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ABSTRACT. We prove that for 0 < ¢ < 1 the upper g-dimension of the image of a
Borel probability measure is a constant under typical linear maps (or typical orthog-
onal projections). This constant may be smaller than the upper g-dimension of the
original measure.

1. INTRODUCTION AND NOTATION

There are several concepts of dimension which have been studied both in math-
ematics and in physics. These concepts are related to either sets or measures. For
example, in the theory of dynamical systems it is sometimes more useful to study
the dimension of a probability measure. In fact, an attractor of a dynamical sys-
tem may carry a natural invariant measure (so called Sinai-Ruelle-Bowen-measure)
which contains more information than its support (which is the attractor). The
value of the dimension of a set or a measure may vary for different definitions.

The most common definition of dimension is the Hausdorff dimension, dimg. For
sets it is defined in terms of Hausdorff measures. For a Borel probability measure
1 on R™ it can be defined either by means of Hausdorff dimensions of sets or,
equivalently, in the following way:

1 B
(1.1) dimpg p = sup {3 >0| liminfM

> s for p-almost all z € R” }
r—0 logr

Here B(x,r) is the closed ball of centre x € R* and radius r with 0 < r < oo.
Recently there has been much interest in the packing dimension, dim,, defined by
replacing the lower limit with the upper limit in (1.1), that is,

1 B
(1.2) dim, p =sup {s >0 | limsup log u(B(w,r))

> s for p-almost all z € R”}.
r—0 logr

The basic geometrical properties of Hausdorff dimension — the projectional prop-
erties of sets ([Mar], [Mat1],[Kau]) and measures ([HT]), the dimensional proper-
ties of intersections of sets ([Mar|, [Mat1], [Mat2], [Kah]), and sections of measures
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([J2],[IM]) — are well-known (see also [F1], [F2], and [Mat3]). In particular, if p is
a Borel probability measure on R", then for v, ,,-almost all V' € G,

(1.3) dimg py = min{dimg p, m}.

Here n and m are integers with 0 < m < n, 7y, is the unique rotationally invariant
Borel probability measure on the Grassmann manifold G, ,, consisting of all m-
dimensional linear subspaces of R™, and py = (projy )«p is the image of 1 under
the orthogonal projection projy, : R* — V.

The geometry of packing dimension is less regular than that of Hausdorff dimen-
sion ([FH1], [FH2], [FJ], [FM],[JM], [J1], [J2]). Unlike the Hausdorff dimension,
the packing dimension is not preserved under typical projections. Nevertheless,
the packing dimensions of the typical projections of a Borel probability measure pu
cannot be too small: Falconer and Mattila [FM] showed that for v, ,-almost all
VeGnm

dimy, p(1 — dimg p/n)
1/m —1/n)dim, g — dimg p/m

(1.4) dimy, py > T+

provided dimyg ¢ < m. They also gave an example which shows that this lower
bound is the best possible one. Continuing the work of Falconer and Mattila,
Falconer and Howroyd [FH2| proved that for any Borel probability measure y on
R"™ the packing dimensions of its projections onto 7y, m-almost all V' € Gy, p, are
equal. For this purpose they gave a new characterization of the packing dimension
of p in terms of quantities called dimension profiles.

This paper seeks to establish analogues of these projection results for upper g-
dimensions. For ¢ > 0 Hunt and Kaloshin [HK] proposed the following potential
theoretic defnition for the lower g-dimension of a Borel probability measure p with
compact support:

duly) \9
. = >0: _— .
(15) D) =sw {5205 [ [ TE0) aua) < oo}
We give an analogue of this definition in the case of the upper g-dimension:
(1.6) Dy(p) = sup{s > 0: J7; (1) < o0},
where

(1.7) Jo (1) = ligi)iglfr_sq/ (/min{l, r"|a — y|_"du(y)})qdu(a:).

This definition allows us to apply the techniques from [Matl], [FH2], [FM], and
[HK] in order to study the behaviour of the upper g-dimension, D,, of a Borel
probability measure under linear mappings. The corresponding questions for the
lower g-dimension, D, have been studied by Sauer and Yorke ([SY]) and by Hunt
and Kaloshin ([HK]) (for definitions see Section 2). These quantities, which are also
called the generalized lower and upper spectrum for dimensions, are one-parameter
families of dimensions commonly used in the study of dynamical systems. They
were introduced by Hentschel and Procaccia in [HP] as a generalization of the
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lower and upper correlation dimensions (which are D, and D; in our notation) and
independently by Grassberger in [G]. By the generalized spectrum for dimensions
we do not mean the multifractal spectrum of a measure (see for example [O])
although in some cases these concepts are related to each other by the Legendre
transformation. For further information on these dimensions see [P].

Sauer and Yorke proved in [SY] that a part of the generalized lower spectrum,
namely, the lower correlation dimension, D,, is preserved under L£""-almost all
linear maps from R™ to R™. Here L™ is the nm-dimensional Lebesgue measure.
Using the potential-theoretic definition for the generalized lower spectrum (1.5),
Hunt and Kaloshin ([HK]) extended this result for all 0 < ¢ < 1 (in their notation
for all 1 < ¢ < 2). They proved that if y is a Borel probability measure on R”
with compact support, then for £*™-almost all linear mappings L : R® — R™ the
following analogue of (1.3) holds:

(18) D, (Lops) = min{D, (), m}.

Here L,pu is the image of p under L. They also gave examples showing that the
lower g-dimension is not preserved under typical linear maps for ¢ > 1.

In this paper we address the problem of finding out how the generalized upper
spectrum behaves under linear mappings (or under orthogonal projections). It
appears that, unlike the lower g-dimension, the upper one is not preserved under
typical linear mappings (or typical projections) for 0 < ¢ < 1. We will prove that if
n and m are integers with 0 < m < n, p is a Borel probability measure on R" with
compact support, and 0 < g < 1, then for £*™-almost all linear maps L : R* — R™
we have

(1.9) Dg(Lyp) = dimg* (p),
where dimjy’(u) is a constant obtained by convolving the measure y with a certain
kernel and it can be strictly less that the upper g-dimension of . Thus for 0 <
q < 1 the upper g-dimension behaves like the packing dimension under orthogonal
projections, while the lower one is preserved like the Hausdorff dimension.
Because of being quite convenient for the purposes of numerical calculations, the
lower and upper correlation dimensions, D, and D1, have received much attention.
For the upper correlation dimension we study how small the constant dim7"(x) in
(1.9) can be. We show that the following analogue of (1.4) holds. If D,(u) < m,
then

_ Dy (u)(1 = Dy (w)/n)
(1.10) D) 2 4 = 1/m) D () — Dy () jm

for v, m-almost all V € G, and L£"™-almost all linear maps L : R* — R™.
After this work was completed we learnt from a paper by Falconer and O’Neil [FO|
relating multifractal properties of measures - including ¢g-dimensions - to those of
projections. Applying their methods we shortly indicate how (1.10) can be extended
to all 0 < ¢ < 1. We will also discuss an example from [FM] which shows that the
lower bound given in (1.10) is the best possible one. In Section 2 we give the
definition of prevalence introduced by Hunt, Sauer, and Yorke in [HSY] and extend
our results to “almost every” continuosly differentiable function.
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Influenced by the methods from [FM],[FH2], and [HK], we use the new char-
acterization (see (1.6) and (1.7)) of the upper g-dimension of a Borel probability
measure p for ¢ > 0. This characterization, which is given by means of quantities
defined by convolving p with a certain kernel, is a modification of the dimension
profile approach introduced by Falconer and Howroyd in [FH2].

We have organized this paper in the following way. In Section 2 we give the
definition of the upper g-dimension, consider an example showing that the lower
bound in (1.10) is the best possible one, establish the new characterization (1.6)-
(1.7) of the upper g-dimension, and prove the result (1.9). In Section 3 we prove
(1.10) and finally in Section 4 we prove technical results needed throughout the

paper.
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2. THE UPPER ¢-DIMENSION AND ORTHOGONAL PROJECTIONS

In this section we consider for 0 < ¢ < 1 the behaviour of the upper ¢-dimension
of a compactly supported Borel probability measure p on R® under projections and
general linear maps.

Let p be a Borel probability measure on R” with compact support. Let r > 0.
For every q # 0 we define

Kyr) = [ w(B(a.r)) duo).
The lower and upper g-dimensions of y are defined by

T loqu(Ua 7)
D, (p) = lim inf ~glogr

and
D,(p) = limsup w.
r»0  qlogr

Note that in our setting in the definition of Ky(u,r) the integrand is raised to the
power ¢. In many other papers, including [HK], the corresponding power is ¢ — 1.
For ¢ = 0 the corresponding definitions are given in [HK, Definition 4.2] (case ¢ = 1
in their notation). These quantities D, and Dy are called the lower and upper
information dimension. In this paper we will consider only the case ¢ > 0.

The following example constructed in [FM, Example 5.1] shows that the be-
haviour of the upper ¢-dimension under orthogonal projections and linear maps
is different from that of the lower g-dimension, that is, for 0 < ¢ < 1 the up-
per g-dimension, unlike the lower one ([HK, Theorem 1.1]), is not preserved under
projections or linear maps.
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5

Example 1. Let n and m be integers with 0 < m < n. Let 0 < d < d < n and
d < m. Then there exists a Borel probability measure u on R™ with compact support

such that the following properties hold:

(1) there is a positive constant ¢ such that

d

crd < p(B(z,r)) < -

forallz €esptp and <r <1,

(2) there exist sequences (r) and (Ry) of positive real numbers tending to zero

such that

w(B(z,vnry)) = ¢ and  p(B(x, Ri/2)) = R}

for all x € spt u, and
(3) _
d(1 —d/n)

dimp (projy (spt u)

) < =
1+ (1/m—-1/n)d—d/m

for all V € Gy, . Here spt is the support of a measure and dimp is the

upper box-counting dimension defined for all bounded sets E C R™ by

S log N(E
dimpFE = lim sup M
e—0  —loge

where N(E,¢) is the smallest number of sets of diameter at most € that

cover E.

Proof. We give the basic ideas of the construction in [FM, Example 5.1].

We

concentrate on the projection property (3) and refer to [FM, Example 5.1] as far

as (1) and (2) are concerned.

Define recursively sequences (rg) and (Rjy) of positive real numbers tending to
zero and a sequence (my) of positive integers tending to infinity. Let Ry = ry =
mgo = 1. Having defined 7 and Ry, choose a positive integer my in such a way that

1/n . . X
mk/ " is also an integer with

(2.1) mi/m 1 < p DD 1/

Next define rg41 and Rgy1 such that

(2.2) mkr%_l_l = r% and mkRZ+1 = Rg.
Set ng =my -...-mg. By (2.2) we have

a d d a
(2.3) e =R and  npRp . =ngrg, =1

Further, (2.2),(2.3), and (2.1) imply that

(2.4) Ris1 = Romy 7 = v/ fm M < oy ™.
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Define a hierarchy of cubes Q ;, 7 = 1,...,ng_1 of side-length 4 in the following
way. First take Q11 = [0,1]”. Divide @11 into m; subcubes with side-length
rlml_l/". Using (2.4) we see that each of these rlml_l/"—cubes contains a concentric
cube of side-length Ry. Name these Ry-cubes Py, ¢ = 1,...,m . Next take from
inside of each cube P ; a concentric cube of side-length ry and call these cubes
Q2,5, 7 =1,...,n1. Continue by dividing each cube ()2 ; into my subcubes of side-

length rom, n, Again by (2.4) each of these subcubes contains a concentric cube
of side-length R3. Let these R3-cubes be P3;, ¢ =1,...,n2. Choose a concentric
rz-cube (3 j, 7 =1,...,ng, from inside of each of the cubes P;;, i =1,...,n9, and
continue the construction. The measure y is defined on the limiting set

oo Mg—1
N U @k
k=1 j=1

by a repeated subdivision such that

(2.5) 1w(Pyj) = w(Qrj) = 1/ng_1 = Rf =

forallk =1,2,... and j = 1,...,n,_1. Translating (2.5) from cubes to balls gives
(1) and (2) (for the details see [FM, Example 5.1].

Let V € Gy, . Fix a real number o with 0 < o < m for the time being. In order
to prove that dimp(projy (spt #)) < a we need to show that N (projy (spt ), e)e®
is bounded from above as ¢ tends to zero. Next we will find out what values of «
are possible for the validity of this condition.

Let € > 0. Consider k such that ryy1 < e < rg. Forall j =1,...,ng_1 the
projection projy (Q,;) can be covered with c¢(ry/e)™ cubes of side-length € where
¢ = (24/n)™. Thus the projection projy (spt u) can be covered with cng_1(rg/e)™
e-cubes which gives by (2.3)

N (spt 1, v/ne)e® < enp_qre® ™ = crp g™,
Hence N (spt p, /ne)e® < c if
(2.6) g > plmmd/(m=a),
On the other hand, for all j =1, ..., ng_1 the projection projy (spt pN Q% ;) can

be covered with the projections of the my cubes Qx41,; with side-length 7441 < €
contained in Qy ;. Using (2.3) and (2.2) we have

N(spt i, vVne)e® < cnge® = cr,:flsa = cr,:dmksa.
If k is large enough then m,lc/ "< 2(m,1€/ " —1) giving
N(Spt 1 \/ﬁg)ga < 2"67‘;:(4_(1)/("_(1)_46(1

by (2.1). This implies that N (spt p, /ne)e® < 2"c if

d(n—d)/(a(n—d
27) ¢ < pdn=d)/(atn—a),
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Using (2.6) and (2.7) we have
N (spt p, /ne)e® < 2"c
for all small € when we make the choice (m —d)/(m — «) = (d(n — d))/(a(n — d))

giving B
d(1—d/n)
+(1/m—1/n)d—d/m

This completes the proof. [I

Remarks. 1) Let ¢ > —1. Clearly by (1) and (2) D,(s) = d and Dy(p) = d.
Further, by (3) we have

Dy()(1 = D, (1)/n) 7
(1/m — 1/n)Dy(n) — Dy(w)/m

for all V' € Gy, . Here we used the fact that Eq(,u) < dimp(spt p) for all ¢ > —1.
This is easy to see using the original definition for the upper g-dimension given by
Grassberger in [G]. This definition gives a nonincreasing function of g (see [B, (15)])
which equals dimp(spt p) for ¢ = —1.

Note that the relation between D, and dimp gives that D () < n for all ¢ > —1.

2) The inequality (3) in Example 1 is also true if we replace projy, by a linear
map L : R® — R™ since the construction in [FM, Example 5.1] uses only the
properties that the range of the map is m-dimensional and that the image of a
cube of side length r is inside a cube of side length cr for some constant c.

3) In [FM] this example was constructed for showing that the lower bound for
packing dimensions of projections obtained by Falconer and Mattila is the best
possible one. We will later use this example for the same purpose in the upper
correlation dimension case.

Now we give a useful characterization of the upper g-dimension of x in terms of
the convolutions mentioned in the introduction. For all £k = 1,2,... we define

D,(py) < dimp(spt py) < T a()

dimf (p) = sup{s > 0 | J¥ (1) < 0o} =inf{s > 0| J¥ (1) = oo},

where for all s > 0

Jf’q( )—hmlnfr 54 / /mln{l T y|_k}d,u(y)>qdu(m).

r—0
The following proposition is an analogue of [FH2, Corollary 3] and [HK, Proposition
2.1] for the upper ¢g-dimension.

Proposition 2. Let p be a compactly supported Borel probability measure on R™.
Then for all g > 0

Dy(p) = dimg (p).

Proof. Let s >t > Dy(p). Then Ky(pu,r) > rt? for all small 7 > 0. Thus

724 = timint =t [ ([ min{t, 5l - y| " }duty) du(o)

r—0

> lim infr %K (p, r) > lim inf r2(t—s) — 00,
r—0 r—0
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giving Dy(p) > dimg (p).

On the other hand, let Dy(u) >t > s. Then there is a sequence (ry) tending to
zero such that Kg(p,rg) < T,‘f forallk. Let 0 <e<1l,0<a<l,and0<d <1
be such that

t—s—(1—a)n(l+e)>dandt—s—ne>4.

Let k be large enough such that ri < p1 and log(1/rg) < rk_‘s, where p; and C are
as in Lemma 14. Let us first assume that 0 < ¢ < 1. Using Lemma 14, (4.2), and
the fact that (a + 5)? < a?+ b7 for all a,b > 0 and 0 < g < 1, we obtain

J ([ minn.oie = yi-")du(w) “duto) < 2630008 2)7 [ g1, (@170

Tk
< 2C1C%(log %)q/ (u(B(=, Tk))qrg(a_l)n(HE) + p(B(z, 7)),
+ 71" dp(x)

S 2010q(10g %)q(KQ(IJ” Tk)rz(a_l)n(1+6) + K (/11, ’I"k)rrk qne + T';‘I;n)
< g(jlcq(Tg(t—(l—a)n(ue)—&) n Tz(t—ne—(S) n TZ(H 5)).

Thus the choice of ¢, a, and § implies that

Joq(1t )—hmlnfr sq/ /mln{l r" y\‘"}du(y))qdu(x) =0

which completes the proof in the case 0 < g < 1.
Now let ¢ > 1. Using the triangle inequality for the L9-norm of the function
9r,. | E,, » We obtain like above that

r—0

liminfr_s</ (/min{l,r"\a:—y\_"}du(y))qdu(aﬁ))% =0.

Thus Jg, () = 0 also in this case. [
Using Proposition 2 we obtain:

Theorem 3. Let p be a compactly supported Borel probability measure on R™. Let
0 < g <1 andlet m be an integer with 0 < m < n. Then for v, m-almost all
V € Gpm we have

Dy(pv) = dimg’ ().

Proof. Consider V' € G, . Let s > 0. Since

72y =ttt [ ([ minfL e -y " duty)) duco)

r—0

<timintr = [ ([ minft, ™o — g™y ) duy (@) = T2 (),

r—0

we have by Proposition 2 that Dg(uy) = dim}*(uy) < dim7"(u).
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Let s < dim;*(p) and 7 > 0. Using Jensen’s inequality (see for example [Si,
Theorem 1.3.4]) for the concave function z +— z%, Fubini’s theorem, and [Mat3,
Lemma 3.11], we obtain

[ v (Borosy (@), 7)) m (V)0
< [ ([ iy R | proiy(a =) < 1Ddr0m(V)) duta)
— [ ([ mntV € G | 10y (& = )] < r)du(w)) “duta)
<c [ ([ mintrrmia o "du(r) ) dute)

where ¢ does not depend on r. By Fubini’s theorem

liminfr_sq/Kq(,uV,r)d’yn,m(V) < 00.

r—0

Thus Fatou’s lemma implies that for v, y,-almost all V' € G, ., we have

liminfr *9K,(uy,r) < 00
r—0
giving Dg(py) > s. The claim follows by taking a sequence (sx) tending to dimg" (4)
from below. [

The result of Theorem 3 can be generalized to hold for almost all linear mappings
from R™ to R™. This follows directly from Theorem 3 using the following arguments
which were pointed out to us by a referee. It is clearly enough to study linear
mappings L : R® — R™ with full rank. Such a map L can be uniquely decomposed
as the projection onto the m-dimensional orthogonal complement of the kernel of L
and a linear mapping from R™ to R™ with full rank. Since linear isomorphisms do
not change the dimension, we obtain by Fubini’s theorem that Dg(Lyp) = dim{® (1)
for L™ -almost all linear maps L : R* — R™. We give also an alternative proof
(see Theorem 5) which is useful when we extend this resut further to continuously
differentiable functions (see Theorem 6). For this purpose we need the following
technical lemma. For an analogous result in the lower g-dimension case see [SY,
Lemma 2.6].

Lemma 4. Let k and m be integers with0 < m < k. Letb € R™ and A : RF — R™
be a linear map such that A(Qr(1)) D Qum(d) for some § > 0 where Qi (1) = {z €
RE | 2] < 1foralli =1,...,k} and Qun(8) = {z € R™ | |z| < 6 foralli =
1,...,m}. Then for e > 0 there ezists a constant M depending on € such that for
all0<r <1

/ min{1,r™|A(z) + b|"™}dL*(z) < Mr~¢ min{1,r™6"™}.
Qr(1)

Proof. 1t is enough to prove the case b = 0 since

/ min{1, ™| A(2) + b}k (z) < / min{1, 7™ A(z)[~™}dCH (=)
Qr(1) Qr(1)
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for all b € R™. We may assume that r < §, since for all » > ¢ we have

/ min{1,r™|A(z)|"™}dLF(2) < / 1dLF(z) = 2F < 2Fr=¢ min{1, ™5™},
Qr (1) Qr(1)

We use the notations @(k) and O(m) for the orthogonal groups of R and R™.
Let A = VXU be the singular value decomposition of A (see [St, Theorem 6.6.1]).
Here U € O(k), ¥ = diag(ai,as,-..,am,0,...,0) is a diagonal k X k-matrix with
ay > ag >+ > Gy > 0,and V = (Vy, Va) is an m x k-matrix such that V3 € O(m)
and V5 is chosen such that V is unitary, that is, VIV =1Id; and VV7T =1d,,. Since
A(Qr(1)) D Qm (), we have that a; > 6/VEk foralli =1,...,m.

Let {e1,...,ex} be an orthonormal basis of RF such that the m-plane spanned
by {e1,-..,emn} is mapped by U onto the m-plane spanned by the first m vectors
of the standard basis of R¥. We divide Qg (1) (which is defined using the standard
basis) into two (not necessarily disjoint) parts S; and Sy where

k
S, = {zer(1)|z:Zzi6i and |z;| < g for allizl,...,m}

1=1

and .
= 1/77r\2
Szz{zer(lﬂz:;ziei and ;zfzz(a—l) }

Note that there are no restrictions (other than those implied by the fact that z €
Q1 (1)) for the coordinates zpmt1, ..., 2, in either of these sets. Now

ldﬁk(z)-i-/ r™A(2)|T™dLR (2) = L +1s.
Sa

/Qk(l)min{l,rm|A(z)|—m}d£k(z)S/

S1

Further,
I < (276 ™ (2VE)EFT™ < (2VE)Rrerme ™,

Since |A(z)| > 0/, 22/Vk, we have

VE
I, < 2""(2\/E)ka(m)7'm(5_m/ —
vl

= Z_m(2\/E)ka(m)7=m6—m(2 IOg\/E-i- IOg a; — IOgT) < er—grmé-_m’

where a(m) is the volume of the (m — 1)-dimensional unit sphere. [

Theorem 5. Let 0 < ¢ <1 and let n and m be integers with 0 < m < n. Let y be
a Borel probability measure on R™ with compact support. Then for L™ -almost all
linear maps L : R — R™ we have

Dy(Lup) = dimg’ ().

Proof. The fact that |L(z)| < ||L|||z| implies that the inequality Dg(Lyu) < dimp’ (1)
holds for all L (see the proof of Theorem 3).
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Since Dy(L4p) = Dy((aL).p) for all @ > 0 it is enough to prove the claim for
L -almost all linear maps with |L;;| < 1foralli =1,...,mand j =1,...,n where
L;; are the elements of the matrix representing L (using some fixed orthonormal
bases in R" and R™).

Like in the proof of [HK, Proposition 3.2] we will apply Lemma 4 to the linear
map A, : R"™ — R™ defined by A,(L) = L(z) for some x € spt u. Note that the
largest singular value of A, depends on the choice of . However, since Ayyygy =
aAy; + BAy for all a,3 € R and z,y € R® and the support of p is bounded, we
have that sup, e, [| Az || < 00, and so the largest singular value of A is uniformly
bounded for z € spt y. Thus the constant M in Lemma 4 (which depends on the
largest singular value) can be chosen to be independent of z. Further, for each
x € R" there exists 1 < i < m such that |z;| > |z|/y/n, which implies that the
Ag-image of those L € Qpm (1) for which Lj;, = 0 for all (4, k) with k # ¢ contains
the cube Q. (|z|/\/n).

Let s <t < dimy"(u) and let € = t — s. Using Fatou’s lemma, Fubini’s theorem,
Jensen’s inequality, and Lemma 4, we obtain

[ @)
Qnm(1)

r—0

<timiptr— [ ( / /Q min{Le () - L<y>|—m}d£"m<L>du<y>)qdu(m)
(2.8)

< attimiptr 090 [ ([ mingt, (ir)™le = ol ")auty)) ' dua)

r—0

= cJyq(1)-

Thus by Proposition 2 we have Dg(L,pu) = dimy'(Lyp) > s for £*™-almost all
L € Qnm(1). Taking a sequence (si) tending to dimy*(x) from below implies the
claim. [

In order to prove the analogue of Theorem 5 for continuously differentiable func-
tions we use the notation of prevalence from [HSY]. Fix two bases in R" and R™,
respectively. Each linear map L : R* — R™ can be given by an m X n-matrix.
Let £1(R™,R™) be the set of linear transformations with the absolute values of
the entries not greater than one. Denote by C'(R™,R™) the set of continuously
differentiable functions from R™ to R™. A set P C C}(R*,R™) is called prevalent
if for all f € C1(R™",R™) we have f + L € P for L"-almost all L € £;(R",R™).

Theorem 6. Under the assumptions of Theorem 5 we have
Dy (fur) = dim (1)
for a prevalent set of functions f € C*(R"*,R™).
Proof. For fixed f € C1(R®,R™) the proof of Theorem 5 gives that

Dy((f + L)«p) = dimg’ (1)

for £L™™-amost all linear maps L : R® — R™. Indeed, the inequality

[L@) + £(z) = L(y) = F@) < (IL] + sup [F(2) )]z ~ |
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and the facts that p has compact support and f € C1(R*,R™) imply that D,((f +
L)sp) < dimy*(p) for all L. For the opposite inequality we use in (2.8) Lemma 4

with b = f(z) — f(y). O

Remarks. 1) The analogy of Theorem 6 for the lower g-dimension can be found
from [HK, Theorem 3.1].

2) For ¢ > 1 we do not know whether the upper ¢-dimensions of projections onto
almost all planes are equal. However, Example 1 shows that the upper g-dimension
is not preserved under projections or linear maps.

3. THE UPPER CORRELATION DIMENSION

By Theorem 3 (Theorem 5) the upper correlation dimension D; of projections
(images under linear maps) of a Borel probability measure is constant “almost
surely”. In this section we address the problem of finding out how small this
constant can be. For this purpose we use the methods from [FM].

Let m and n be integers with 0 < m < n. Let u be a Borel probability measure
on R™ with compact support. Let §, d, and ¢ be real numbers with 0 < § < d <
min{¢, m} and ¢ < n. Consider real numbers a and € such that (n —t)/(n — d) <
a<1l,0<e<d/n,and

(3.1) n(l+e)(1—a)<é.
For all » with 0 < r < 1 we set

(32) hT = T(t‘f‘(m—d)("—t)/(n—d))/m S r S ,r,a S T(n—t)/(n_i) —. RT,

We proceed as in Section 4. For all 0 < r < 1 and x € R define
Golo) = | min{1, b7z — y| =™ }du(y).
{yllz—y|<R.}

Let K = 4max{4"(1+e) m4n(1+e) /(n(1 4+ €) —m)}. A point = € sptpu is called
(r, K, m)-regular with respect to p if

(3.3) Gr(z) < Kr=0u(B(z,r)).

If (3.3) is not satisfied, we say that x € spt p is (r, K, m)-irregular with respect to
p. The (r, K/2, m)-regularity and the (r, K /2, m)-irregularity with respect to u are
defined similarly. Note that these definitions depend also on 6, d, t, a, and &, but
below these numbers are fixed.

Lemma 7. Let §, d, t, a, and € be as above. Then there exists a number cgy
depending only on a, €, and n such that for all Borel probability measures p on R™
and for all 1o < 1/2 we have

p({z € spt | z is (r, K/2, m)-irreqular with respect to p}) < 2007'35(1_“)

for all r with 0 <r < ry.

Proof. Let cg be as in Lemma 12. If z € spt p is (r, K/2, m)-irregular with respect
to i, then there is u with r® < u < 1 such that

1 4U) n(1l+e)

(3.4) w(B(w,u) > 5 (=

()" (B ).
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In fact, if this is not the case, then integrating by parts and using (3.1) and (3.2)
we have

R,
G () = mh™ / w (B, w))du+ B Ru(B(w, Ry))

r a

< W u(Ba.r)) (m [

—m=1 1., + 14n(1+€)an(1+s)(a—1) /T w ™ Ldu
hy 2 T

R,
+ 14n(1+6)m,’,,—n(1+6) / un(l-l—s)—m—ldu + 14n(1-|—€),,,—n(1-|—€)Rn(1-|-e)—m)
2 2 "

1
< pm —m = an(l+4e€),.n(14+€)(a—1)—m
< h"u(B(z,r)) (hr + 24 T
1
+ 54”(1+5)m(n(1 +¢) — m) " tpmniite) gn(ite)—m
+ 14n(1+6)T—n(1+€)Rn(1+s)—m>
2 T
K K
< u(B(z,r) (1+ e~ 4 by UFO RS Tm)
(3.5)
<

r°w(B(z,r)),

which is a contradiction. Using (3.4) the claim follows by Lemma 12. O

K
2

Lemma 8. Letd, d, t, a, and € be as above. Let u be a Borel probability measure
on R™ with compact support. Then there are ps > 0 and Cy > 0 such that for all
0 <7< py we have

[ Gr@inte) < €2 [ uBla.n)duto)
where E, = {z € sptp | @ is (r, K, m)-regular with respect to p} and F, = spt p \
E..

Proof. This can be proved as Lemma 14 using Lemma 7. Instead of (4.3) we use

the following inequality for the function G,. For r > 0, let Ly, be the smallest
integer such that Lr_ > R,/r. In the same way as in (4.3) we obtain using (3.2)

LR, lr\xn=1/h . \m L,
z) < Z (?) (ﬁ) s, = s pt=mHm—d)(n=1)/(n-d) Z jn—1-m
=1 =1
(3.6) < syt m=d)(n—t)/(n=d) pn-m _ g

Here we do not have the logarithmic correction as in (4.3) since we consider the
truncated kernel. N B

For all I = 1,2,... and j = 1,2,... we define the sets E. and Ffj by replac-
ing (r, C)-regularity and (r, C)-irregularity with (r, K, m)-regularity and (r, K, m)-
irregularity and the function g, with G, in the definitions of E. and F,fj (see Section
4). Similarly as in (4.7) we see that for all l =1,2...

G (2) <4c(22k l/ B(a,r))dp(x)).

Fl



14 Maarit and Esa Jarvenpaa

where ﬁﬁ = U‘;‘;lﬁ’,{j. The claim follows as in Lemma 14. [

For analogues of the two following results in the packing dimension case see [FM,
Proposition 2.6 and Theorem 3.3].

Proposition 9. Let m and n be integers with 0 < m < n. Let u be a Borel
probability measure on R™ with compact support. Assume that d and d are real
numbers such that either 0 < d < D, () ord = D,(n) =0 < d, andd < d < D1 ().
If d < m, then there is a positive real number Cs and a sequence (hy) of positive
real numbers tending to zero such that for all k

o0 - _
hzb// U_m_l,U:(B(J?,u))dud,u,(x) < 03h;nd/(d+(m—d)(n—d)/(n—é)).
hy

Proof. Let 0 < 6 < d and d < t < Dy(p). Since d < D,(u) or d = 0, there is a
constant c¢ such that for all > 0

(3.7) Ki(p,r) < crl.

Further, since ¢ < Dy(u), there is a sequence (ry) of positive real numbers tending
to zero such that for all £

(3.8) Ki(p, i) < k.

Let a and e be real numbers such that (n —¢)/(n —d) <a <1,0<¢e < d/n, and
(3.1) holds. Let k be large enough such that r < p2, where py is as in Lemma 8.
Let hyg := h,, and Ry := R,, be as in (3.2). Using Fubini’s theorem, Lemma 8,
(3.3), (3.7), and (3.8), we have

mh / /h oo w= (B, u))dudp(z)

§/GTk(3:)d,u($)+mhkm/ u” ™ K () du
Ry

< 2Kr °Kq(p, k) + cmhkm/ ud™m 1y,
Ry

< 2K7i% + em(m — c_l)_lhth%_m
(3.9) < Cari=0 < Oy 0/ (Hm—d)(n=t)/ (=)
which implies the claim when we choose § small enough. [

Theorem 10. Let pu be a Borel probability measure on R™. If D,(p) > m, then
(3.10) Di(py)=m

for Yn.m-almost all V € Gy . If D;(p) < m, then

_ Di(p)(1 = Dy (1) /n)
(3.11) Dy = e — LD () — Dy (i)
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for yn m-almost all V. € Gy, . The formulae (3.10) and (3.11) are also true for
L -almost all linear maps L : R"* — R™, when we replace vy by Ly .

Proof. If D, (1) > m or D1(p) = D, () < m, the claim follows from the results for
the lower correlation dimension (see [HK, Theorem 1.1]).

Assume that D, () < min{m, D1(p)} and D1(u) > 0. Let d and d be such that
0 <d< Dy(p) (if D;() = 0 we take d = 0) and d < d < D;(u). By Fatou’s
lemma, Fubini’s theorem, [FM, Lemma 3.2], and Proposition 9 we have

/ li}ln_églfh_ma/ (dt(m—d)(n=d)/ (n—d)) / py (B(z, k))dpy (2)dyn,m (V)

< liminf h_ma/(aﬂm_i)("_E)/("_d))chm// ™" (B(z, u))dudp(z) < oco.
h

h—0

Thus for vy, y,-almost all V' € G, ,,, we have

lihm_j(l)lf pmd/ (et (m=d)(n=d)/(n=D) [, (141, h) < o0,

giving

— d(1—d/n)
Drlwv) 2 17 (1/m —1/n)d— d/m’

The claim follows by taking sequences (d;) tending to D, () and (d;) tending to

D1 (p).-
By Theorems 3 and 5 the claim is also true for £"™-almost all linear maps

L:R*"—>R™. O
Corollary 11. Let y be a Borel probability measure on R™. If D,(u) > m, then
(3.12) Di(fup) =m

for a prevalent set of functions f € C*(R*,R™). If D,(u) < m, then

D1 ()1 — Dy(n)/n)
L+ (1/m —1/n)D1(p) — Dy(p)/m

or a prevalent set of functions f € C1(R*,R™).
f

Remarks. 1) The lower bound given in Theorems 10 and 11 is the best possible
one. This follows from Example 1.

2) After this work was completed, we learnt about a paper by Falconer and O’Neil
[FOJ, where they study, among other things, the projectional properties of gener-
alized ¢-dimension using appropriately defined convolution kernels. In particular,
they proved the inequality

(/00 u_m_lf(u)du>q <ecr ® /00 u” ™ f (u)du,

where f is non-decreasing and constant for u > R for some R. Using this in (3.9),
we can show that the analogues of Theorems 10 and 11 hold also for 0 < ¢ < 1.
Again Example 1 shows that the corresponding lower bound is the best possible
one.

3) The examples of [HK, Section 5.2] show that (3.11) is not true for ¢ > 1.
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4. APPENDIX: MEASURES OF BALLS AND CONVOLUTIONS

In this section we prove a technical lemma concerning convolutions which we
use to characterize the upper g-dimension. For this purpose we need the following
result on the behaviour of measures of balls from [FM].

Lemma 12. Let 0 < a <1 and € > 0. There exists a number cy, depending only
on a, €, and n, such that for every Borel probability measure p on R™ and for all
ro < 1/2 we have

u({x € R" | there are v and u with 0 < r < rg and r* < u <1 such that

1 (4u) n(l+e)

w(B(z,u)) > 3 /J,(B(x,r))}) < 2007‘36(1_“).

Proof. See [FM, Lemma 2.2]. O

Let p be a Borel probability measure on R*. Let 0 < a < 1 and 0 < € < 1.
Consider x € R® and r > 0 such that

4u>n(1+6)

(4.1) w(B(z,u) < (=

) (B, n)

for all u with 7* < u < 1. Integrating by parts we have

or(a) i= [ min{1, "o =3l Yuy) = e [ B, w)ia
= nr"(/:a ™" (B (z, u))du + /Tl u™ " u(B(z,u))du

a

+ /100 u_”_l,u(B(x,u))du)
< (B, 1) + 4" (B a, ) r ™" + p(R)r"
(42) < C(u(Bla )05 1 u(B(a, 1) +17)

for C = 4n(1+e) /e,

Note that by [FM, Corollary 2.3] for p-almost all z € R™ there is r, such that for
all 0 < r < r, the inequality (4.1) is satisfied for all v with 7* < u < 1. However,
we can not use this result because of the difficulties caused by the fact that r,
depends on z. In order to avoid these difficulties we prove two lemmas for which
we need the following notation.

Let 0 <a<land 0 <e <1 Letr > 0and C = 4% /e, We denote by
spt u the support of a Borel probability measure p. A point x € spt u is called
(r, C)-regular with respect to y if

gr(z) = / min{1, 7"z — 5|~ }du(y)
< C(u(B(w,r))re=bn0+e) 4 y(B(z,r))r—"e + ™).

If 2 € spt p is not (r, C)-regular with respect to p we say that it is (r, C)-irregular
with respect to p. The (r, C/2)-regularity and the (r, C/2)-irregularity with respect
to p are defined in the same way. Note that these definitions depend also on a and
¢. However, we will use them only for fixed a and e.
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Lemma 13. Let 0 < a <1 and 0 < e < 1. There exists a number cy, depending
only on a, €, and n, such that for every Borel probability measure p on R™ and for
all ro < 1/2 we have

p({z € sptp | x is (r,C/2)-irreqular with respect to p}) < 2007"36(1_“)

for all r with 0 <r < ry.

Proof. Let ¢ be as in Lemma 12. If = € spt p is (r, C/2)-irregular with respect to
i, then integrating by parts as in (4.2) we see that

w(B(z,w) > 3

LAY B, )

r

for some r* < u < 1. This gives the claim by Lemma 12. [

Lemma 14. Let 0 <a < 1,0<e <1, and ¢q > 0. Let u be a Borel probability
measure on R™ with compact support. There exist p; > 0 and Cy; > 0 such that for
all r with 0 < r < p; we have

/F g2 (2)%dp(z) < Ci (log 1)? / gr(2) (),

r

where E, = {z € sptu | z is (r, C)-regular with respect to p} and F, =sptu \ E,.

Proof. The basic idea behind this proof is that the points x € spt u for which
p(B(z,r)) is “big” (for fixed r) are regular and a point y € spt u can be irregular
only if there are points x € spt o such that u(B(z,r)) > u(B(y,r)). We will divide
spt p into parts such that we can control those points which “mainly” cause the
irregularity of a given point y € spt p.

Let 0 < 79 < 1/2 be such that 2corge(1_a) < 1/2, where ¢y is as in Lemma 13.
Let 0 < r < rg. Define

sp = sup u(B(z,r)).
TESpPt p
For each z € spt 1 we can estimate g, (z) in the following way: First we cover spt i
by balls with radius r» and with centres at the distance Ir from z, wherel =1,..., L,
and L, is the smallest integer with L, > diam(spt u)/r. Then we cover each of these
balls B with balls of radius r and centres in B Nspt u. Estimating the integrand in
each of these balls, we obtain

L
L olr\n=1/r\n
(4.3) gr(z) < CIZ (7) (E> s, < ’s,log %
1=1
Here ¢’ is a constant depending only on n and ¢’ is a constant depending only on
n and the diameter of spt u denoted by diam(spt u). Note that the second step is

not necessary here but will be needed in the later applications of (4.3).
For all Borel sets X C R" define

J(X) =2 /X min{1, 7|z — y| "} du(y)-
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Set

E} = {a: € spt p | z is (r, C)-regular with respect to u and pu(B(z,7)) > %T}

and
F}Y ={x €sptp |z is (r,C)-irregular with respect to p and g.(z) < J(E})}.

Further, for all 7 = 2,3, ... we define inductively sets Frlj by

Frlj = {ac € sptu | z is (r, C)-irregular with respect to u

j—1
and g,(z) < J(E,} U ( U Frli)>}.
i=1
Finally, we define
1
Fl=JF}
j=1

and
Al =E}UF,.
Since z +— pu(B(z,r)) is upper semicontinuous and z +— g,(x) is continuous, these

sets are Borel sets.
We first show that

(4.4 | ae@ydnte) < tos 1y [ gr(@)duo)

E'l

r r

We may assume that p(AL) > 0. Let z € F!. Then g,(z) < J(A}) which implies
that  is (r, C/2)-irregular with respect to p1(A;) ™" 1| a1. Here pu 41 is the restriction
of u to the set Al. Using Lemma 13 we obtain that u(F}) < u(E}!) which implies
together with (4.3) and with the fact that g,.(z) > u(B(z,7)) > s,./2 for all z € E}
that

/ 9 (2)%dpu(z) < (s, log 2)Iu(F,) < (2" log %)q/ gr(z)4du(x).
Fi B

Thus (4.4) holds.
For all [ =2,3,... we define

E! = {z € spt u | x is (r,C)-regular with respect to p
and 27!s, < p(B(z,7)) < 27 1s, )

and
-1
F!, = {3; € spt '\ U A¥ | z is (r, C)-irregular with respect to p
k=1

-1

and g,(z) < J(( U A’:) U Ef,)}

k=1
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Further, for all j = 2,3,... we define

-1
Ffj = {x € sptp\ U A¥ | 2 is (r, O)-irregular with respect to p
k=1
1-1 j—1
and g,(z) < J(( U Af) UE!'U ( U F,fJ)}
k=1 =1
Let -
- U Ft
j=1
and
Al =E' UF.
As before, these sets are Borel sets.
We now prove that for all / =1,2,... we have
(4.5) w(B(z,7)) < 27s,

for all x € spt u\UizlAf. In order to prove this we proceed by induction on . We
may assume that 4¢” log(1/r) < Cr~"° by making r smaller if necessary. In the
case | = 1, we obtain from (4.3) that if x € spt g and p(B(z,r)) > s,/2, then z is
(r, C)-regular with respect to u. Thus = € E} C AL, and so (4.5) holds for [ = 1.

We now assume that ,u(B(x,r)) < 2-(= 1)3T for all z € sptp \ UL lAk Let
x € R* with u(B(z,r)) > 27's,. We will prove that = € (R™ \ spt u) U ( _1AR).
For this purpose we may assume that z € sptpy \ Uk llA’c If z is (r,C)- regular
with respect to p, then x € E! C AL. If z is (r,C)-irregular with respect to u,
then g, (z) < J(spt u\ UL_" AF), since we may assume that = ¢ F'. Further, by the
induction hypothesis spt u\ UL_" AF C {y € spt | uw(B(y,r)) < 2=¢Ys,} and the
same calculation as in (4.3) gives

@) <2 [ min{1, 7|z — y| " }dp(y)
{yespt pu|p(B(y,r))<2-1-Vs,}

<4c"27%s, log L < 4c"log p(B(z, 7)) < Cr " u(B(z, 1)),
which is a contradiction since z is (r, C')-irregular with respect to p. Thus (4.5)

holds.
By (4.5) we have

(4.6) F,=JF
=1

since if z € F, \ UL, FL, then (4.5) implies that u(B(x,r)) = 0, which is a contra-
diction since z € spt p.
It suffices to prove that for alll =1,2,...

an [ 9 (a) < (4 o ) (ZW 2 / ((@)tdula) ).
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In fact, since E, = U2 E! where the Borel sets E' are disjoint, we obtain the claim
using (4.6) and (4.7) since

/ﬂ gr(z)%dp(z) < (4" log %)q<go 2—qk) (l;il /Ei gr(x)qdu(a:))

< Cullog )7 [ g (@)du(a).

r

If ] = 1, then (4.7) follows from (4.4). Let [ > 2. In order to prove (4.7) we may
assume that p(UL_; A¥) > 0. Let z € F!. Then for all j = 1,2,... we have

gr(w) > J(( D AF)UETY (U Fi{l))
k=1

=1

giving g,(z) > J(UL_, AF). Thus g, (z) < J(spt p\ UL, AF). Using (4.5), the same
calculation as in (4.3) gives that for all x € F!

(4.8) gr(z) < 427, log 2.

Further, if z € U, _, F¥, then g,(z) < J(U'_; AF) which implies that z is (r, C/2)-
irregular with respect to v = ,u(UfgzlAf)_lu\%:lA;ﬁ. Thus Lemma 13 gives that
v(UL_, F¥) < 1/2, which implies

1 l l
v(|J B = v 4 - v(J ) > 1/2.
k=1 k=1 k=1

Thus p(F}) < u(UL_,EF). Since s, < 2Fg,.(z) for all z € EF and k =1,...,1, we
have by (4.8)

[ o@rante) < ez tog byt [ stauo)

Ul—1 B}
l
< (4c"log 2)1Y 29D [ g, (z)%dp(x),

k=1 Ef
which completes the proof of (4.7). O
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