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1 Introduction

It is well known that the Sobolev space W'?(Q) is continuously embedded
into LI(2) if © is a nice bounded domain in R™ and

1<p< oo, q(n —p) < np. (1.1)

This fact, originally due to Sobolev, to Gagliardo and to Nirenberg, can
nowadays be found in textbooks (cf. [M3], [Z]) and it is stated as the Sobolev-
Poincaré inequality

(/Q lu — ug\qu)l/q < C’(/Q |Vu\pdx)1/p. (1.2)

The weighted case of Sobolev’s imbedding has been developed by by Necas
[N], Besov, Ilin, and Nikolskii [BIN1, BIN2], Kufner [K], Maz'ya [M3|, and
others.

It is not very difficult to give examples of domains having cusps for which
the Sobolev-Poincaré inequality (1.2) fails to hold or the range for its validity
differs from (1.1). The question of this embedding in nonsmooth domains
) is addressed by many authors. To mention but a few, we would like
to refer to the books [M3] and [MP], and point out that Besov [Bl, B2]
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obtained embeddings in domains satisfying “flexible cone conditions”, Smith
and Stegenga [SS] proved Poincaré inequality with ¢ = p for s-John domains
(that allow for twisted cusps of the type ¢* with certain s > 1). Maz’ya [M1]
(see also Labutin [L]) established the optimal embedding for s-cusps.

Hajlasz and Koskela [HK] proved the optimal Sobolev-Poincaré inequality
in s-John domains with p = 1 and the next to the optimal one for p > 1.
Their result also involves weights. We refer to [HK] also for further historical
notes and references.

In this note we complete the picture for s-John domains and give a proof
for the optimal Sobolev-Poincaré inequality in s-John domains, thus improv-
ing the results in [HK] (see Theorem 2.3). We study also the weigted case
where the weight is a power of the distance to the boundary. The result is
obtained as a consequence of a slightly more general criterion, which may
be used to illustrate why the optimal exponent for s-John domains is worse
than the optimal exponent for domains with a single s-cusp.

We use Hedberg’s trick on the maximal operator [He|, a truncation ar-
gument due to Maz’ya [M2] and some ideas from Hajlasz and Koskela [HK].
The main new ingredient of our proof is a careful grouping of chains around
a curve which we call a worm.

Lebesgue measure on R" is denoted by A, and we write

|E| = A(E)

for a measurable set £ C R". If u is an integrable function defined at least
on FE, we let ug stand for the average

1
Up = udmz—/udm.
v ][E E| /g

The open n-dimensional ball with center at x and radius r is written as
B(z,7) = By(z,7). We use §F for the cardinality of a set F.

2 Main results

This section contains the results with proofs. We start with a general theorem
and deduce the s-John domain result from it.



Let 2 C R"™ be a bounded open set. Given an exponent a > 0, let p the
measure on R" with
dpu ) p* in (),

dX )0  outside Q;
here and in what follows p(z) = dist(z, R™ \ Q).

We shall define a worm. It is a pair (v, A), where 7 : [0,£4] — Q2 is a curve
joining y = v(0) to zy = (), parametrized by its arc-length, and A = {&},
0=2¢6 <& <& <--- <&, =4 is a finite partition of [0,¢]. With each
worm we associate its parameters: the number m of the partition intervals
[€k—1, &), and for kK = 1,...,m the quantities

by = & — k-1,
R = sup{|7(¢) —y|: t € [&-1,&]}
re = inf{p(y(t)) : ¢ € [&e—1, &k}

Theorem 2.1 Let 1 < p < q < oo such that ¢(n — p) < np and let

+1——
q p
Suppose that there is a constant A > 0 and a point xy € €2 such that for each
y € Q\ B(zg, p(x0)/2) there is a worm (7, A) joining y to xq, with parameters
m, {lx}, {Rk}, {r} and constants m,..., 7, € (0,1] (both parameters and
Tk ’s may depend on y), such that

1—n§b§p(a+n n)

(2.1)

ply) < 3Ry, k=1,...,m, (2.2)
(1+A_1)Tk,1STkSATk,1, k:2,...,m

and
A7 ((B(y,3Ri))) V7 < 7 < Ap{mHt /R fLon)p, (2.4)

Then there is a constant C = C(n,p,a,b, A,Q) > 0 such that

(/ U — ug|?p" d:c)l/q < C(/ \Vu|ppbdx)1/p
Q Q

for each u € C*(); here

1
g = uduz—/udu.
]/n r() Jo



We start the proof with the following lemma.

Lemma 2.2 Suppose that ) is a bounded open set. Let z, 2/ € Q and let
v [€,E] — R™ be a path of the length £ that joins z and z'. Suppose that
b>1—n and that p>r on~y. Let u € C*(Q). Then

UB(z,p(z)/2 UB(2!,p(z")/2 <_ Ch (1=b-n)/ E( D/ V /! pb dzx , 2.5
( ,,0( )/ ) ( ,P( )/ )
D,

where

D, = |J B(y(®), p(v(t))/2).

te[€,¢']

Proof. Write B = B(z,p(2)/2) and B' = B(#, p(2')/2). We construct a
chain {B;}, B; = B(z;, p(2)/2) of balls and denote B; = B(z;, p(z)/4). For
the construction, it is enough to determine the points ¢; such that z; = y(¢;).
If ¢1,...,t; 1 are selected, we find next as

tj = sup{t € [ti1, '] : B(y(t), p((1)/4)) N Bj_1 # 0}

If t; =&, we set jmax = j, t; = & and terminate the construction.
We observe that the balls B(z;, p(zi)/4), i < jmax, are disjoint, and since
their radii are bounded away from zero and €2 is bounded, the sequence

really terminates after a finite number of steps. Fix x € 2 and denote
I(z) = {i < jmax : © € B;}. Let i € I(x). Then

p(2) < pla) + |r = =] < pla) + o(z0),

ple) < plan) + 1ozl < pla) + 50l
and thus
p(zi) < 2p(z),  p(z) < 2p(2). (2.6)
For any y € B; we have
ly — x| < p(zi) < 2p(2),

which means that X
U Bi c B(z,20())

i€l(x)



Since B;, , i € I(x), are disjoint, we have

|B(w, p(x)/8)| 8(z) < Y |Bil < |B(x,2p(2)),

i€I(x)
which implies
tI(z) < 16".
Thus we have proven that
ZXBi < 16" + 1. (2.7)

Next, consider i € {1, ..., jmax} and notice that there is a point z € B, 1NB,.
Then, as above, we infer that (2.6) holds and

B(z,p(x)/8)) C B(z,p(zi-1)/4)) N B(z, p(2;)/4)) C B;_1 N By,
B; 1UB; C B(z,p(zi—1)) U B(z, p(z;)) C B(x,2p(z)),

so that
|B; 1 U B;| <16"|B;_1 N By (2.8)

Also it is clear that

Jmax

>_plz) <CL (2.9)

Using (2.8) and the Poincaré inequality we have

|uBi - uB'i—1| < |U/Bv,' - uBiﬂBi—1| + |uBiﬂBi—1 - uBi—l'

g][ \u—uBi|dx+][ lu—upg, ,|dz
B;NB;_1 B;NB;_1

| Bi| ][ _|Bial
_ d —ug,_,|d
|B N B;_4]| s Ao R \BiN B;_1| /B, , fu=up | do

1/
< Cp(z) ][ Yl dz)’ +C’,0(z,~1)(f Vurdz)”
B; B

i—1



Hence we can estimate by using (2.7) and (2.9) that

jmax

lup — up| < Z lup, — up,_,|
=2

jmax l/p
\i-n/
< C;p(zz) p(/B Vul? da)
jmax
. 1_%+1—Z—b b 1/p
< Ci_zl o) ( /B (e Vul? da
Jmax I_Z_b . 17% / b » l/p
< Cizzlr p(z) ( . p’|Vul da:)

Jmax

cor (o) (3 [ Avuras)”
=1 =1 i

< Cr1=b=n)/ppp—1)/p (/ pb‘Vu‘p d:L‘) 1/1”,
D'Y

(2.10)

since b+ n > 1. The lemma is proven.

Proof of Theorem 2.1. Denote By = B(xg, p(z9)/2). Let u € CY(Q). We
may assume that

{u > 0} N Bo| > %\BO\ and  |{u < 0} By| > %\B0|. (2.11)
We will also assume as we may that
/ \VulPpbdr =1. (2.12)
Q
We shall first establish a weak type estimate:
u(Ay) < COX7Y, (2.13)

where
Ay ={z € Q:|u(z)| > A}

and A > 0. First observe that since the median of u is zero in By by (2.11),
we have that

lulPde <c | |VulPdzx, (2.14)



see [Z, Theorem 4.4.4]. Hence

1/p 1/p
| < (][ \u|pd:r) <e (][ \Vu|”dx> < co. (2.15)
Bo Bg

where ¢ is independent of u. Since u(£2) < oo it suffices to establish (2.13)
for A > 3¢y. To do so, we fix A > 3¢g and divide A, into three parts: write
By = B(y,p(y)/2) and let

A
Ey={y€ A\\ By : |up,]| >§}

and
F\=A\\ (BoUE)).

The third part is Ay N By. We treat E, first. Fix y € F) and let (7, {&})
be a worm in 2 that connects y to zy, with parameters m, {{;}, { Re}, {r},
and obeys the bounds of the theorem. We apply Lemma 2.2 to paths

Vi = Yiew1,6]

and points z = zx = Y(§k—1), 2’ = 2z}, = ¥(&). Let x = y(t) with ¢t € [x_1, &)
Then by (2.2)

p(x) < ply) + |y — 2| < 4Ry

and thus
B(x: p(‘T)/Q) C B(ya Rk + 2Rk)7

D’Yk C B(y, 3Rk)
Since A > 3¢y, we have that

m
)\ S 6 |uBy —_ UBO| S 6 Z |UBz;c — “sz|
k=1

1/
<C Z Tél—b—n)/pgip—l)/p (/ pb—a|vu‘P du) p_
k B(yast)

We split the last sum into two parts by K = K(y) that is to be determined.
First we notice that by (2.3)

Yort<ond,, Y. rrt<orrt (2.16)

E>K k<K



If K < m, due to our normalization of u, (2.4) and (2.16) we have that

Z T,(Cl_b )/pgl(cp 1/p (/ PP Vul? du)

k>K

1
< (/ PP | VulP d:c) ’ Zr,ﬁl_b_")/pﬁ,(cp_l)/p (2.17)
Q

k>K

=D TR < 03 < Oy

k>K k>K

Before treating the second part of the sum, we set
= [Vurp
and

/
g(a) = (sup W@, 7 /BW) raw) "

Since the maximal operator with respect to p is of weak type (1,1) (see
e.g. [M, Theorem 2.19] or [S, 1.8.17, p. 44]) and || f||z1(u) = 1, we have

p({g? >t}) <C/t, 0<t< oo (2.18)

We estimate

—b—n _ 1/p
Z Tl(cl b )/pgscp 1)/p (/ P9 VP d”)

k<K
—ben _ 1
< SRR (u(B(y, 3R))) ' g(y) (2.19)
k<K
<CZT’€1 q/p ) < Crg I+a/p 9(y).
k<K

Now we specify the choice of K, distinguishing three cases. If

" < g(y),

we choose K = 0. Then the sum over all £ =1,...,m reduces to (2.17) and

we have
A< Ot < Cgly)r/a.

If
TP > g(y),
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we choose K = m. Then the sum over k = 1,...,m is treated in (2.19), and

we have
A < Cr TP g(y) < Coly) P07 gy) = C g(y)P/e.

The remaining case is that

T < gly) < V7
Then we choose the integer K < m so that

il < gly) < T
Using (2.17) and (2.19) we obtain

A< Cridy + Om TPy (y) < Coly)?.
Hence we always have that
A < Cy(y)P'
for every y € E) . Therefore by (2.18)
p(Ex) < u({g? > (A/C)1}) < OX (2.20)

Next, we estimate the measure of F\. Using the Besicovitch covering
theorem (cf. [M, 2.7]) we can cover F) with balls B,, = B(x;, p(z;)/2) so
that z; € F) and

Then



whence we have by using the Sobolev-Poincaré inequality that

n(F) < Z 1(By, N F))

<Z/

Bg, OF)\

<CY» pla; “/ dz
; ( ) Bo;NFy
<O ol [ ue s o
: By, NFy ’

< OMN qu a+q+n (1- q/p)(/ |Vu|pd:r)‘I/p
B

T

< CO\¢ Z (/ |Vu|ppp((a+n)/q+lfn/p) dm) a/p

< CX\? (/ \Vu\ppbdac) i
Q

<COATY,

(2.21)

since p((a +n)/g+1—mn/p) > b by (2.1).
Finally, combining (2.14) and the usual Sobolev inequality in the ball By,
we obtain the weak type estimate

[J,(A)\ N Bo) S C\9,
Hence by the estimates (2.20) and (2.21)
p(AN) < u(Ex) + p(F) + n(AxN By) < AT

In conclusion, (2.13) holds for all A > 0, or without normalization (2.12),
sup A p({lul > AP0 < O / VulPpbdz) . (2.22)
A>0 Q

A truncation argument shows that the weak type estimate (2.22) implies the
desired embedding. Indeed, for each ¢ > 0 the truncated functions

t/2 if u(z) > t,
u(z) = S u(z) —t/2  ift/2 <u(z) <t
0 if u(z) <t/2,
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satisfy (2.11). Thus we may use (2.22) to conclude

1/
( / uftdp) " < Cp({jul > 1))
{t<u<2t}

< Ct p({us > t/2})14
1
< C’(/ \Vut\ppbd:v) '
0

1
= C’(/ \Vu\ppbdx) g
{t/2<|u/<t}

Hence

o0
INEEDS jul*0* da
Q

i 2 <lul<2i+1)

SCi(/

i M i2im1<lul<2i)

<c( [ wuppi)”,
Q

and the theorem is proved, since

/|u—ua|qp“dx§0/ |u|?p® dx.
Q Q

Following Smith and Stegenga [SS] we call a bounded domain €2 an s-
John domain, s > 1, if there is a point zy € 2 and a constant ¢y > 1 such
that each point z € Q can be joined to g in € by a rectifiable curve (called
an s-John core) 7 [0,£] — €2, such that + is parametrized by the arc length,
7v(0) =z, v(¢) = x0, and

/
\Vu\ppbdx) v

dist (v(t), 0Q) > ¢, 't°
for all ¢t € [0,¢]. The next theorem improves the main result of [HK].

Theorem 2.3 Suppose that Q2 is an s-John domain and b > 1 —n. Then
there is a constant C = C(n,p,q,2) > 0 such that

(/ |u — ug|?p” dx)l/q < C(/ |Vu|ppbdac)l/p
Q Q

11



for each u € C*(2); here the Sobolev exponent is

p(n+a)
q= .
sn+b—-1)—p+1

Proof. We will verify the assumptions of Theorem 2.1. First we notice that
the inequalities s > 1 and b > 1 — n imply

p(a-l—n_i_l_ﬁ):3(n+b—1)+1—n2b,
q b

so that (2.1) is true. For fixed y € Q \ B(x, p(x0)/2), the s-John core v on
[0, 4] gives us the desired worm: Let

d=sup{|y(t) —y|: t€[0,4}.

Find the integer m with
3d < 2™p(y) < 6d.

Since
p(y) < p(xo) + |y — 0| < 3ly — zo| < 3d,

we have m > 1. Set
& =sup{t € [0,£] : |y(s) — y| < 2¥"™d for all s € [0,]}.
Then (v, {&}) is a worm with parameters m, {¢x}, {Rx}, {rx}, and

gk S é-ka
& > Ry, =2k,

Tk > o

The inequality
ply) <6-27"d < 3Ry

verifies (2.2). Since
(n+a)/g=(s(n+b—1)+1—p)/p
we have by choosing 7, = 2(k=)(s(n+b=1)+1-p)/p }5¢
(B(y, Ry))"/* < R < Oy
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and -
Tk—(n+b—1)/p£l(€p—1)/p < (coﬁk)_s(m -1)/p I(Cp—l)/p

— ka_(m—a)/q
<Cr, !
Hence the claim follows from Theorem 2.1.

Remark. The exponent ¢ of Theorem 2.3 is the best possible in the class
of s-John domains, see [HK].

Example 2.4 An example of an s-John domain is an s-cusp domain. Sur-
prisingly, the optimal embedding exponent for the s-cusp obtained in [M1],
[L], [MP] is better than that for general s-John domains. The reason is that
complicated s-John domains may contain “rooms and corridors” so that the
upper estimate for p(B(y, R) N Q) must be more carefully examined. We
show that the optimal embedding for s-cusp domains can be deduced from
Theorem 2.1. Let us write z € R" as z = (£, z*), where 2 € R"! and z* is
the last coordinate of x. We will consider the s-cusp domain
Q={zeR":|2| < (2")° 0< 2" <2}

and show that Theorem 2.1 yields embedding of W'?(Q, p°) to L(Q, p%),
where the Sobolev exponent is

_ p(s(n+a—1)+1)

Cs(n+b—1)—p+1°
We choose 2o = e, = (0,1). If y € Q\ B(zo, p(x0)/2), we set

E=Uy) =19+ ly" -1

and define the worm curve v : [0,4] — Q as
(a- 50 v) 0<t<lg,

(1+& 0 -1) e lI<t<t

(1) =

In other words, worm curve starts at y, goes first on line segment connecting
y with y*e,, and then turns to the line segment connecting y*e,, with e,,. We
find a partition {&,...,&n} of [0, /] in such a way that & = 0,

Ee=2"0 k=1,...,m, (2.23)
ply) < & < 2p(y), (2.24)
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where (2.24) is what determines m and guarantees (2.2). From now we treat
only the interesting case that y* < 1. Then

Ekzgk/Q, k:2,...,m, E]_:é-]_, 2.25
o <, 2.26
§e < Ry, < 26, 2.27

B(y7 Rk) nQC Bn—l(g7 Crk) X (y* - Rk: y* + Rk)7
p < Cri on B(y, Ry).

we obtain
Tl(cn+b*1)/pgl(€lfp)/p > T,I(cn+a*1)/qgllc/q

Z C_lTk.

The additional information provided by (2.28) and (2.29) has no counterpart
in the case of a general s-John domain. We use it to estimate pu(B(y, 3Ry)):

CIJ/(B(y,Rk))l/q S C(Rk,,,.l’g—l-f'a)l/q
<Ot <
S CTk.

Hence (2.4) is verified and Theorem 2.1 yields the result.
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