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Abstract

We establish a sharp integrability condition on the partial deriva-
tives of a Sobolev mapping to guarantee that sets of measure zero
get mapped to sets of measure zero. This condition is sharp also for
continuity and differentiability almost everywhere.

1 Introduction

Mappings f : 2 — R™, where () is a domain in R", arise naturally in many
different situations. It is often desirable for f to have properties similar
to those of an absolutely continuous function of a single variable or of a
Lipschitz mapping. The properties we have in mind are: continuity, differ-
entiability a.e., and the Lusin N-condition that requires the n-dimensional
Hausdorff measure of f(E) to be zero whenever E is of n-measure zero. It is
well known that the N-property with differentiability a.e. is sufficient for va-
lidity of various change-of-variable formulas, including the area formula. In
mathematical models for nonlinear elasticity such properties are of interest,
for example, regarding cavitation and creation of matter, see [9].

In this note we address the following question: What are the minimal
analytic assumptions on f to guarantee the above mentioned properties?
As previously known, it suffices to assume that f belongs to the Sobolev
class W,2(Q,R™) for some p > n, cf. [7]. Here WP(Q,R™) consists of

loc loc
mappings of {2 into R whose coordinate functions belong to Wlé’cp(ﬂ); that

is, they together with their first order weak partial derivatives are locally
p-integrable. We will show that this condition can be sharpened to a very
precise integrability condition.
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As a tool we employ the concept of n-absolute continuity recently intro-
duced by Maly [5]. We say that f : @ — R™ is n-absolutely continuous
if for each € > 0 there is 6 > 0 such that for any family {B;} of pairwise
disjoint balls in 2 we have

ZE”(Bi) <6 = Z(oscBi " <e.

It is an easy observation that a mapping f : Q@ — R™ is n-absolutely
continuous if and only if its coordinate functions are n-absolutely continuous.
We define the class AC™(f2) as the family of all n-absolutely continuous
functions u :  — R for which the seminorm

lul| acn == (sup{ Z(OSC& u)n :
Z 1/n
(B} is a disjoint family of balls in Q})

is finite. It was shown in [5] that n-absolutely continuous mappings enjoy
the above listed properties and that Vf € LP(Q) for some p > n guarantees
that f has an n-absolutely continuous representative.

Our first result gives a very sharp sufficient condition for n-absolute

continuity for a function u € W'I})’Cl (Q).

Theorem A. Suppose that u € W'I})’CI(Q) is a function whose weak partial
derivatives belong to L™(Q)). Then there is a representative of u that be-
longs to AC™(Q2). The embedding of {u : Vu € L™(Q)} into AC™(Q) is

continuous.

Here L™!(Q) C L™(f) is the Lorentz space (see Section 2). We may relate
Lorentz spaces to spaces determined by a family of Orlicz integrability con-
ditions. Here we state this for simplicity for L™!. In what follows, given a
positive function ¢ on (0, 00), we write

S %*ls, K ,
F¢<s):{oj” e (11)

Then g is in L™(§) if and only if there is a positive nonincreasing function
@ € L'/((0,00)) such that

[ Fallgh <o
Q

Applying the results of [5], we get immediately the following consequences
for Theorem A. Theorem B is due to Stein [12] and our result gives an
alternative proof of this. We believe that Theorems C and D are new.
Theorem D states that the mapping in question is almost open (cf. [8]).



Theorem B. Suppose that u € WI})’CI(Q) s a function whose weak partial
derivatives belong to L™ (Q)). Then there is a representative of u that is
continuous, and differentiable a.e.

Theorem C. Suppose thatu € WI’I(Q, R™) is a continuous mapping whose
(

loc
weak partial derivatives belong to L™ (). Then f satisfies the N-condition.

Theorem D. Suppose that u € WI})’CI(Q, R") is a continuous mapping whose
weak partial derivatives belong to L™(Q). If G C Q is open, then a.e.
y € f(G) is an interior point of f(G).

We observe how Theorems A, C and D are sharp from the following equiv-
alence.

Theorem E. Suppose that n > 2. Let ¢ be a positive nonincreasing func-
tion on (0,00). Then the following assertions are equivalent:

(1) floo gol/" < 00.

(ii) Each f € Wh™(Q,R™) with

[ P9y <o
Q

has a representative that is locally n-absolutely continuous.

(iii) Each continuous mapping f € WH™(Q,R™) with

[ P9 <o
Q

satisfies the N -condition.

(iv) Given a continuous mapping f € WL(Q,R") with

JRGZIRES
Q

and an open set G C Q, a.e. y € f(G) is an interior point of f(G).

Cianchi and Pick [2] showed that for a rearrangement invariant Banach space
X of functions, there is a continuous embedding of the space {u: Vu € X}
into L, if and only if X is contained in L™!. In combination with our
results, we somewhat surprisingly conclude that this embedding into L is
further equivalent with continuous embedding into AC™.

Theorem F. Let X be a rearrangement invariant Banach space X of func-
tions on R™. Then the following assertions are equivalent:

(i) There is C < oo such that if Vu € X, then infeer ||lu — al|lpe <
C||Vul x-



(ii) {u:Vu € X} is continuously embedded into AC™(R").
(iii) X is continuously embedded into L™'(R™).

We will use the following condition to verify n-absolute continuity in our
main result. We say that a function u satisfies the RR (Rado-Reichelderfer)
condition with the weight 8 € L'(€) if

oscBu / 0(x

for any ball B CC Q. It is easy to see (cf. [5]) that u belongs to AC™(2) with
|lul|4on < 110|712 if the RR condition holds. Thus, for proving n-absolutely
continuity, it suffices to establish the RR condition.

The cubical version of the RR condition was already known to Rado and
Reichelderfer [10] as a sufficient condition for differentiability a.e. and for
the area formula.

2 Characterization of LP4

In this section, let (X, ) be a measure space and 1 < g < p < oco. We denote
A = p(X). If fis a measurable function on X, we define its distribution
function w(-, f) by

wle, f=p({zeX: [f(z)]>a}), a>0,
and the nonincreasing rearrangement f* of f by
f*(@#) =inf{a > 0: w(a, f) <t}
Then we have
p({|f] > a}) = LY{f* > a}) for each a > 0.

The Lorentz space LP(X) is defined as the class of all measurable functions
on X for which the norm

| fllLea == (/0 (t1/pf ()1 Cit)l/q

is finite. For an introduction to Lorentz spaces see e.g. [13].

Proposition 2.1. Let f be a nonnegative measurable function on X, w be
the distribution function of f and A = u(X). Then

A o]
/0 (tpf*(t))q%:p/o sq_lwq/p(s)ds

s 45 dt ds.

J!
{[t,s]:0<t<w(s)}



Proof. For [t,s]in (0, A)x (0, 00) we see that t < w(s) if and only if s < f*(¢).
Hence the formula is a direct output of application of the Fubini theorem to
the last integral.

Theorem 2.2. Let f € LP9(X) be a nonnegative function on X. Then
there is a nonnegative nonincreasing function ¢ on (0,00) such that

o
1
[ sty ds < il (22
0 p
and
q_
[ 1107 (@) du@) < £l (2.3
{r>0}
Proof. Let w be the distribution function of f and A = p(X). If we take
©(s) = inf w(s'), (2.4)
s'<s
then (2.2) holds by Proposition 2.1. Since
o(f*(t) >t for0<t<A,

we obtain (2.3) from

q

A q
[ @ @) < [T
{r>0} 0
Theorem 2.3. Let f be a nonnegative measurable function on X and ¢ be

a nonnegative nonincreasing function on (0,00) such that ¢(f(z)) > 0 a.e.
z € {f >0}. Then

110 < G ( [T sy ds)

(/{f>0} fU(z) 9> (f()) du(:v))

Proof. We may assume that f # 0. Consider A > 0 to be specified later.
Let

1—-4
P

(2.5)

q
P

E ={[t,s] €(0,4) x (0,00) : t <w(s)},
E' ={[t,s] € E:t < Xp(s)},
E"=E\E.
We estimate the double integral in (2.1) by splitting it into two parts. We

have
0o Ap(s)
q/ s97 145V dt ds < q/ </ s97 14! dt) ds
B 0 0 (2.6)

o
:pAq/p/ sqflgoq/p(s) ds.
0



Consider [t,s] € E". Then, since E" C E,
s < f*(1),
and hence by monotonicity
t 2> Ap(s) > Ap(f*(2))-
It follows that

q/ s 1p " dt ds Sq)\g_l/ sqflgo%_l(f*(t))dtds

q *(t) q
<! / ! ( / Y g ) ds) dt
0 W0 (2.7)

Setting

qa_
\_r—a Jysy '@ ¢ (f@) du(a)
- g 32 87 Lpa/p(s) ds ’
we obtain from (2.6), (2.7) and (2.1) the desired inequality.

Corollary 2.4. Let f be a nonnegative measurable function on X. Then
the following properties are equivalent:

(i) feLP(X).

(ii) There is a nonnegative nonincreasing function ¢ on (0,00) such that
(,D(f(:E)) >0 a.e x€ {f > O} and

/ s971p/P(s) ds < o0
0

and

q

/ Fi(2) o7 ' (f(2)) du(z) < oo.
{f>0}

3 Verifying the n-absolute continuity

In what follows, 2 C R"™ will be a fixed open set. We denote by L™ the
n-dimensional Lebesgue measure and by o, the measure of the unit ball in
R". If B C R" is a ball and u is an integrable function on B, we write

up = (£7(B)) ! /B %

this is the mean value of v on B. For the definition of F, we refer to (1.1).
We begin with a crucial estimate on a Riesz potential.



Theorem 3.1. Let g be a nonnegative measurable function on Q and @ be
a nonincreasing positive function on (0,00). Then for any z € Q and any
measurable set E C ) we have the inequality

([1e-s"g(oras)

<o (nan | e dt)"_l [ Folata) do

0

Proof. Let E C ) be a measurable set and z € 2. We may assume that
z = 0. If the integral on the left of (3.1) vanishes the proof is over. Otherwise
we choose 0 < h < 0o such that

hg/ 2|1 g(z) da.
E

We consider a constant A > 0 to be specified later and write
5= [ Folgla) ds,
E

o0
Jo = noy, / o™ (t) dt,
0

P={[z,t) e ExR:0<t<g(z)},

P = {[a:,t] €EP:p(t) < (%)n}
P"=P\P.

[t g@ds= [[ e ava
E p

We split the integration into the P’ part and P" part. If [z,t] € P', then
z|* = X"h"p(t) = A*h"p(g(x)).

// || =" dez dt
Pl

9(z)
< )\l_nhl_n/ (/ dt) QMM (g(2)) da (3-2)
En{g>0} \JO
= ATPRI L

(3.1)

We have

Hence

For the P"-part we have

// |z|' " dz dt < / (/ ||~ d:v) dt
pr 0 B(0,\hpl/m (1))

oo

< naph / ©'/™(t) dt
0

= AhJ,.

(3.3)



By (3.2) and (3.3) we have

hg// \:v|1_"da:dt+// ||~ da dt
Pl PII

< AR 4 AR,

If we choose
gy
2
then we obtain
h< 2Jll/nJZ(n—l)/n

so that
R < 2n g Jrt

o (nan | et dt)"_l | Polata) da.

This concludes the proof.
Using the previous theorem we now give a sufficient condition for RR.

Theorem 3.2. Letu € WI})’CI(Q) and @ be a nonincreasing positive function
on (0,00). Suppose that

/ F,([Vau(s))) de < oo (3.4)
Q
and
o
/ o/ (1) dt < . (3.5)
0
Then u, properly represented, verifies the RR condition with the weight
s n—1
o) = [~ a) RV (3.6
0
where
on(n+2)
Cy = .
noy,

Proof. By Lemma 1.50 in [6], there is a set N with £"(N) = 0 such that all
points in 2 \ N are Lebesgue points for v and

2”
lu(z) — up| < / o — 2 V()| dx (3.7)
non /B
for each ball B CC Q and z € B\ N. Let us fix a ball B = B(zg,R) CC Q.
We write

g =|Vul



and use notation J; and Js as in the proof of Theorem 3.1. We may assume
that oscg\y u > 0. Choosing

0 <a <oscg\yu,
we can find a point z € B\ N such that
a < 2lu(z) —up|- (3.8)

Applying Theorem 3.1 to E = B and using (3.8) and (3.7) we obtain

2n—|—1 n
a” < ( / |z — 2|'" g(x) da:)
noyn JB
2n—|—1 n
< ( ) 27 (o) Ly

noy,

- /B 0(z) da.

Letting a — oscp\y u we obtain

(oscp\w u)” < / 0(z) dz.
B
It follows that w is locally uniformly continuous on € \ N and hence u
has a continuous representative on 2. This representative verifies the RR
condition with the weight 6.

4 Almost open mappings

In this section we show that every n-absolutely continuous mapping is almost
open.

Lemma 4.1. Suppose that f : Q@ — R"™ is a continuous mapping differen-
tiable at a point xo € Q. Suppose that Jf(xo) # 0. If G is an open set
containing g, then the interior of f(G) contains f(xz).

Proof. This is an application of the Brouwer fixed point theorem, cf. [11],
Lemma 7.23 and Theorem 7.24. For fixed point theorem see e.g. [3].

Theorem 4.2. Suppose that f : @ — R™ is an n-absolutely continuous
mapping. Then f is almost open.

Proof. Denote by A the set where f’ does not exist and by B the set where
Jf = 0. By Lemma 4.1 it suffices to show that A and B are mapped into
the set of measure zero. Since L"(A) = 0 and f satisfies the N-condition
we have L"(f(A)) = 0. On the other hand, the change of variables formula
(see [5], Theorem 3.4) is valid for f, and hence L™(f(B)) = 0.



5 Examples

It was pointed out by Stein [12] that the condition Vf € L™!(Q) is essen-
tially sharp for continuity and for differentiability almost everywhere. We
show below that this is also the case regarding the N-condition and almost
openness for continuous mappings. Throughout this section we assume that
n > 2.

Given an Orlicz function F,, we want to construct “wild” functions f
with

/QF(;,(|Vf|) de < .

There are two steps in our construction. The first one is to construct a
radial function u with

/ F,(|Vu(z)]) de < oo
B(0,1)

and

lim u(z) = oo.
z—0

Although the existence of such a function follows from [2], we include here
a direct proof for the convenience of the reader.

The second step is based on a refinement of a method due to Cesari [1],
see also Maly and Martio [4]. Originally, Cesari constructed a continuous
function in W12((0,1)%, R?) whose Lebesgue area is zero but whose image
is a square.

Lemma 5.1. Let ¢ be a positive nonincreasing function on (0,00) and

/OO 901/"(3) ds = co. (5.1)

1

Then there is u € WH™(B(0,1)) so that u is nonnegative, radial, continuous
outside the origin, tends to infinity when x — 0, and satisfies

/ F,(|Vu(z)|) dz < . (5.2)
B(0,1)

Proof. Consider for a while the positive nonincreasing function
&(t) = min{e(t),t "}. We claim that

o
/ 5/ (5) ds = oo (5.3)
1
Indeed, assuming the contrary, there is an a > 0 such that

/ FY/(s) ds <

Lo =

10



Then, using the monotonicity, for ¢ > 3a,

1 t 1 1
51 (1) < / 51" (s) ds < < —
P sy, | ¢ s s o

and thus ¢(t) = ¢(t), which implies (5.3). Hence we may suppose that
p(s) < s7", otherwise we would replace ¢ by @. It follows that Fi,(s) > s™
and once proving (5.2), the integrability of |Vu|™ is also verified.

We define a sequence hy of real functions on (0, 00) by

h(t) = inf{s > 0 : p(2s) < (2Ft)"}.
Find o} > 0 such that (20%) < 2*¥”. Then

{[t,s] : 0<t<1,0<s<hg(t)}
S {[t,s] 15> 0p, 0 <t <27k /m(2s)}).

Hence using Fubini’s theorem we obtain

1
/ he (1) dt = / dt ds
0 {[t,s]:0<t<1,0<s<hg(t)}

>

/ dtds
{[t,s]:5>0%, 0<t<2—kpl/n(25)}

o0
= 2_k/ ©'/™(2s) ds = .

k

It follows that we may define a decreasing sequence {aj} of positive real
numbers such that ¢; = 1 and

Ak
/ hp=1, k=12 ....
Ak+1

Since hy(ag11) > 1, we have ¢(1) > (2¥aj,1)" and thus aj — 0. Set

ap
u(z) = k+/ he,  apy1 < |z| < ag.

|z

Then obviously

lim u(z) = oo.
|z|—0

Since
(i (t)) > (250)"

we have

F,(hi(t)) < (280 "hy(2)

11



and thus

F,(|Vu(z)|) dz = F(he(lz)) da
/{ak+1§|w|§ak} W(' ( )|) / <P( k(' |))

{ag+1<]z|<a}

ag
= nay, / U (hi (1)) dit

Q41

ag
< C/ (2R by (2) di
Ak+1

= 2 k-1,

It follows that
/ F,(|Vu(z)|) dz < oo
B(0,1)
as required.

Theorem 5.2. Let ¢ be as in Lemma 5.1. Suppose that a sequence {KC,, }o0_
of finite families of closed cubes is given such that

Ko={[-1,1"}, (5.4)
for each K € Ky y1 there is K' € Ky, such that K C K, and (5.5)
lim sup diam K = 0. (5.6)

m—r0o0 KeKn,

Let L be a line segment in R™. Then there exists a continuous mapping
f € Wh(R™ R"™) and a set S C R™ which is a countable union of line
segments such that

| P9 <. 6.7

detVf =0 a.e., (5.8)

fRY=fL)y=su ) U K (5.9)
m=0 Ke,,

Proof. We denote by yx the center of a cube K. We will define recursively a
sequence { f,,} of Lipschitz continuous mappings in W"(R", R") such that
for every m and K € K, there is a point zx € L and a radius rx € (0,2~ ™)

12



such that the balls B(zx,rx), K € K, are pairwise disjoint and

fm(z) = yk for each z € B(zk,rk), (5.10)

fj(z) € K for each z € B(zk,rK) and j > m, (5.11)

fi(z) = fm(x) for each = ¢ U B(zk,rKk) and j > m, (5.12)
Kekm

fm(R™) = fm(L) is a finite family of line segments and
fm(R") C f;(R") for each j > m,

/ Fy(IVfol) < 0o and / Fy(Vimnl) <27, (5.14)
R» Ukex,, BGzrTx)

(5.13)

where B
Fy(s):=Fy(s)+s", s>0.

By (5.6), (5.11) and (5.12) such a sequence converges uniformly to a contin-
uous mapping f. By (5.10), (5.12) and (5.14) the sequence converges also in
WLn(R"™,R"), and in particular the limit belongs to the same space. From
(5.10) and (5.12) we infer that

Vol <IVAI<...

and that |V f,,;,| converges to |V f| a.e. Then using Levi’s monotone conver-
gence theorem and (5.14) we obtain (5.7). Since the image is one dimen-
sional, the rank of V f,, is 1 and thus det V f,;, = 0 a.e. Passing to the limit
we obtain (5.8). From (5.10)—(5.13) we easily derive (5.9).

It remains to present details of the construction. The family Xy contains
only the cube Ky = [—1,1]". We start with a constant mapping fy =
Yk,- We also choose a point zx, € L and a radius rg, € (0,1) such that
L ¢ B(zk,,TK,)- Let us assume that the construction is accomplished for
fos--+y fm. For all K' € K,, with every K € K,,41 such that K C K’
we associate a point zx € LN B(zk,Tk') and a radius Rx > 0 such that
B(zk,Rk) C B(zk',Tk) and the balls B(zk, Rk ), K € Ky,+1, are pairwise
disjoint. Let Ny, 41 be the cardinality of K,,4+1. For every K € K41 find a
radius px > 0 such that px < min(2 ", Rg) and

- 1
F,(|Vu(z)|)dz < 7o
L, FellPu@N s < s

where u is as in Lemma 5.1. We find rx € (0, px] such that

u(rier) — u(prer) = lyx — yx|
and define

Yk — YK

fm+1(z) =y + (u(z — 2K) — ulprer)) lyx — yrc|

13



ifrg < |z — zK| < px and

fm+1 ('T) =YK

if |z — zg| < rg. Outside the balls B(zk, px) we set fi+1 = fm. It is easy
to verify the properties (5.10)-(5.14) so that the proof is completed.

Example 5.3. Let u € WY(Q). The condition
/ |Vu|™ log*(e + |Vu]) < oo
Q

guarantees the n-absolute continuity of a representative of u (and thus also
the N-property and almost openness if u is vector valued) if « > n — 1 but
not if a <n—1.

6 Proofs of Theorems A—E

In this section we give the proofs of Theorems A-E. Note that f = (fi,...,
fm) satisfies RR (or is n-absolutely continuous) if and only if each coordinate
function f; does.

Proof of Theorem A. By Theorems 2.4 and 3.2 there is a representative
of u that verifies the RR condition. According to Theorem 3.1 in [5], the
RR condition implies that u belongs to AC™(2). Let w be the distribution
function for Vu and choose ¢ as in (2.4). Using Theorem 3.2 and Theorem
2.2, we obtain the estimate

o0 n—1
g sc( / sol/%)dt) | Favata) ds
< OVl

which proves continuity of the embedding.

Proof of Theorem B. The n-absolutely continuous representative of u given
by Theorem A is clearly continuous, and moreover differentiable a.e. by
Theorem 3.3 in [5].

Proof of Theorem C. By Theorem A, f is n-absolutely continuous and hence
satisfies the N-condition.

Proof of Theorem D. This follows form Theorems A and 4.2.

Proof of Theorem E. (i) = (ii) We have verified all the assumptions of
Theorem 3.2 except that
1
/ /" < 0.
0

14



For this purpose we modify ¢ by changing ¢(s) to ¢(1) for 0 < s < 1. Now
the integrability of F,(|V f|) over the set {|V f| < 1} may break, but only if
|©2] = 0co. Thus we have guaranteed n-absolute continuity at least locally.

(i) = (iii) f is locally m-absolutely continuous and thus verifies the
N-condition.

(ii) = (iv) Since f is locally n-absolutely continuous, the claim follows
from Theorem 4.2.

(iii) => (i) Suppose that [ ¢!/" = co. Theorem 5.2 applied to the
families /C,,, such that

N U K=[-11"

m=0 KEX

gives a continuous mapping f € W"(R", R") such that

| FaviD < o0
R?’L

and f(L) D [-1,1]", in particular f does not satisfy the N-condition.
(iv) => (i) Suppose that [° ¢'/" = 0o0. Theorem 5.2 applied to the
families /C,,, such that
[ee]
N ux

m=0 KEX

is a nowhere dense Cantor set gives a continuous mapping
f € Wh?(R™, R") such that

JRGZI RS
Rn

and f(R™) is uncountable with no interior points (by Baire category theo-
rem), in particular f is not almost open.

Remark. We would like to mention an alternate proof of Theorem D. In
[8], it was shown that [, [Jf| = [g. M(f,y)dy if f € WH"(Q,R") is con-
tinuous. Here, M(f,y) is the multiplicity function defined in [8]. It follows
immediately from its definition that if M(f,y) > 0 and y € f(G), then y is
in the interior of f(G) whenever G is open. Using Theorem C, it follows that
JolJfl = Jga N(f,y) dy if Vf € L™ (Q), where N(f,y) is the number of
points in f~1(y). Since M(f,y) < N(f,y), it follows that M (f,y) = N(f,v)
for a.e. y, and therefore that f is almost open, as desired.
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