small € > 0. This is certainly true if f € W®(B), where the
defining Orlicz function ® is given by

®(t) = sup —ﬁ/ st" % d(s) (30)

0<e<1

Clearly @ is increasing and convex. The question arises as to which Orlicz
functions can be obtained by formula (30). One necessary condition on ® is
that

/“Mﬂﬁ:w (31)

tn—|—1
Indeed, for all 0 < € < 1 we have

1 /1 s dp(s) < (1)

_go(e) tl+s = yntl

Fixing an arbitrary N > 1 and integrating this inequality with respect to ¢

from N to co we arrive at

1 w¢@< > ®(t) dt
ple) Jo N° 7 et
For every 0 < § < 1 we can write

ple) —p(0) 1 JW@)S/“ﬂﬂﬁ

Nop(e) = () ). N» gn+l

provided 0 < € < . Letting € go to zero we obtain

1</wyﬁﬁ

N6 = tnt1

N

N

Since ¢ can be arbitrarily small this estimate yields

1S/w@@dt

N tn—f—l

for all N > 1, which is possible only when integral at (31) diverges.
With the introduction of the Orlicz function ® by the rule (30), we can
now formulate the following result.

Theorem 6.1 The coordinate functions of a mapping f € WH*(Q,R*) of

finite distortion, with ® given by (30), are weakly monotone.
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It is rewarding to make an explicit calculation for ¢(s) =log$, 0 < s < 1:

1
®(t) = sup log_lg/ " ds

0<e<1 €
tn
sup —————
0<eI<)1 (t‘E log g) logt
t’n
logt loglogt

Here we have assumed that ¢ > e, to claim the inequality
t‘log ¢ > loglogt (32)
€

for all 0 < € < 1. Indeed, the function € — ¢“log ¢ has exactly one critical
point €y, which satisfies the equation ¢ log é = log™'t. In particular, ¢ <
log™'t and we obtain t¢ log¢ > thlog & > t«log(elogt) > loglogt. This
results in the following preliminary step for the proof of Theorem 1.4.

Corollary 6.2 The coordinate functions of a mapping f € WH®(Q,R*) of

finite distortion, with ®(t) > Tog(e +t)clot;og(e 5y are weakly monotone.

Formula (30) remains far from being conclusive for a general function
© = p(s), but we shall not enter into these quite involved computations. The
Banach spaces that one naturaly encounters in this connection are equipped

with the norm
1
(Fl, = inf{K > 0: — /SKS </ |F|n—s) do(s) < K™o(e) for all 0 < ¢ < 1}
€ B
(33)

We denote them by L,(B) and leave it for the interested reader to verify
that

[Fly < [|F|e (34)
where || - ||¢ stands for the Luxemburg norm determined by the function ®
at (30). We also have

[Flo < 1IF[lny < C)[[Fl|pn10g-1 1 (35)

for every ¢ as described above.
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7 The Oscillation Lemma

There is a particularly elegant geometric approach to the continuity estimate
of monotone functions. The idea goes back to the oscillation lemma by F.W.
Gehring [6]. While many interesting implications of Gehring’s lemma have
been discussed in the literature, the fact that one can use it for weakly
monotone functions seems to be less familiar. It is surprising that the usual
convolution procedure with mollifiers of Dirac distribution has little effect on
the monotonicity of functions. Consequently, we take the time here to state
and give a rigorous proof of this fact, as it might be of independent interest.
Let u € W'?(B) be a Sobolev function in a ball B(a, R). Fix a nonnegative
x € C§°(B) supported in the unit ball such that [, x(y) dy = 1. The
mollifiers x;(y) = 7"x(jy), 7 = 1, ..., give rise to the sequence u; € C*°(R")
defined by

uj(z) = x; *u(zx) = /Bu(y)xj(a: —y) dy (36)

It is well known that {u;} converges to u in W,,”(B) and u;(xo) — u(zo),
u;(yo) — u(yo) at the Lebesgue points xg, yo € B. Here is the presice state-

ment concerning monotonicity.

Lemma 7.1 Let u € WYP(B) be weakly monotone in a ball B = B(a, R)
and xg, Yo be Lebesgue points in B(a,r), r < R. For each 6 > 0 there exists
N such that

luj(xo) — uj(yo) P < osc(uj, 0B(a,t)) + 20 (37)

for all j > N and everyr <t < R.

Proof. We claim that the estimates
u;(zy) < max{u;(z):z € 0B(a,t)} +¢ (38)
and

uj(yo) 2 min{u,(y) : y € 9B(a, 1)} — 0 (39)
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hold for all » < ¢t < R, whenever j is sufficiently large. We only need to show
the first inequality. The second inequality follows by applying the first one to
the function —u and to the point y, in place of zy. Suppose, to the contrary,
that there exists a sequence {ji} and radii r < ¢, < R, k = 1,2,3, ..., such
that

wj, (xo) > max{u,, (z) : * € 0B(a,t;)} + 0.

We may assume that {t;} converges to some number ¢ € [r, R]. Since
w;, () — uj (20) +6 <0
on 0B(a,t), we have
(uj, — uj, (o) + 6) € WyP(B(a,t1)).
Passing to the limit as £ — oo yields
(u — u(xo) + )" € WyP(B(a, ).

That this function vanishes on 0B(a,t) in the sense of distributions can be
seen in various ways; details are left to the reader. As u is weakly monotone
it follows that u(x) < u(zy) — ¢ for almost every z € B(a,t). But this is
impossible since z; is a Lebesgue point of u in B(a,r) C B(a,t).

Now inequalities (38) and (39) imply
uj(zo) — u;(yo) < osc(uy, 0B(a, t)) + 26

One may interchange x¢ with y, to conclude with inequality (37), completing
the proof of Lemma (7.1).

By Fubini’s theorem we observe that the function ¢t — |, 9B(a) |[VulP be-

1
loc

longs to L;, (0, R). Consequently, its Lebesgue points form a set of full linear
measure on the interval (0, R). With these preliminaries, we can now prove

the following variant of the oscillation lemma.

Lemma 7.2 Let u € WY (B), n—1 < p < n, be weakly monotone in a ball
B = B(a, R) and zg,yo be the Lebesgue points of u in B(a,r), r < R. Then

1

u(o) — ulye)| < Clp,n)t (J[Bm,t) vur)’ (10)

0]

for almost every t € (r, R).
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Proof. We apply Sobolev’s inequality on spheres for the function u; €
C*>(B) at (37):

Juj(wo) — ui(yo)| < C(p,n)t (][ |Vuj|p>% +26

0B(a,t)

for all r < t < R. Fix a Lebesgue point r < t; < R of the function
t — faB(a " |VulP. For sufficiently small € > 0, upon integration over the

interval {5 — € < t < ty + €, we obtain

/t0+€ <|uj(330) — u;i(yo)| — 25>pw il de < / 1V, [P
t C(pa n)t - to—e<|z|<to+e !

Now we can pass to the limit as j — oo. It is also legitimate to take § = 0

0—€

in this limit inequality

to—e Cp(p7 ’I’L)tp N to—e 0B(a,t)

Divide by 2¢ and let € go to zero to obtain

[u(zo) — u(yo)[Pwn 1"
cr 7 dt < |Vu|?
(p, n)t5 dB(a,to)

This means that

[u(zo) — u(yo)| < C(p,n)to <][B(a7t0) |Vu|1’>%

0]

as desired.

8 Modulus of Continuity

Here we prove Theorem 1.6. Recall that we are working under the condition
that the function 7 — ®(¥/7) is convex for some p > n — 1. Thus, ® is
also convex and ®(s) > c¢- s for large s. In particular, u € W?(B) on
the ball B = B(0, R). Because of homogeneity at (20) we may assume that
||Vu||le = 27", that is

1 :][ B (2"Vu|) > 2”][ (| Vu|) (41)
B(0,R) B(0,R)
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since ®(K71) > K®(7) for K > 1, as ® is convex and vanishes at zero.
Fix Lebesgue points xg,y, € B(0, %R) and consider the concentric balls
B(a,r) C B(a,iR) C B(0,R), where @ = 23% and r = |$°—;y°| By the

Lemma 7.2 we have
1
[u(zo) — u(yo)| < <][ |Vu|p> ?
C(pa n)t 0B(a,t)

for almost all r < t < %R. Jensen’s inequality applied to the convex function

T — ®(¥/1) yields
|u(20) — u(yo)|
(I)< C(p,n)t ) S]gza(a,t)q)(Wu')

We multiply by w,_1¢t" ' and integrate over the interval (r, 3 R) to obtain

(42)

Next we make the substitution ¢ = ££ with 2 < s <1 and arrived at

/2_1 o <2|uéx((;)’ ;)ng) ds™ < 2" ]{3(071%) O(|Vu|) <1 (43)

By the definition of the ®-modulus of continuity this means that

o, ()

u(zo) ~uw)| < L, (2

m p—
= 27 Vo v 02

completing the proof of Theorem 1.6.

Drawing on the notation developed above, we give the following formulas.

Examples 8.1

1

1
®(t) =t"log*> '(1+1), a>0 we, (t) = [log*(e + ;)]_5

” 1. .
Po(t) = 7 —=— (t) = Nog1 Ly1-2
2() log(1+t) wcpz() [Og Og(e+ t)]
m L
3(1) = #) = [log log1 12
0= logi + Dloglogle + 1) wo (1) = Hogloslogle + 7))
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Elementary computation of these formulas are left for the reader.
Similar considerations for weakly monotone functions apply when the
gradient belongs to BL"(B). Recall the modulus of integrability

L"(Vu;e) <][|Vu\" €>n6, 0<e<n-1

On the other hand using (42) for the function ®(7) = 7" ¢ with 0 < € < £,

we obtain

Cn) R e e

|u(zo) — u(yo)| < (23 — <e][ |Vul" >
=)\ 7B

We choose € = log™* , which is legitimate if R > 10r. Recall that 2r =

|zo — yo|, while the ball B(a,r) centered at a = %(zo + yo) must lay in

B(0, %R) This certainly holds if xg, 3o € B(0, +R). We then conclude with

’ 10
the following continuity estimate.

Proposition 8.2 Suppose u is a weakly monotone function in the grand
Sobolev space W™ (B) on a ball B = B(0,R) C R*. Then for all Lebesgue

L R) we have

points xo, Yo € B(a, 15

R
lu(zo) — u(yo)| < C(n) R L" (Vu; 50917) (44)
[Zo — Yo
Thus u has a continuous representative.

Remark. Observe that estimate (44) remains valid if |Vu| € BL™"(B), in

which case we conclude that u € L2 (B) and obtain the uniform bound

1
ess 0sC <u; EB> < C(n) R ||Vul|pLrs) (45)

9 Final Arguments

Coming to an end, we are in a position to complete the proofs of the results
stated in Introduction.
Theorem 1.6 was completely established in Section 8. Theorem 1.3 follows

by combining Proposition 5.2 and 8.2. Concerning Theorem 1.4, we see from
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Corollary 6.2 that the coordinate functions of f are weakly monotone. Then
Theorem 1.6 provides us with the modulus of continuity estimates. According
to Examples 8.1 these estimates take the form (13), (14) and (15), as desired.

It remains to complete the proof of Theorem 1.2. First we observe that
f belongs to W'©(B) with ©(t) = t"log™'(e + t), and we have

IDf|IB < C(n) ]{3 J(z, f) do ][ A gy (46)

B
Indeed,

IDfllg < n" ‘Df|n||Llog_1L <n"||K J(z, f)HLlog—lL

< Cy\n" (]i J(z, f) d:c) (]i K@) d:c)

Finally, we use Theorem 1.4 and estimate (15) to conclude with the inequality
C(n)R"||Dfl[&

loglog (e + ﬁ)

Ck(n,A) [ J(z, f) dx
loglog <e + ﬁ)

N

|[f(z) = F(y)"
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