REGULARITY OF DISTANCE MEASURES AND SETS

PERTTI MATTILA AND PER SJOLIN

ABSTRACT. Let p be a Radon measure with compact support in
R* such that [[ |z —y| *dpz duy < oo for some a, (n+1)/2 <
a < n. We show that the image of u x g under the distance map
(z,y) — |z —y| is an absolutely continuous measure with density
of class C*~("t1)/2_ As a corollary we get that if A C RX is a
Suslin set with Hausdorff dimension greater than (n + 1)/2, then
the distance set {|z — y| : z,y € A} has non-empty interior.

1. INTRODUCTION

Let i be a Radon measure in R*, n > 2, with compact support. We
shall study regularity properties of the “distance measure” 6(u) defined
for Borel sets A C R by

5(1)(4) = / Wy |z -yl € A} dua.

That is, §(u) is the image of the product measure p x p under the
distance map (z,y) — |z — y|. It was shown in [M2] that if the a-
energy

L(y) = / / 2 — y|~ dya duy = ¢ / 2 [A(2) P da

is finite for o = (n + 1)/2, then 6(u) is absolutely continuous with
respect to the Lebesgue measure with bounded density. It follows from
Example 2.2 in [M1] that this is not true for @« < (n + 1)/2. In
Theorem 2.4 we shall show that the density of §(u) is continuous if
I,(1) < oo for @« = (n+ 1)/2 and we shall derive stronger regularity
properties when o > (n+ 1)/2.

Falconer showed in [F2] that if A C R* is a Suslin set (all Borel sets
are Suslin) with the Hausdorff dimension dim A > (n + 1)/2, then the
distance set

D(A) ={|z —y|: z,y € A}
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has positive Lebesgue measure. Any such A supports a Radon prob-
ability measure p with Ij,41y/2(p) < oo, and the continuity of 6(u)
implies the stronger statement that the interior of D(A) is non-empty.

Bourgain improved Falconer’s result in [B] in the dimensions n = 2
and n = 3. For example, for n = 2 he showed that dim A > 13/9
implies that D(A) has positive Lebesgue measure. We do not know if
D(A) has interior points under this, or some other, weaker assumption.
In [F2] Falconer gave an example of A with dim A = n/2 for which
D(A) has zero Lebesgue measure.

According to the well-known result of Steinhaus D(A) contains some
interval [0,¢], € > 0, if A has positive Lebesgue measure. For this it is
not enough to assume even that dim A = n, see [F2].

2. REGULARITY OF THE DISTANCE MEASURE

In this section we shall always assume that (n +1)/2 < a < n and
that u is a non-negative Radon measure in R* with compact support
and such that

L(y) = ¢ / 2 Ae) da < oo.

By ¢ we denote positive constants depending only on « and n. Intro-
ducing the spherical averages

o(1)(r) = /IC BEORAC >0,
we have then
I,(n) = c/o r* Lo(u)(r)dr < co. (2.1)

For information on the influence of the finiteness of I, () on o(u) and
related averages, see [M2], [S1] and [S2].

We shall need the following estimates for the Bessel function J =
J(n—2)/2 and its derivatives.

2.2. Lemma. Foralli=0,1,2,...,[n/2],
JO@) < Ct™V% fort > 0.

Proof. We shall first consider the case t > 1. We shall prove that
D) < Cimt™ 2, t2>1,



REGULARITY OF DISTANCE MEASURES AND SETS 3

fori=10,1,2,... and m=j/2, 7 =0,1,2,.... We shall use induction
and use the induction assumption
D@ < Cimt M2, t>1, foralli=0,1,2,....,01 (L)
and m =j/2,7=0,1,2,....
The statement (I) is well-known (see [SW, p. 158]). Assume that (I;)
holds. From [W, p. 45], we find that
tJ) (t) — mdp(t) = =t (1),

whence
m

T (t) = 7Jm(t) — Imt1(2).
Differentiating this [ times we get (I;;1) from (7;). Thus we have proved
the inequality in the lemma for ¢ > 1.

For 0 < ¢ <1 we use the formula
1

J(t) — ctn/21/ ez’ts(l . 82)71/273/2 dS,

—1
see [SW, p. 154]. If n is even, this gives immediately the desired
estimate. Suppose n is odd: n = 2] + 1. Then

J(t) = ct' ™2 (),

where ¢ is a C*™-function with bounded derivatives. If i < [n/2] =
(n—1)/2 =1, then

(d/dt)' =12 < ct™Y2) 0<t <1,
and the lemma follows. O

For smooth functions f with compact support (identified with a mea-
sure) 6(f) is absolutely continuous with density

s = [ ([ 1)

= cs"/? /00 2 J(sr)o(f)(r)dr, s>0,
0

see [M2, Lemma 4.3]. Applying this to f = ¢, * u, where {¢.} is an
approximate identity, and letting € — 0 we have

5(1)(s) = es? / 2 I (sr) o () (r) dr (2.3)

because o > (n + 1)/2, (2.1) and Lemma 2.2 imply that the integral
converges absolutely. We use this formula to prove the following theo-
rem. We denote by C° the continuous functions on R and by C* the k
times continuously differentiable functions.
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2.4. Theorem. Write « = (n+1)/2+ k+¢ where k is a non-negative
integer and 0 < e < 1.

(1) If e = 0, then 6(u) € C*.

(2) If € > 0, then (d/dt)k6(p) is Hélder continuous with ezponent e
on every interval [a,b], 0 < a < b < co. More precisely,

[(@/dt)* (/26 (1) (1)) — (d/de) (5726 (1) (5))] < eTa(pe) s™72(t — s

for 0 < s < t.

Proof. Write
() = [ 17 I a()o)
We have 6(u)(s) = ¢s™?6,(p)(s) and

(d/ds)*6, (1) (s) = /OO P2k 78 (s1) o (u) (r) dr - for s > 0,

0

by (2.1), Lemma 2.2 and (2.3) because k£ < (n —1)/2,
[P/ O (51) (1) ()] < er™/2H42 52 ) )
fori=0,1,...,k+1and n/2+k —1/2 < a—1. Hence (1) follows.
Let 0 <s<tand d=1/(t —s). Then
(@) 51(6) = @51 00| < [ 75110 ) = 10 ar) o))
= A0—|— B,

where A is the integral from 0 to d and B the integral from d to oc.
Then by Lemma 2.2 and (2.1)

d
A<es V2t —5s) / AR G0 (r) drr
0

<es VAt - s)/0 rEEY2( /e)E o () () dir

d
— 08_1/2(t— S)H—s—l/ 7'”/2+k+1/2+8_1 U(M)(T) dr
0

= s H2(t — S)E/O r* Lo (u)(r) dr

< es 2(t =) La(u)
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and
B < 05_1/2/ p2Hk=1/2 o(u)(r)dr
d
< 031/2/ Y AE2 (0 14 o () () dre
d
= cs_l/Q(t — 3)5/ P2 th—1/24e o(p)(r)dr
d
= csil/Z(t — s)g/ r* o (p)(r) dr
d
< es V2 (t = 5)° Io(p).
This proves the theorem. O

Remark. We do not know whether some smaller values of o would
suffice to imply the same regularity except for the earlier mentioned
fact that if « < (n+ 1)/2 and I,(u) < oo, then 6(u) need not be
bounded, not even on any given interval [a,b], 0 < a < b < oo, whence
it need not be continuous.

3. DISTANCE SETS AND SUSLIN RINGS

For A C R* let C,(A) be the Riesz a-capacity of A;
Co(A) = sup L, (p)™!

where the supremum is taken over all Radon probability measures p
with compact support, spt u, and with sptu C A. It is well-known
that dim A > « implies C,(A) > 0 for Suslin sets A, see e.g. [C]. The
following is an immediate consequence of Theorem 2.4.

3.1. Theorem. If A C R* is a Suslin set with C(ny1y/2(A) > 0, then
D(A) has non-empty interior.

Proof. By the definition of C, there is a Radon probability measure p
with compact support such that spt up C A and J41)/2(p) < co. By
Theorem 2.4, §(u) is continuous. Since sptd(u) C D(A), this implies
that D(A) has interior points. O

We finish by stating a result on Suslin subrings of R:

3.2. Theorem. Let R C R be a Suslin set. If R is a subring of the
ring of real numbers and dim R > 1/2, then R = R.

Falconer proved in [F1], see also [F2], that a Suslin subring R of
the reals has either 0 < dimR < 1/2 or dimR = 1. So under our
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assumptions we have dim R = 1. To get that R = R it is enough to
show that R has interior points. Since dim R X R = 2, see e.g. [MS3,
Theorem 8.10], D(R x R) has interior points by Theorem 3.1, and hence
also D?(R x R) = {|z — y|* : z,y € R x R}. But this set is contained
in R, since R is a ring, and the theorem follows.

We do not actually have to use Theorem 2.4. Theorem 3.2 is in fact
a rather direct consequence of Falconer’s results and methods. Namely,
it is enough to know that D(R x R), and hence also R, by the above
argument, has positive Lebesgue measure. Then Steinhaus’s theorem
gives that {z —y : z,y € R} = R contains an interval.
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