INEQUALITIES FOR THE MOMENTS OF WIENER INTEGRALS WITH
RESPECT TO FRACTIONAL BROWNIAN MOTIONS

JEAN MEMIN, YULIA MISHURA, AND ESKO VALKEILA

ABSTRACT. We study the possibility to control the moments of Wiener-integrals of frac-
tional Brownian motions with respect the norm of the integrand. It turns out that when
the self-similarity index H > %, we can have only an upper inequality, and when H < % we
can have only a lower inequality. As an application we obtain a maximal inequality in the
case of H > 1.

1. INTRODUCTION

1.1. Fractional Brownian motion. A fractional Brownian process Z = Z# with self-
similarity index H, is a continuous Gaussian process with stationary increments, defined on
a probability space (2, F,P), with the properties

(ii) EZ; = 0 for every ¢t > 0.
(ii) EZ,Z, = (7 + s*7 — |s — t]*7) for every s,¢ > 0.
The standard Brownian motion is a fractional Brownian motion with index H = 1/2.

Fractional Brownian motion is a self similar process, and from this property we get maximal
inequalities of Burkholder- Davis-Gundy type. Precisely we have the following result:

For every T" > 0, and p > 0 we have
(1.1) E(Z;) = B(Z7)T
where Z* denotes the supremum process defined by Z; = sup,, | Z,|.

In [6], Novikov and Valkeila considered the problem of getting maximal inequalities by
replacing deterministic 7' by a stopping time 7. In particular, for the case H > 1/2, they
proved that for every p > 0 there exist constants ¢(p, H) and C(p, H) such that it holds the
following :

c(p, H)E(r*") < E(Z;)? < C(p, H)E(1)"".
For H < % they showed that for every p there exists a constant c(p, H) such that

c(p, H)E(T"") < E(Z;)".

1991 Mathematics Subject Classification. 60H05, 60G15.
Key words and phrases. fractional Brownian motions, stochastic integration, moment inequalities.
1



2 MEMIN, MISHURA, AND VALKEILA

1.2. Classical Wiener-integrals. Let us introduce some notations for later use. Assume
that f is a measurable function with the property ||f||.2¢0,7) < 00, where || - ||zs(q,p) is the

standard norm given by
1
b p
Il = ( [ 1r00Pe) "

when p > 1,0 <a <b<oo. Ifa=0and b =1 we shall write ||f||, instead of || f||Lr(0,1)- If
f € L*(0,00) N L'(0, 00) introduce the norm || f||, defined by

1£ls = ( | |f<A>\2<1+A2>dA)5,

where f is the Fourier transform of f (see [1]).

Assume that W is the standard Brownian motion. Recall that for classical Wiener integrals
we have the isometry

(1.2 5(f Tf(S)dWs)2 1 By

We want to study weather it is possible to estimate E(fOT f(s)dZ)? in terms of the norm
of the function f, i.e. we are looking for upper and lower bounds of the form ||f|[7..,

for some r > 0,¢ > 1 for E(fOT f(s)dZ;)?. By considering the function f =1 and then the
function f = a, where a > 0 is a constant, it is easy to see that the only possibility for such
estimates is to have r =2 and ¢ = % We show that it is possible to get an upper estimate
in terms of this norm, when H > % and not to have a lower estimate in this case, and an
lower estimate, when H < % and not to have an upper estimate in this case.

Recall that the quadratic variation of the standard Brownian motion is controlled by
Lebesgue measure: E(>. (W, — W;,_,)> = T and (W, — W,,_,)? LT as 7| = 0.
This property of Brownian motion is also connected to isometry (1.2). Above 7 is a subdi-
vision of the interval [0,T], 1 = {0 =80 < 81 < -+- < 8, =T}, |7| = max,,e.(S; — $;—1) and
X means convergence in probability. For the 1/H variation of fractional Brownian motion

we have Y _|Z, — Z,, |YH 5T as || — 0. having this property for fractional Brownian
motion Z it is natural to ask, if one can use the 1/H- norm of f to control the Wiener
integrals with respect to fractional Brownian motions. As we will show, this is possible only
in the case H > %

1.3. Wiener integrals with respect to fractional Brownian motions. Wiener inte-
gration with respect to Z plays a central role below. Since Z is not a semimartingale, we
refer to the integration theory of Gaussian processes (see for example [3]). We consider only
deterministic integrands.

For H > 1/2, let ¥ denote the integral operator :

UF(t) = H(2H —1) /000 F(8)]s — t?H2ds
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and define the inner product
<< f,g>>¢=< f,¥g >= H(2H — 1)/ / f(s)g(t)|s — t|*" 2dsdt
o Jo

where < . > denotes the usual inner product of L?[0,00). Denote by L2 (respectively :
L%(0,T)) the space of equivalence classes of measurable functions f such that << f, f >>¢<
oo (respectively : << fljo.17, fljo,r) >>w< 00). The application Z; — 1jo4 can be extended
to an isometry between the Gaussian space generated by the random variables Z;,t > 0
(respectively for ¢ < T') and the function space L%, (respectively for L2 (0,T)).

For f € L%, the integral [ f(t)dZ, is defined as the image of f by this isometry. In
particular we have, for f,g € L2(T)

0 B sz [ awiz)= [ [ seen- o
and
(1.4) o[ fwang = [ [ 5050 o e

For H < % the integral in the above definition of ¥ diverges, and we have to modify the
definition. If f has bounded variation, then the Wiener integral can be defined by integration
by parts. To allow more general integrands, we follow the approach of Dasgupta [1]. For
f € DR,), ie. fe C®(R,) with compact support on (0,00) put

NCCEE /IR Z.df (s).

If fe fe L*0,00)NL'(0,0c) and ||f]|s < oo it is shown in [1, p.15-16] that one can define
fIR+ f(8)dZ, as L*(P) limit of the integrals of the form flR+ o™ (5)dZ,, where ¢™ € D(IR.,)

and |[¢™ — f||, = 0 as n — co.
1.4. The main results. The first result concerns the case H > %
Theorem 1.1. Let Z be a fractional Brownian motion of index H > 1/2. We have the

inclusion : For every T < oo, L%(0,T) C L'*(0,T) More precisely : for every r > 0, for
every a,b with 0 < a < b < oo, there exists a constant c(H,r) such that:

b
(1.5) B( / F@)dZa") < e(H, )| £ @)l
and
b

b
E|/ f(U)dZu/ g(u)dZ,|" < c(H, 7“)Hf||21/H(a,b)||9H21/H(a,b)-

The next theorem shows that in the case of H < % the opposite inequality takes place.
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Theorem 1.2. Assume that 7 is a fractional Brownian motion with Hurst index H < %
Then there ezists a constant y(H,r) such that Va,b:0 < a < b < 0o and ¥r > 0 we have

b
16) E| / FS)AZ" > Y H, )£l

in the following cases:
(i) f has bounded variation on [a,b].
(ii) f € LY(0,00) N L%(0, 00) with ||f|]s < oo.
We show that it is not possible to get reverse inequalities to (1.5) nor (1.6). This is shown

in section 3.

Remark 1.1. It is possible to define stochastic integrals with respect to fractional Brown-

ian motion, when H > %. In fact, there are many different definitions (see [4] for more

information on these different definitions). We do not know, whether it is possible to extend
(1.5) to some of these stochastic integrals.

2. PROOFS

2.1. The proof of Theorem 1.1. Since, for every T fOT f(t)dZ; is a centered Gaussian
random variable, for every r > 0, there exists a constant k(r) such that

T T
B([ 10dz) < k@[ f0az7)",
0 0
taking in account equality (1.3), the inequality (1.5) is actually implied by the following
T T T
(2.1) / / f) f()|u = v[*"dudv < ¢(H, 2)(/ [f ()" du)*".
o Jo 0

One will prove easily that (2.1) is a consequence of a classical inequality on Riesz potentials
I*f (see for example [8, p. 117-120]) defined formally for 0 < o < 1 by

1°f(z) = %a) / eyt fy)dy
for f: IRy — IR and
19 (z) = ﬁ / (z — 9)* " F(y)dy.

Precisely we have (see [8, Theorem 1, p. 119.]):
Theorem 2.1 (Hardy-Littlewood). Let 0 < <1l and 1l <p<qg<oo,1/g=1/p— a.

a) If f € LP(0,00), then I*f(x) and I$ f(x) converge absolutely for almost every x.
b) We have the inequalities of norms with some constants A, 4, Bp 4 :

(2.2) 7% fllLa(0,00) < Apsg

|f1lp(0,00) a0d || 1S f|La(0,00) < Bpogll fll2(0,00)-
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We continue with the proof of inequality (2.1). By using Holder inequality with exponent
p =1/H and inequality (2.2) with « = 2H — 1 and the same p = 1/H we get:

L 151 150 P2y
/ ()] )™ / du / F(0) lu — 02T 2dv) )14

<Al ) / £ () 72 du.

This finishes the proof of inequality (2.1).

2.2. Proof of Theorem 1.2. Note that again it is sufficient to consider the case of r = 2
only. We start the proof with the following lemma.

Lemma 2.1. Assume that Z is a fractional Brownian motion with Hurst inder H < %
Then there ezist a constant yg such that for every f € C*(IR,) with compact support, i.e.
f € D(IR,), we have

2

(2.3) B / F(8)dZy| = vl FIsi oy

Proof of Lemma 2.1. According to [1, p.14],

[ s0)az.=~ [ i)z.as

and
/f )dZ, _E/f )Z,ds| =c / (V) A 2Hd .
R
HT'(2H)sinmH
Cyg = .
T

According to [7, Chapter 2.7, p. 137],
(2.4) [F(D¢)(z)| = |z|*|d(x)], o> 0,

where F(-) is Fourier transform, D¢ ¢ is the fractional derivative of ¢,

i 1 d [ é(t)dt
D30 = ey | o

where ¢ € D(IR;). Therefore,
J 1A = / DY () A
R
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and from Parceval inequality,

/ (DY LN 2N = 1Y £

Because f € C, it is well-known (see, for example |7, Theorem 2.4, p. 45 or Theorem 2.1,
p.31]) that

IEDSf(x) = f(x),

and according to Theorem 2.1

I 9||L‘1 0,00) < Bp,q”g”LP(O,OO)a

¢ = 5 — @ Therefore
1/2-H
£l 0,00) < Bs,yyu||DY Fllz2(0,00)
(here g =1/H, a=1/2— H, p =2). We obtain

. B
19y < Baagi [ LFOPINan = 2220 | [ () dz
R

This ends the proof of Lemma 2.1.
We continue with the proof of Theorem 1.2.

First we prove (i). Let f € L., i.e. f =0 outside of [a,b] and f is a simple function. Then

it was proved in [4, p. 11| that there exists {¢™, n > 1} ¢ D(IR,) such that ¢{™ (t) — f()
2

J o™ (s)dZ

R+

and F — E(fab f(s)dZ;)?. Then using Lemma 2.1

2

¥l 1/H(ab)—11nr11nf||g/> )||L1/H(ab)<fthm1nfE /qﬁ s)dZ, —7HE/ f(s)dZ,)>.

Now, let f € BV]a, b]. Then

b 2

B / f(s)dZy| = E|f(6)Z — f(a)Za — / Z,df(s)

a

b k
We have that fZ df (s) = hm ZZslAfsl a.s., and ‘Z Zsl.Afsi‘ < SUPgcscp | Zs|Varey f
=1 -
and right-hand 51de is un1formly 1ntegrable using (1.1). Therefore, by Fatou lemma,
lim F Z, A
/ f(s = lim E|f(5)Z, Z . fsl

= lim F

|w|—0

Z fs Azsl

= llm I falliarmapy = v B (| fal 20 m 0 = vl FIlL0m s
|w|—0
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where f, = Xk: | fsi|Ds;_y1,s:] With fr — | f| almost surely with respect to Lebesgue measure.
This ﬁnisheszztile proof of (i) in Theorem 1.2.

We continue with the proof of (ii). Let f € L'(0,00) N L?(0,00) and ||f]|s < oco. Take
#™ € D(R,) with ||¢™ — f||, — 0 and Ik, o™ (s)dZ, 2 Jw, f(s)dZ; as n — co. Then

2

2
E / ft)dz,| = lmE / o™ (t)dZ,

(2.5) = lim / [T ZIA2H AN 2 g lim (|0 |71/ g -

R+

Since |[¢™ — ¢(™||12(0.00) < [|¢™ — ¢™)||,, then ¢ is fundamental also in L?(0,00). So,
2 o0
) g (35 )f. Note also, that
2
B| [(670) = 60002 > 6™ = 6ulFsn0
+

LYH (0,00
—

and ¢(™ is fundamental in L'/# (0, 00). Hence ¢(™ ) f and we have

(2.6) 16" L/ 0,00 = 111121/ (0,00)-
From (2.5) and (2.6) we have that

2

E /f(t)dZt > Yl £l 7 (g o)
+

This finishes the proof of Theorem 1.2.

3. ON REVERSE INEQUALITIES

3.1. The lower inequality in the case of H > % Next we show that it is not possible
to prove a reverse inequality to (1.5). Assume that Z is a fractional Brownian motion with
H > 1/2 and consider the function f(u) =u* %, 0 <u <1 with 0 <e < H.

Note that
1 2H

(3.1) 11 = | [ i =(

0

2H H2H
) 62H

m|m| —

and by Theorem 1.1 the Wiener integral exists.
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Consider now the expression

1 2 11
E /f(u)dZu =//uE_Hsg_H|u—s|2H_2duds=
0 00

1 u 1
0 0 u
1 1 1 1u
/ u! / 5 (1 — ) 2ds | du+ / w5 (s = 1) s | du =
0 0 0 1

(see [5, Lemma 2.2 (iii), p. 576])

1 1
=B(e—H+1,2H —1) /u%_ldu + /u%_l / =21 — 5)™*Hds | du =
0 0 0

1
1I'(1-H I'2H -1
- ( +5) ( )+/$2H2(1_S)£H /u251du ds =

2e I'(H +¢)
0
PO-Htol@H-1) 1 |
1T(1-H+¢)I'(2H -1 1 2H—2 —-H
= — —_— 1— € d:
% T(H —¢) +25/8 (1=s)""ds
0
1T(1 - H -
1Y FOTQH 1) Koo
5 ['(H —¢) 5

for constant Ky = B(1 — H,2H — 1). Since +/57 = 2! and we can make it as small as
we want, the inequality
2

1
E /f(U)dZu > cullfI2)a
0

is impossible when H > 1/2 by (3.1).

Using this example we have the following remark:

Remark 3.1. Assume that H > 1/2. Let ¢ € D(IR;). Then it is not possible to have an
inequality of the form

2

T
(3.2) E </ ¢sts) > bl/H,l/(l—H)||¢||i1/H(0,T)
0

with some bl/H,l/(l—H) > 0.
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Proof of Remark 3.1. Take 0 < ¢ < H and consider the function f(u) = u*#. Then
f € LYH(0,1) and there exists ™ € D(IR,) such that ¢® — f in L/#(0,1). Assume
that (3.2) holds. Then by (1.5)

1 1 9 1
ORI IN / omdz, ) / f(s)dZ,.
0 0

This gives
2

1 2 1
b (/ 1) dZS) =hm e (/ (bgn)dZS) > by m i |07y = bymaya-m | fllyma-
0 n 0 n

But this is impossible by the above counterexample.

3.2. The upper inequality in the case of H < % We want to show that it is not

possible to give a reverse inequality to (2.3). First we start with a remark about the reverse
inequality to (2.2), which is probably well known.

Remark 3.2. Put o = % — H, where H < % Then it does not erist a constant as1 g such
that for every f € D(IR,) we have

(3-3) S D17z 2 ag,/m||fl2-

Proof of Remark 3.2.  We consider again the function f(u) = v ¥ with ¢ > —(3 — H)
[note that ¢ here can be negative|. By direct computations we get

1flls = (1 —2H +2¢) "2

and
S (N)ym = Ken(1— 2H +2€)7,
where - .
Kog=LEZHTY opym
" T(e—2H +3)
* A1)
2
el Ao | oo
()|

when € | —(3 — H). As in the Remark 3.1 we can find a sequence (¢() of elements of

D(IR;) such that ¢(™ LN f. If there exists as1/5 as in (3.3) we would have, using also
Theorem 2.1, that

o™ R4 f
is equivalent to
(83 n LI/H «
I3(¢™) = I3(f);
passing to limit would then give ||[I$(f)||i/m > a21/u||f||2 for every € > 0, which is a
contradiction. This proves remark 3.2.

By Remark 3.2 we can consider a sequence ¢ € D(IR.) such that
162 > n||1%(6") |-
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1_
Since ¢™ € D(IR,), there exists g™ such that ¢ = D2 H(g(”)) Use now the relation
1¢D$(9™) = g™ to get || D(9™)||2 > n[|g™|1/m- But ||D(¢™)|3 = S-E(f, dZ,)?
59 g oge +\g 2 Z Njg 1/H- DU + 2 Ry
and hence

B( /]R 9($)dZ,)? > nexllg®|2
+

This shows that it is not possible to obtain a reverse inequality to (2.3).

4. AN APPLICATION

4.1. A maximal inequality for Wiener integrals.

Theorem 4.1. Let f be Holder with exponent 3 € (—H,—H + 1) and f € L%(O,T) and let
Z be fmctional Brownian motion with H > l. Then for every T < oo, the process Wiener
integral fo s)dZs is defined on allt € [0,T]. It admits a modification which have Hélderian
trajectories wzth Hélder exponent A < H + 3. For every p > 0, for every T > 0, there exists
a constant C(H,p) such that holds the mazimal inequality :

t

E(sup| [ f(u)dZ,|P) < C(H,p)TPH+P5,

t<T 0

Proof. From inequality (2.1) and from Hoélder property of f, it follows that for every
0 < s<t< oo, and for every p > 0, we have:

E(/tf(u)dZu)p) < c(t _ 8)(%+1)pH

Then, using the Kolmogorov lemma, as stated in [2, Theorem 19, chapter XXIII|, we get
the announced results.

Remark 4.1. Theorem 4.1 generalizes Lemma 2.1. in [5].
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