REGULARITY OF DISTANCE MEASURES AND SETS

PERTTI MATTILA AND PER SJÖLIN

ABSTRACT. Let μ be a Radon measure with compact support in \mathbb{R}^{\times} such that $\iint |x-y|^{-\alpha} \, d\mu x \, d\mu y < \infty$ for some α , $(n+1)/2 \leq \alpha < n$. We show that the image of $\mu \times \mu$ under the distance map $(x,y)\mapsto |x-y|$ is an absolutely continuous measure with density of class $C^{\alpha-(n+1)/2}$. As a corollary we get that if $A\subset \mathbb{R}^{\times}$ is a Suslin set with Hausdorff dimension greater than (n+1)/2, then the distance set $\{|x-y|: x,y\in A\}$ has non-empty interior.

1. Introduction

Let μ be a Radon measure in \mathbb{R}^{κ} , $n \geq 2$, with compact support. We shall study regularity properties of the "distance measure" $\delta(\mu)$ defined for Borel sets $A \subset \mathbb{R}$ by

$$\delta(\mu)(A) = \int \mu\{y : |x - y| \in A\} d\mu x.$$

That is, $\delta(\mu)$ is the image of the product measure $\mu \times \mu$ under the distance map $(x,y) \mapsto |x-y|$. It was shown in [M2] that if the α -energy

$$I_{\alpha}(\mu) = \iint |x - y|^{-\alpha} d\mu x d\mu y = c \int |x|^{\alpha - n} |\widehat{\mu}(x)|^2 dx$$

is finite for $\alpha = (n+1)/2$, then $\delta(\mu)$ is absolutely continuous with respect to the Lebesgue measure with bounded density. It follows from Example 2.2 in [M1] that this is not true for $\alpha < (n+1)/2$. In Theorem 2.4 we shall show that the density of $\delta(\mu)$ is continuous if $I_{\alpha}(\mu) < \infty$ for $\alpha = (n+1)/2$ and we shall derive stronger regularity properties when $\alpha > (n+1)/2$.

Falconer showed in [F2] that if $A \subset \mathbb{R}^{\times}$ is a Suslin set (all Borel sets are Suslin) with the Hausdorff dimension dim A > (n+1)/2, then the distance set

$$D(A) = \{ |x - y| : x, y \in A \}$$

Date: May 1997.

1991 Mathematics Subject Classification. 42B10, 28A75.

has positive Lebesgue measure. Any such A supports a Radon probability measure μ with $I_{(n+1)/2}(\mu) < \infty$, and the continuity of $\delta(\mu)$ implies the stronger statement that the interior of D(A) is non-empty.

Bourgain improved Falconer's result in $[\mathbf{B}]$ in the dimensions n=2 and n=3. For example, for n=2 he showed that $\dim A > 13/9$ implies that D(A) has positive Lebesgue measure. We do not know if D(A) has interior points under this, or some other, weaker assumption. In $[\mathbf{F2}]$ Falconer gave an example of A with $\dim A = n/2$ for which D(A) has zero Lebesgue measure.

According to the well-known result of Steinhaus D(A) contains some interval $[0, \varepsilon]$, $\varepsilon > 0$, if A has positive Lebesgue measure. For this it is not enough to assume even that dim A = n, see $[\mathbf{F2}]$.

2. Regularity of the distance measure

In this section we shall always assume that $(n+1)/2 \le \alpha < n$ and that μ is a non-negative Radon measure in \mathbb{R}^{\ltimes} with compact support and such that

$$I_{\alpha}(\mu) = c \int |x|^{\alpha - n} |\widehat{\mu}(x)|^2 dx < \infty.$$

By c we denote positive constants depending only on α and n. Introducing the spherical averages

$$\sigma(\mu)(r) = \int_{|\zeta|=1} |\widehat{\mu}(r\zeta)|^2 d\zeta, \quad r > 0,$$

we have then

$$I_{\alpha}(\mu) = c \int_{0}^{\infty} r^{\alpha - 1} \, \sigma(\mu)(r) \, dr < \infty. \tag{2.1}$$

For information on the influence of the finiteness of $I_{\alpha}(\mu)$ on $\sigma(\mu)$ and related averages, see [M2], [S1] and [S2].

We shall need the following estimates for the Bessel function $J=J_{(n-2)/2}$ and its derivatives.

2.2. Lemma. For all
$$i = 0, 1, 2, ..., [n/2],$$

$$|J^{(i)}(t)| < Ct^{-1/2} \quad \text{for } t > 0.$$

Proof. We shall first consider the case $t \geq 1$. We shall prove that

$$|J_m^{(i)}(t)| \le C_{i,m} t^{-1/2}, \quad t \ge 1,$$

for i = 0, 1, 2, ... and m = j/2, j = 0, 1, 2, ... We shall use induction and use the induction assumption

$$|J_m^{(i)}(t)| \le C_{i,m} t^{-1/2}, \quad t \ge 1, \quad \text{for all } i = 0, 1, 2, \dots, l$$
 and $m = j/2, j = 0, 1, 2, \dots$

The statement (I_0) is well-known (see [SW, p. 158]). Assume that (I_l) holds. From [W, p. 45], we find that

$$tJ'_{m}(t) - mJ_{m}(t) = -tJ_{m+1}(t),$$

whence

$$J'_{m}(t) = \frac{m}{t}J_{m}(t) - J_{m+1}(t).$$

Differentiating this l times we get (I_{l+1}) from (I_l) . Thus we have proved the inequality in the lemma for $t \geq 1$.

For $0 < t \le 1$ we use the formula

$$J(t) = ct^{n/2-1} \int_{-1}^{1} e^{its} (1 - s^2)^{n/2-3/2} ds,$$

see [SW, p. 154]. If n is even, this gives immediately the desired estimate. Suppose n is odd: n = 2l + 1. Then

$$J(t) = ct^{l-1/2} \, \varphi(t),$$

where φ is a C^{∞} -function with bounded derivatives. If $i \leq [n/2] = (n-1)/2 = l$, then

$$|(d/dt)^i t^{l-1/2}| \le Ct^{-1/2}, \quad 0 < t \le 1,$$

and the lemma follows.

For smooth functions f with compact support (identified with a measure) $\delta(f)$ is absolutely continuous with density

$$\delta(f)(s) = \int \left(\int_{|\zeta - x| = r} f(\zeta) \, d\zeta \right) f(x) \, dx$$
$$= cs^{n/2} \int_0^\infty r^{n/2} J(sr) \, \sigma(f)(r) \, dr, \quad s > 0,$$

see [M2, Lemma 4.3]. Applying this to $f = \varphi_{\varepsilon} * \mu$, where $\{\varphi_{\varepsilon}\}$ is an approximate identity, and letting $\varepsilon \to 0$ we have

$$\delta(\mu)(s) = cs^{n/2} \int_0^\infty r^{n/2} J(sr) \, \sigma(\mu)(r) \, dr; \tag{2.3}$$

because $\alpha \geq (n+1)/2$, (2.1) and Lemma 2.2 imply that the integral converges absolutely. We use this formula to prove the following theorem. We denote by C^0 the continuous functions on \mathbb{R} and by C^k the k times continuously differentiable functions.

2.4. Theorem. Write $\alpha = (n+1)/2 + k + \varepsilon$ where k is a non-negative integer and $0 \le \varepsilon < 1$.

- (1) If $\varepsilon = 0$, then $\delta(\mu) \in C^k$.
- (2) If $\varepsilon > 0$, then $(d/dt)^k \delta(\mu)$ is Hölder continuous with exponent ε on every interval [a, b], $0 < a < b < \infty$. More precisely,

$$\left| (d/dt)^k \left(t^{-n/2} \delta(\mu)(t) \right) - (d/dt)^k \left(s^{-n/2} \delta(\mu)(s) \right) \right| \le c I_{\alpha}(\mu) s^{-1/2} (t-s)^{\varepsilon}$$
for $0 < s < t$.

Proof. Write

$$\delta_1(\mu)(s) = \int_0^\infty r^{n/2} J(sr) \, \sigma(\mu)(r) \, dr.$$

We have $\delta(\mu)(s) = cs^{n/2} \delta_1(\mu)(s)$ and

$$(d/ds)^k \delta_1(\mu)(s) = \int_0^\infty r^{n/2+k} J^{(k)}(sr) \, \sigma(\mu)(r) \, dr \quad \text{for } s > 0,$$

by (2.1), Lemma 2.2 and (2.3) because k < (n-1)/2,

$$|r^{n/2+k} J^{(i)}(sr) \sigma(\mu)(r)| \le cr^{n/2+k-1/2} s^{-1/2} \sigma(\mu)(r)$$

for $i=0,1,\ldots,k+1$ and $n/2+k-1/2\leq\alpha-1$. Hence (1) follows. Let 0< s< t and d=1/(t-s). Then

$$|(d/ds)^k \delta_1 \mu(s) - (d/dt)^k \delta_1(\mu)(t)| \le \int_0^\infty r^{n/2+k} |J^{(k)}(sr) - J^{(k)}(tr)| \, \sigma(\mu)(r) \, dr$$

= $A + B$,

where A is the integral from 0 to d and B the integral from d to ∞ . Then by Lemma 2.2 and (2.1)

$$A \leq cs^{-1/2}(t-s) \int_0^d r^{n/2+k+1/2} \sigma(\mu)(r) dr$$

$$\leq cs^{-1/2}(t-s) \int_0^d r^{n/2+k+1/2} (d/r)^{1-\varepsilon} \sigma(\mu)(r) dr$$

$$= cs^{-1/2}(t-s)^{1+\varepsilon-1} \int_0^d r^{n/2+k+1/2+\varepsilon-1} \sigma(\mu)(r) dr$$

$$= cs^{-1/2}(t-s)^{\varepsilon} \int_0^d r^{\alpha-1} \sigma(\mu)(r) dr$$

$$\leq cs^{-1/2}(t-s)^{\varepsilon} I_{\alpha}(\mu)$$

and

$$B \le cs^{-1/2} \int_{d}^{\infty} r^{n/2+k-1/2} \, \sigma(\mu)(r) \, dr$$

$$\le cs^{-1/2} \int_{d}^{\infty} r^{n/2+k-1/2} (r/d)^{\varepsilon} \, \sigma(\mu)(r) \, dr$$

$$= cs^{-1/2} (t-s)^{\varepsilon} \int_{d}^{\infty} r^{n/2+k-1/2+\varepsilon} \, \sigma(\mu)(r) \, dr$$

$$= cs^{-1/2} (t-s)^{\varepsilon} \int_{d}^{\infty} r^{\alpha-1} \, \sigma(\mu)(r) \, dr$$

$$\le cs^{-1/2} (t-s)^{\varepsilon} \, I_{\alpha}(\mu).$$

This proves the theorem.

Remark. We do not know whether some smaller values of α would suffice to imply the same regularity except for the earlier mentioned fact that if $\alpha < (n+1)/2$ and $I_{\alpha}(\mu) < \infty$, then $\delta(\mu)$ need not be bounded, not even on any given interval [a, b], $0 < a < b < \infty$, whence it need not be continuous.

3. DISTANCE SETS AND SUSLIN RINGS

For $A \subset \mathbb{R}^{\ltimes}$ let $C_{\alpha}(A)$ be the Riesz α -capacity of A;

$$C_{\alpha}(A) = \sup I_{\alpha}(\mu)^{-1}$$

where the supremum is taken over all Radon probability measures μ with compact support, spt μ , and with spt $\mu \subset A$. It is well-known that dim $A > \alpha$ implies $C_{\alpha}(A) > 0$ for Suslin sets A, see e.g. [C]. The following is an immediate consequence of Theorem 2.4.

3.1. Theorem. If $A \subset \mathbb{R}^{\ltimes}$ is a Suslin set with $C_{(n+1)/2}(A) > 0$, then D(A) has non-empty interior.

Proof. By the definition of C_{α} there is a Radon probability measure μ with compact support such that spt $\mu \subset A$ and $I_{(n+1)/2}(\mu) < \infty$. By Theorem 2.4, $\delta(\mu)$ is continuous. Since spt $\delta(\mu) \subset D(A)$, this implies that D(A) has interior points.

We finish by stating a result on Suslin subrings of \mathbb{R} :

3.2. Theorem. Let $R \subset \mathbb{R}$ be a Suslin set. If R is a subring of the ring of real numbers and dim R > 1/2, then $R = \mathbb{R}$.

Falconer proved in [F1], see also [F2], that a Suslin subring R of the reals has either $0 \le \dim R \le 1/2$ or $\dim R = 1$. So under our

assumptions we have dim R=1. To get that $R=\mathbb{R}$ it is enough to show that R has interior points. Since dim $R\times R=2$, see e.g. [M3, Theorem 8.10], $D(R\times R)$ has interior points by Theorem 3.1, and hence also $D^2(R\times R)=\{|x-y|^2:x,y\in R\times R\}$. But this set is contained in R, since R is a ring, and the theorem follows.

We do not actually have to use Theorem 2.4. Theorem 3.2 is in fact a rather direct consequence of Falconer's results and methods. Namely, it is enough to know that $D(R \times R)$, and hence also R, by the above argument, has positive Lebesgue measure. Then Steinhaus's theorem gives that $\{x - y : x, y \in R\} = R$ contains an interval.

REFERENCES

- [B] J. Bourgain, Hausdorff dimension and distance sets, Israel J. Math. 87 (1994), 193-201.
- [C] L. Carleson, Selected Problems on Exceptional Sets, Van Nostrand, 1967.
- [F1] K. J. Falconer, Rings of fractional dimension, Mathematica 31 (1984), 25–27.
- [F2] _____, On the Hausdorff dimension of distance sets, Mathematica 32 (1985), 206-212.
- [M1] P. Mattila, On the Hausdorff dimension and capacities of intersections, Mathematica 32 (1985), 213–217.
- [M2] _____, Spherical averages of Fourier transforms of measures with finite energy; dimension of intersections and distance sets, Mathematica, 34 (1987), 207–228.
- [M3] Geometry of Sets and Measures in Euclidean Spaces, Cambridge University Press, 1995.
- [S1] P. Sjölin, Estimates of spherical averages of Fourier transforms and dimensions of sets, Mathematica 40 (1993), 322–330.
- [S2] Estimates of averages of Fourier transforms of measures with finite energy, Ann. Acad. Sci. Fenn. Math. 22 (1997), 227–236.
- [SW] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, 1971.
- [W] G. N. Watson, *Theory of Bessel Functions*, Cambridge University Press, 1944.

Department of Mathematics, University of Jyväskylä, P.O. Box 35, FIN-40351 Jyväskylä, Finland

 $E ext{-}mail\ address: pmattila@jylk.jyu.fi}$

DEPARTMENT OF MATHEMATICS, ROYAL INSTITUTE OF TECHNOLOGY, S-100 44 STOCKHOLM, SWEDEN

E-mail address: pers@math.kth.se