REMOVABLE SETS FOR LIPSCHITZ HARMONIC FUNCTIONS
IN THE PLANE
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1. INTRODUCTION

The main motivation for this work comes from the century-old Painlevé problem:
try to characterize geometrically removable sets for bounded analytic functions in C.
A compact set £ C C is removable for bounded analytic functions if whenever U is
an open set containing F and f: U \ E — C is bounded and analytic, then f has an
analytic extension to U. For other formulations and relations to analytic capacity, see,
e.g., [G], [C1] or [M]. Painlevé proved that if H!(E) = 0 then E is removable. Here H'!
is the one-dimensional Hausdorff (length) measure.

The following conjecture, stated first by Vitushkin, seems plausible.

1.1. Conjecture. If E C C is compact and H(E) < oo, then E is removable for
bounded analytic functions if and only if E is purely unrectifiable, that is, H*(ENT) = 0
for every rectifiable curve I'.

Although a positive solution of this conjecture would not give a complete characteri-
zation, it would leave out only sets of infinite length and Hausdorff dimension 1, because
sets of Hausdorff dimension bigger than 1 are not removable, see, e.g., [G].

We have not been able to prove this conjecture, but we have proved the corresponding
result for a closely related removability question concerning Lipschitz harmonic func-
tions. A compact set E C C is removable for Lipschitz harmonic functions if whenever
U is an open set containing K and u: U — R is a Lipschitz function which is harmonic
in U \ E, then u is harmonic in U. Every E which is removable for bounded analytic
functions is also removable for Lipschitz harmonic functions (use the fact that if u is
Lipschitz harmonic, then 0,u is bounded analytic). But it is not known if these two
classes are the same. Again sets of Hausdorff dimension bigger than 1 are not removable.

In this paper we shall prove

1.2. Theorem. Let E C C be compact with H'(E) < oo. Then E is removable for
Lipschitz harmonic functions if and only if E is purely unrectifiable.

Both for this theorem and Conjecture 1.1 only one direction needs to be proven
because of the result due to Calderén and others, see, e.g., [C1]: if E is a compact
subset of a rectifiable curve with H*(E) > 0, then E is not removable (for either class).
Hence the removable sets are purely unrectifiable.
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Conjecture 1.1, and hence also Theorem 1.2, were proven in [MMV] for compact sets
FE which are regular in the sense that there is a constant C' such that

r/C<HY(ENB(z,r) <Cr forzeE, 0<r<1.

Here B(x,r) is the closed disc with centre z and radius r. Our proof of Theorem 1.2 will
rely on some of the main ingredients of the method of [MMV], so we discuss it briefly
here.

The proof in [MMYV] was based on a relation between the Cauchy kernel 1/z and the
Menger curvature c(z1, 22, z3) of a triple z1, 29, z3 € C. By definition, ¢(z1, 22, 23) is the
reciprocal of the radius of the circle passing through 21, z9 and z3. A formula, found by
Melnikov in [Me], says that

1

C(Zla 22, Z3)2 =
o (Za(l) - Za(a)) (Za(z) - 20(3))

where the summation is over all permutations of {1,2,3}. From this it is not difficult
to show, see [MV] or [MMV], that if v is a (positive) Borel measure on C with compact
support such that

(1.3) v(B(z,r)) <r forzeCandr >0,

/ v(y)
C\B(z,e) T — Y

then

(1) )

if and only if

2
dv(z) < o

U

(1.5) / / / c(z,y, 2)? dv(z) dv(y) dv(z) < .

On the other hand, it follows from a result of David and Léger, see [L], that if v satisfies
(1.5) and there is a Borel set F' C E such that H'(FN B) <v(B) < CHY(FNB) <
for B C F, then there are rectifiable curves I'y, I'sg, ... such that

(1.6) y<F\LiJri) = 0.

The proof of Theorem 1.2 will be finished if we can use the non-removability of E to
find v satisfying (1.3) and (1.4) and F' as above such that v(F') > 0. Remember that we
only have to show that if E' is not removable, then H!(E NT') > 0 for some rectifiable
curve I'. But (1.6) and v(F') > 0 give that v(F NT;) > 0 for some ¢ while (1.3) gives
that v(B) < H'(B) for all B C F.

To find such a v we proceed as follows. Suppose E is not removable for Lipschitz
harmonic functions. Then there is a non-constant Lipschitz function u: C — R which
is harmonic in C \ E such that (Au, 1) # 0 and Vu(oco) = 0, see [MP, Proposition 2.2].
Such a function u has a representation, see, for example, [MP, Lemma, 5.3],

u(z) = /log |z —y|ldo(y) forx € C\ E,
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where o is a signed Borel measure with support in £. Hence

r—y

ViD= [ e yp

do(y) forxz e C\ E.
Moreover, one can show, see [MP, Lemma 5.3|, that o is absolutely continuous with

respect to H' with bounded Radon-Nikodym derivative f. Since w is Lipschitz, Vu is
bounded. Thus

/ LY () dH Y (y)
E

z —y|?

is bounded in C \ E. This is the same as to say that the Cauchy transform

Tf@) = [ —— 1)

is bounded in C\ E.

Moreover, [, fdH' = ¢(Au,1) # 0, and we may assume that [, fdH' > 0. Almost
all of the paper then consists of a modification of the measure fdH'|E to a desired
measure v. The construction of v will be given in Section 4 and the proof of (1.4) will
be completed in Section 5. The modification uses stopping time arguments somewhat
similar to those in [C2]. For that we need a system of dyadic cubes in E with some good
properties. They will be constructed in Section 3. Earlier similar systems were built in
[D1], see also [D2], on regular subsets of R” and in [C2] on spaces of homogeneous type,
that is, when the measure is doubling. But now we do not have any doubling property
which causes considerable complications in our applications to the Cauchy transform.
The construction of the cubes will be done for an arbitrary locally finite Borel measure
in R™®.

In our modification result, which is stated in Section 2, we shall consider complex
valued functions f. Then we do not get a positive measure, but we get a complex
measure gdv where v is as above and g is bounded and accretive in the sense that
Reg > ¢ > 0. This does not require much more work and our hope is that it would be
useful in connection with Conjecture 1.1.

The main obstacle for extending Theorem 1.2 to higher dimensions is the lack of the
curvature method. The associated kernel in R™ is ||~ 2. We can still form the sum of
permutations as above using inner products, but when n > 3 the resulting function in
R™ x R® x R takes both positive and negative values which seems to make it useless.

Some results and examples on this question in R™ can be found in [Ul], [U2] and
[MP].

2. STATEMENT OF THE MAIN TECHNICAL PROPOSITION
We are given a compact set £ C C such that
(2.1) 0 < H'(E) < +oo,

and a bounded H' measurable complex valued function f on E, with the following
property. Denote by u the restriction of H! to E (i.e., the measure on C defined by
w(A) = HY (AN E) for all Borel sets A C C). We assume that

(2.2) Ifllo <1 and / fdp=a>0,
E
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and that the Cauchy integral of fdu, defined on C \ E by
f(y) du(y)
(2.3) T(fdp)( /

is bounded. Our main technical result is as follows.

2.4. Theorem. Let E, i1 and f be as above. Then there exist a positive Borel measure
v and a bounded Borel function g such that

(2.5) V(B(a: r)) < Cr forallz € C andr >0,
(2.6) 7)< C and Reg(z)>C™' forallxeC,

(2.7) / giv = [ fdp=a,

there i1s a Borel set F' C E such that
2.8
(2:8) {C_l,ugzlguonFandy(F)zg,
and
(2.9) /T"‘(gdv)2 dv < +o0,

where T is the maximal Cauchy operator defined by

/ 9(y) dv(y)
C\B(z,e) r—y

In this statement, the constant C in (2.5) may depend on many things, including
the rate at which the densities r=*y(B(z,7)) stop being too large when r gets small.
If we know already that ,u(B(a:, r)) < Mr for some M and all z € C, r > 0, and if we
normalized our statement by assuming that diam F = 1, the proof will give a constant
in (2.5) which is less than C1 M, with C an absolute constant. See the comment to this
effect a little above Lemma 4.56.

The constant C in (2.6) and (2.8) can be taken to be < Cya™! u(E), where C; is an
absolute constant. See the remark near the end of Section 4.2.

Our estimate for (2.9), just like (2.5), can depend somewhat wildly on E, but again
if we assume that pu(B(z,7)) < Mr as above, our proof will give an estimate on
J T*(gdv)? dv that depends only on M, diam E, a~! u(E), and ||T(fdp)] co-

If we start with a function f which is real-valued, then we get a function g which is
real-valued as well, and the accretivity condition (2.6) simply says that

(2.11) C'<yg(z) <C.

(2.10) T*(gdv)(z) = il;}g

This is the case that we need for our application to Lipschitz harmonic functions, but
the statement for complex valued functions f is not much harder to get, and may be
interesting as well.

Note that Theorem 1.2 follows from Theorem 2.4 and the discussion in Chapter 1.
Because of (2.11), the measure gdv satisfies (1.3) because of (2.5) and (1.4) by (2.9),
while the condition on F' (for a multiple of gdv) comes from (2.8).

It is possible that our proof will give slightly more precise, BMO-like, properties, of
T*(gdv) than (2.9), but it is not too clear how to formulate this in a useful way.

The rest of this paper is a proof of Theorem 2.4.
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3. DYADIC CUBES WITH SMALL BOUNDARIES ASSOCIATED
TO A MEASURE IN R"

In this chapter we want to construct partitions of the support of a given measure p
into analogues of the dyadic cubes in R™. We shall do the construction with very little
information on the measure, even if some extra information on p will be useful when
we try to use our cubes.

Let p be a locally finite (positive Borel) measure on R™, and let E denote its support.

Let Cy and A be two large constants. For the construction and the statement of the
theorem, we shall only require that

(3.1) Co>1 and A > 5000C,,

say, but our small boundary condition will only become useful if A is larger than some
high power of Cy. In our application to Theorem 2.4, we shall take A ~ C3% and Cy
very large, for instance.

3.2. Theorem. Let pu, E, Cy and A be as above. Then there exists a sequence of
partitions of E into Borel subsets Q, Q € Ay, with the following properties.
For each integer k > 0,

(3.3) E is the disjoint union of the “cubes” Q, Q € Ay,
and
(3.4) ifk <l,Q € Ay and R € Ay, then either QN R =10 or else R C Q.

The general position of the cubes Q can be described as follows. For each k > 0 and
each cube ) € Ay, there is a ball

(3:5) B(Q) = B(z(Q),7(Q))

such that

(3.6) z(Q) € E,

(3.7) A7F < r(Q) < CoATF,

(3.8) ENB(Q)C Q C EN28B(Q) = EnNB(z(Q),28(Q)),
and

(3.9) the balls 5B(Q), Q € Ay, are disjoint.

Also, the cubes Q € Ay have “small boundaries”. For each cube Q € Ay and each
integer 1 > 0, set

(3.10) N(Q)={z € E\Q : dist(z,Q) < A™*},
(3.11) N2(Q) = {zr € Q : dist(z, E\ Q) < A~F'},
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and

(3.12) Ni(Q) = N (Q) U N™(Q).

Then

(3.13) p(Ni(Q)) < [CTHCn AT u(90B(Q)).

Finally let Gi, denote the set of good cubes QQ € Ay for which

(3.14) 1#(100B(Q)) < Cou(B(Q)),

and set By, = Ay \ G- We have that
(3.15) Q) =A% when Q € By,

and also

—1 I+1
(3.16) {”’(1003(@)) < C, ,u(100 + B(Q)) for all

1 > 1 such that 100" < Cy when Q € By.

This completes the statement of our theorem. The constant C' in (3.13) may depend
on n, but nothing else. Of course the constants 28, 90, 100 and 3n + 1 are not optimal.

The last condition (3.16) will be useful. When @Q € By, it is not so easy to use
(3.13), and we cannot really prevent situations where @) is a cube with very small mass,
very close to other cubes with very large masses. In these situations it is hard to get
estimates on N;(Q) that depend on p(Q) alone, and we shall fight this back by saying
that (Q) was actually very tiny. (The constant Cy ", where 100" =~ Cy, is much smaller
than any given negative power of Cy when Cj is large.)

Now we can start the construction of cubes. The rest of this chapter will not interfere
with the other parts of the paper.

Let u, E, A, and Cy be given, as in the statement. We start our construction with
an approximation to Ay (i.e., we shall first work at scale 1). A somewhat similar
construction of “cubes of one generation” has been given by O’Neil in [O]. We first
associate a ball B(z) = B(z,r(z)) to each z € E, as follows.

Denote by G the good set of points z € E such that we can find a radius r(z) such
that

(3.17) 1<r(z) <Cy
and
(3.18) (B (z,100r(z))) < Cop(B(z,7(2))).

For each z € G, choose r(z) as in (3.17), (3.18), and set B(z) = B(z,r(z)). Set
B =E\ G, and simply take

(3.19) r(z)=1 and B(z)= B(z,1) forz € B.
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By the definition of G, we have that
(3.20) 1(100'B(z)) < Cy *p(100"! B(z))for all I > 0 such that 100° < Cj
when z € B.

Next we want to choose, for each x € E, two auxiliary radii r1(z) and ry(z) such
that

(3.21) %r(m) < () < 1—37«( ),
(3.22) 25r(z) < ro(x) < 267(x),

and that we have the first “small boundary conditions”

(3.23) p({zeR": ||z —z| - rl(x)‘ <7tr(z)}) < CTM(%B(.’L‘)) for 0 <7< 11—0

and
(3.24) p{zeR": Hz — x| — 7'2(3:)| <7r(z)}) <Cru(27B(z)) for0< 7 < 1.

The existence of r1(z) and 73(x) is easy to derive from the standard weak-L! estimate
for the maximal function of the measure on R, which is the image under the radial
projection z — |z — z| of u|33B(z) or p|27B(x). Here the constant C' does not even
depend on n.

Choose 7;(z), i = 1,2, as above, and set B;(z) = B(z,r;(z)). Next we use the
standard “Vitali-type” covering lemma (as in [M, Theorem 2.1] or see the proof on p. 9
of [S]) to select a (discrete) subset I of E such that

(3.25) the balls 5B(z), x € I, are disjoint
and
(3.26) Ec | J25B(z)

rel

(so that the By(z), = € I, also cover E).
For each x € I, denote by J(x) the set of points y € I \ {z} such that B;(y) meets
By (x). Because (3.17) holds for all y € I, (3.25) yields that

(3.27) J(z) has less than CC{ elements.

Set

62  m@=-ne\{ U nof-ne\{ U 5ol

yel\{z} yeJ(x)
Let us check that

13

(3.29) ™

—B(y) C 90B(z) for all y € J(z).
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Ify € J(z), then 13 B(y) meets 26 B(z) because it meets By(z), and so |z —y| < 26r(z)+
r(y). If (3.29) did not hold for y, we would also have that |z — y| > 907"( ) — 12r(y),
and so 28r(y) > 64r(z). In particular, r(y) > 20r(z), |z —y| < 26r(z) + 127(y) < 3r(y)
x lies on 5B( ), and this contradicts (3.25). This proves (3.29).

Hence we may apply (3.24) to z and (3.23) to each y € J(z) to get that

7

(3.30) p({z € R* : dist(z,0B3(z)) < 7}) < CCHri(90B(z))

for all z € I and 0 < 7 < 55. (Of course this uses (3.27), and the fact that you cannot
be close to B3 (z) without being close to By(z) or some 0B1(y), y € J(x).)
Next put an order on [ such that

(3.31) y <z in I whenever ;(90B(y)) < u(90B(z)).

(When x(90B(z)) = 1(90B(y)), we can decide whether z < y or not at random.) We
define new sets By(z), z € I, by

(3.32) By(z) = Bs(x) \ { U Bs(y)}-

yel
y<zx

Here again, the union looks infinite, but we are only interested in the y € I such that
Bs(y) meets Bs(z), and there are at most CCg of those.

3.33. Lemma. The sets By(z), x € I, are disjoint and cover E.
This is easy. The By(z), z € I, are disjoint because of the formula (3.32) alone. To
prove the rest, first observe that

(3.34) 5B(z) C Bs(z) forall z e l.

This is because 5B(z) C B2(z) by the definition of 79(x), and 5B(x) does not meet any
of the Bi(y), y # z, because it does not even meet the larger balls 5B(y) (by (3.25)).
Because of (3.34),

(3.35) the sets Bs(z), z € I, cover E.

Indeed, if z € E, then z € 25B(z) for some = € I (by (3.26)), and if it does not lie in
the corresponding Bs(x), it must be in By(y) for some y € J(z); (3.34) then says that
S B3 (y)

The rest of Lemma 3.33 follows easily from (3.35) and the formula (3.32).

Once again, the set J'(z) of all y € I such that y < z and B3(y) meets Bs(z) has at
most CC¥ elements. We may apply (3.30) to = and each y € J'(z), and we get that

(3.36) ,u({z € R" : dist(z,0By(x)) < T})

1
< CC3"ru(90B(z)) forallz €I and 0 <7< 10"

(We are also using the definition of < on I.)
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Notice that for each z € I, B1(z) C Bs(z) (for instance by (3.34)), and since B;(x)
does not meet any of the B3(y), y # x (by the definition (3.28) of B3(y)), it is also
contained in By(z). Thus

11
10

(because of (3.21) and (3.22).

The sets E N By(x), x € I, are our first approximations to the cubes Q, Q € A,.
Now we want to do a similar construction at each scale A=*, k > 0, and then modify
our sets so that the nesting property (3.4) holds.

Let us first apply the preceding construction at each scale A=*. For each k& > 0, we
get a set I, C E of centers and, for each x € Iy, a ball B(z) = B*(x) (if we want to be
explicit) and a set By(z) = B¥(x) with the following properties:

(3.37) —B(z) C Bi(z) C Bs(z) C 26B(z)

(3.38) B(x) is centered on z, and has a radius 7(z) € [A™F, CoA™F];
(3.39) the balls 5B(z), x € I, are disjoint;
11
(3.40) EB(x) C Bu4(z) C 26B(z);
(3.41) the sets By(z), z € Iy, cover E and are disjoint;
(3.42) p({z € R" : dist(z,0Ba(z)) < TA™*}) < CCF"T1u(90B(z))

forallk>0,allz €I, and 0 < 7 < %.
Moreover, if x € I, then either

(3.43) p(100B(z)) < Cou(B(x)),
or else r(z) = A~F and
(3.44) 1(100'B(z)) < Cy ' u(100"' B(z)) for all > 0 such that 100* < C,.

Next we want to replace each set By(x) = B%¥(x), x € I, by finer versions obtained by
taking unions of sets B4(y) from smaller generations. We have to do this in a coherent
way.

For each k > 1 and y € Iy, let h(y) denote the point # € Ij_, such that y € B¥ ().
There is nothing very special about this choice; any z such that ENBY 1 ()N Bk (y) # 0,
for instance, would work as well. It will be just as convenient to choose h(y) so that

(3.45) yE Bff_l(h(y)),
though.
Also set h!(y) = ho---oh(y) (I times) when k > [. Thus h!(y) € I_;. Define, for
each z € I}, new sets Dk(a:), > 0, by
(3.46) D)= |J Bi*'()
IS P
h'(y)=z

(In particular, use the convention that DE(x) = By(z).) Our intention is to take the
limits of the DF(z), with k and z fixed and [ — 400, as our almost final version of Ay.
For k and [ fixed, the sets h=!(z), x € I, form a partition of Iy,;, and hence

(3.47) the sets DF(z), z € I, are disjoint and cover E,

because of the corresponding properties (3.41) of the sets Bff“ (y), y € Ixt.
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3.48. Lemma. We have that
(3.49) dist (z, E N Df(z)) < 26CoA~F1—1
for all z € le+1($) (and all choices of k > 0, z € I, and 1 > 0).

Indeed, let z € Df,(z) be given. By definitions, there is an y € Iyii41 such that
ht1(y) = z and z € B¥TH1(y). Then |z — y| < 26r(y) < 26C,A~5~1=1 by (3.40) and
(3.38). On the other hand, y € B¥*! (h(y)) by the definition of h (see (3.45)), and so
y € Df(z) because h'(h(y)) = z. This proves the lemma.

Since A > 10, say, by (3.1), we can iterate the estimate from Lemma 3.48 and get
that

(3.50) dist (z, E N Df (z)) < 50CoA™Flo~1

for all z € U3y, DF(z) and all lp > 0. (Connect z to leo (z) by a sequence of points in

the DEF (), lp < m < 1, and sum a geometric series.)
Let us now prove an estimate in the other direction. We claim that

3.51 dist (z, ENDF_,(z)) < 26Co A% for all z € DF(z).
1+1 l

Remember that DF(x) is the union of the Bf™(y), y € h~!(x). Thus, by (3.38) and
(3.40), it will be enough to show that each y € h~*(z) lies on Df,,(z). Let u € Ijy141
be such that y € B+ (y). Tt is enough to show that ht'(u) = z, or even that
h(u) = y (because we already know that h'(y) = ). Since y € B¥T1(u), we know
that |y — u| < 26CoA~*=!=1. Since by (3.1) A > 26Cy, this implies that u € B(y) (by
(3.38)), and then that u € By(y) (by (3.40)) and h(u) = y (by the definition of A(u),
see (3.45)). This proves our claim (3.51).

iFrom Lemma 3.48 and (3.51) we deduce that the Hausdorff distance between the
sets Df(x) and DJ , (z) is at most 26CoA~*~!. Thus the closures of these sets converge
(for the Hausdorff metric on compact sets) to a set

(3.52) D(z) = D¥(z) =

lim DF(x).
S D)

The sets D(z), € Ij, are almost our cubes @, @ € Ag, but we may have lost the
property that they are disjoint, and so we want to fix that. Before, let us collect a few
of the properties of the D¥(z)’s. Let us first check that

(3.53) D*(z) c EN28B(z) for all z € I.

Indeed, let z € D*(z) be given. Then z = lim;_, ;o 2 for some sequence (z;) such that
2z € DF(z). Because of Lemma 3.48 (or (3.51)), dist(z;, E) < 26CoA~*~! andso z € E.
From (3.40), the fact that D§(z) = B¥(z) and (3.50) (with Iy = 0), we deduce that
|z — 2| < 267(x) + 50C, A~F=1 for all I; (3.53) follows because A > 50C).

Next we check that

(3.54) E= ] D*=).

We already know that D*(x) C E. If z € E, then for each [ there is an x; € Iy
such that z € DF(z;) (because of (3.47)). Moreover, there is only a finite set of points
x € I, for which 28 B(x) contains z (because the 5B(z) are disjoint and have comparable
diameters). Since (3.53) tells us that all the x;’s must be picked in this finite set, we
see that there is an x € Ij such that z € DF(x) for infinitely many values of [. Then
z € D¥(z), and (3.54) holds.
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3.55. Lemma. For each z € Iy, EN B(x) C D*(x), and EN B(z) does not meet any
of the D*(z'), =’ € I}, \ {z}.

Because we already know that the D¥(z'), ' € Iy, cover E, it is enough to prove the
second half of the statement. Let 2 € E N B(z) be given, and suppose that z € D¥(z’)

for some z’ € I. Then we can find a point 2; such that z; € DF(z') for some [ > 1 and
|z — 2| < q(—(;?, say. From (3.50) (with lp = 0) we deduce that dist (2, E N Bf(z')) <
50CyA=F=1. Since A > 5000C; by (3.1), we get that dist (z, E N Bf(2')) < "), Then
ENB§(z') meets 15 B(z), and since (3.40) and (3.41) tell us that Bf(z') is disjoint from
11 B(z) when o’ # x, we get that ' = z. This proves the lemma.

3.56. Lemma. For each x € I, and eachl > 0,

D*az)= J D**(y).

yelpy
k! (y)=z
Indeed for each m > 0, by (3.46),
(3.57) Dra@= U B
z€h~™m— (1)

— U { U Bie-f-m—}-l (Z)}
yER~H(z) ~ zER~™(y)
= U DE'w).

yEh~!(x)

The lemma follows by taking closures in (3.57), and then passing to the limit.

Now we want to modify our sets D¥(z) to make them disjoint. We need to be a little
careful because we want some coherence between the different values of k, but nothing
too interesting will be happening here. Our future estimates will show that the various
intersections of the D¥(x), z € I, have measure 0, so we do not really need to worry
about the effect of our choices now on singular integrals, for instance.

First put any order on I. This does not need to be the same one as in the definition
of Bs(x), but we really do not care. Then put orders on I, then I3, then I3, etc., with
the only constraint that

(3.58) y1 <y on Iy whenever h(y1) < h(y2) on I.

In other words, when we define the order on Iy, we decompose [, into the classes
h='(z), = € I, and make sure that they come out in the same order on I, as the
x € I. The order in each class is irrelevant.

For each k > 0 and each z € Iy, set

(3.59) Qx) = Q*(z) = D*(x) \ { U D’“(y)}-

yEly

y<z
These are the cubes we wanted. To get back to the notations of Theorem 3.1, we
set A, = {Q%(x),z € Iy}. We should now start verifying the various conclusions of
Theorem 3.2.
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The fact that for each k& > 0, E is the disjoint union of the Q¥(z), = € Iy, is an easy
consequence of (3.54) and (3.59). This takes care of (3.3).

Let us check now that if z € I}, and y € I41 is such that h(y) = z, then Q(y) C Q(x).
We already know from Lemma 3.56 that Q(y) C D**1(y) C DF(z), so it is enough to
check that Q(y) does not meet any of the D¥(z’), ' < x (the sets that were removed
from D¥(x) to get Q*(x)). If it did, then Q(y) would also meet D**1(y') for some
y' € Iy such that h(y’') = 2’ (because of Lemma 3.56). This is not possible, because
y' <y (since ' < z). Thus Q(y) C Q(z), as promised.

Now if y € Iy is such that h(y) # z, then Q(y) C Q(h(y)), and so Q(y) does
not meet Q(x) (by (3.3)). This implies the nesting property (3.4). We even have that
Q' (y) c Q%(x) if and only if hl(y) = .

The properties (3.5), (3.6) and (3.7) are just the same as (3.38) (if we set B(Q(z)) =
B(z) for z € Ii), while (3.8) follows from (3.53) and Lemma 3.55. The balls 5B(Q),
@ € Ay are indeed disjoint (as needed for (3.9)) by (3.39). The small boundary property
(3.10-13) will be more interesting.

Fix z € I, let Q = Q(z) and let N;(Q) be as in (3.10-12). Also denote by A;(Q) the
set of the cubes R € Ak, such that N;(Q) N R # (). We first consider the case [ = 1.

3.60. Lemma.

> w(90B(S)) < CCF AT 1(90B(Q)).
SeA1(Q)

First we want to check that
(3.61) dist (z,0B4(z)) < 51CoAF1 for all z € N1(Q).

Let z € N1(Q) be given. Then there are points z; and zs, with z; € Q(z) and 25 €
E \ Q(z), such that z = z; or 2o and |21 — 22| < A7*~!. Let x5 € I be such that
Z9 € Q(z2).

Since 21 € Q(z) C D¥(x), we can find points of | J;5, DF(z) that are as close as

we want to z;. Because of (3.50), applied with Iy = 0, those points are all within
50CoA~*"1 of EN DE(z) = E N Ba(z). So dist (21, Ba(z)) < 50CoA7*~1. The same
estimate with zs gives that dist (z2, B4(a:2)) < 5005 A7F=1 and since By(xs) does not
meet By(z) (by (3.41)), we get (3.61).

Now we can prove Lemma 3.60. Each 90B(S), S € A;1(Q), meets N1(Q) by (3.8).
Therefore their union lies entirely within 300Cy A=*=1 of dB4(x) by (3.61). By (3.42)
this union has a measure < CC2"(CoA™')u(90B(z)). (Here we have applied (3.42)
with 7 = 300CoA~"; we have that 7 < & because of (3.1).) Also, a given point of the
union cannot lie in more than CC¥ balls 90B(.S), because all these balls have centers
at distances > A~%~1 from each other, and at the same time < 90CyA~%*~! from the
given point. The lemma follows from all this. This proves also (3.13) for I = 1.

Now we want to estimate p(N;(Q)) for I > 1. (When ! = 0, (3.13) follows immediately
from the fact that Ny C 90B(Q), by (3.8).) We shall prove the estimate

(3.62) D u(90B(8)) < (CCF™T AT u(90B(Q)),
SeA(Q)

which clearly is stronger than (3.13).
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Let S € A4;(Q) and choose z € SN N;(Q). Then there are z; and 2z such that z = 2;
or 23, 21 € Q, 29 € Q' for some Q' € Ay, Q' # Q, and |z; — 29| < A7F7L. Clearly, 21,
zo € N;(Q). Let R be the cube of Agi;—1; which contains z. Then R € A;_1(Q), as
z € Ni(Q) C Ni_1(Q), and S C R. Since |z; — 25| < A7*~!, both z; and z; belong to
N;i(R) and so S € A;(R). This shows that

A@c U Am®).

ReA; 1(Q)

Because of this we can deduce from Lemma 3.60 that

o mO0BE) < T D> n(90B(S))

SeA(Q) ReA;_1(Q) SEAL(R)

<CCytTATT > p(90B(R)).
ReA; 1(Q)

Iterating this we get (3.62).
Finally (3.14-3.16) is the same as (3.43-3.44). This completes the proof of Theo-
rem 3.1.

4. CONSTRUCTION OF gdv

Let E, u, and f be given, as in the statement of Theorem 2.4. In this chapter we
construct a measure gdv, and check that it satisfies the requirements (2.5)—(2.8) of
the theorem (i.e., all the requirements that do not concern the Cauchy integral). The
construction itself will only use the hypothesis (2.1) and (2.2). It is only when we are
finished with the construction that we shall start thinking about Cauchy kernels, except
for the detail that we shall keep the right to choose the constant C large enough for
the arguments of Chapter 5 to work.

4.1. THE CONSTRUCTION ITSELF

The first thing we do is to apply the construction of Chapter 3 to find collections of
cubes , Q € Ag, as in Theorem 3.2. As was explained before, we want to keep the
right to choose Cj enormous later (just after (5.29) and before (5.148)); on the other
hand we can already decide to take

(4.1) A=CCy%  with C as in (3.13).

Without loss of generality, we can assume that diam £ = 1, and then our construc-
tion gives that Ay is composed of just one cube QY. We shall often use the following
conventions about cubes. The generation of a cube @ is the integer k(@) such that
Q € Ag(q)- Note that we shall always consider @) as a subset of E, plus the information
of its generation. Thus it could be that cubes from different generations correspond to
the same set of F, but we shall still think of them as different cubes.

If £(Q) > 1, the parent of @ is the cube @ of Ag(@)—1 such that @ C @ The brothers

of @ are the other cubes of Ay () that are contained in (). The children of @) are the
cubes of Ayg)+1 that are contained in Q. (This does not require £(Q) > 1.)
For each Q € A = UkZO Ay, set

(12) ¢(Q) = 9(3B@),
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where B(Q) is the ball associated to @ in the statement of Theorem 3.2. This circle
has the advantage that

(4.3) dist (C(Q), B\ Q) > % AH@)

by (3.7) and (3.8).
Our first concern will be to get rid of the places where the density of u is too large.
For each x € FE, set

(4.4) M, (z) =supr~u(B(z,r)) =supr 'H'(EN B(z,7)).
r>0 r>0

Let M be a large constant, to be chosen soon, and set

(4.5) OM)={zecE: M,(x) > M}.

Because H'(E) < oo, M,,(z) < +oo for p-almost every z € E and so we can choose M
so large that

(4.6) wo() < 3,
where a is as in (2.2). With this choice of M done, let us start to describe a few
categories of cubes which we want to use in a stopping-time construction.

Denote by HD (high density) the set of maximal cubes Q € A that are contained
in O(M). (When two cubes correspond to the same set of F, the “largest one” is by
definition the one from the earliest (= lowest) generation.)

Let 0 < ap < a1 < a be two small constants, to be chosen later (around (4.68)).
Denote by MI (medium-sized integral) the set of maximal cubes @) with the property
that

(4.7) aon(@) < Re [ fdp < a1u@).
Q
Next denote by LI (low integral) the set of maximal cubes @@ with the properties that
(4.8) @ is not strictly contained in any cube of HD UMI,
and
(4.9) Re/ fdu < aou(Q).
Q

(If Q@ = Q' as sets but k(Q') < k(Q), we still say that @ is strictly contained in @Q’.)
Note that if Q € LI, then k(Q) (the generation of @) is > 1, since the top cube
Q° = E does not satisfy (4.9).
Denote by PLI the set of parents of cubes in LI. We have that

(4.10) Re/ fdp > a1p(Q) when Q € PLI,
Q

since we know that @ is not contained in any cube of MI (because some child of @
satisfies (4.8)), and also that () does not satisfy (4.9) (because it satisfies (4.8)). We
shall essentially want to replace all cubes of HD UMIULI by circles C(Q), but we want
to get organized first.

Let I; denote the set of maximal cubes of HD UMI that are not contained in any
cube of LI. Thus

(4.11) the cubes of I; U LI are all disjoint from each other.

(The cubes of LI are disjoint by maximality and are never strictly contained in cubes
of I1, by (4.8), and the cubes of I; are disjoint from each other by maximality and are
never contained in cubes of LI, by definition.)
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4.12. Remark. If @) is any cube such that @ C O(M) or Re fQ fdu < a1p(Q), then
QQ is contained in some cube of I; U LI.

Indeed, if (Q is contained in some cube of HDUMI, then it is either contained in
a cube of I; or else the maximal cube of HD UMI that contains it has been removed
because it was contained in some cube of LI. In both cases () is contained in a cube of
I, ULL If @ satisfies one of the properties of the remark but is not contained in any
cube of HD UMI, then it satisfies (4.9) because it does not satisfy (4.7). It is contained
in a maximal cube R that satisfies (4.9); R satisfies (4.8) as well because @ already
does. In this case R lies in LI, and we are happy.

By our choice of M, recall (4.6), E is not contained in O(M). Then the top cube Q°
is not in I; U LI. We shall use later the fact that

(4.13) { “(1OOB(Q)) < CA*®@)  for all the cubes of I; ULI and

all the cubes that are not contained in any cube of I; U LI,

which follows from the fact that if @ is as in (4.13), then either Q = Q° or else the
parent of () cannot be contained in a cube of HD, by Remark 4.12.

Next set I = I; U PLI. Note that the cubes of I are not necessarily disjoint now:
cubes of PLI can contain other cubes of I. For each cube @) € I, define the “operating
generation kg” by

(4.14) ko =k(Q)+1 if Qe PLIL

{kQ =kQ) fQel

We put an order on I such that @ comes before Q' if kg < k¢, and also, when kg = k¢,
@ comes before Q' if @ € PLI and Q' € I,. (A cube cannot be in PLI and I; at the
same time, by (4.11).) Now denote by Q,, n > 1, the n'® cube of I for this order. Also
set k, = kg,. Thus k41 > ky, and if k,41 = k, we cannot have that (), € I; and
Qn+1 € PLIL. In what follows, we shall always act as if I was infinite. If this is not the
case, simply truncate the construction described below.

We want to define a sequence of measures F,,. We shall do this by induction on n.
Each F;,, will be of the form

(4.15) F, =p,fdu+ z O, AUy,

m<n

where the a,,’s will be complex numbers, each v, will be a positive constant multiple
of the arclength measure on some circle C,,, and p,, will be a Borel function on F such
that

(4.16) 0<pp <1

Moreover, the function p,, will be constant on each of the cubes Q,,, m > n.

Now let us construct the measures F,, for good. We start with Fy = fdu (i.e., no
measure vy and pg = 1). Now suppose that we already know F,,_;, and that it has the
form described above, and let us construct F,.
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The first case is when ),, € I;. In this case we simply want to replace @Q,, with
n = C(Qn). We want to do this without changing [ F),, though. Denote by p} the
constant value of p,,_; on @,. We take

. 1(Qn)

4.17 dv, = dH'|Cy,
(418) Pn = Pn—-1 ]-E\Qna
(4.19) an = m(Qn) " fdu,
Qn
and define F,, by the formula (4.15). Thus
(4.20) F,=F,_1—1¢, pn1fdp+ an duy,.

It is easy to see that F), is of the type described above. In particular, if m > n, then
Pn—1 was constant on @),, by induction hypothesis, and so it is enough to check that
Q,, does not meet Q,,. If Q,, € I, this follows from the disjointness of the cubes of I
(by (4.11)). Otherwise @,, € PLI, and hence k., > k,, by definition of our order. Now
if Q,, NQ, # 0, then Q,, C Q,, and this is not possible because @Q,, contains some
cubes of LI, which are disjoint from @, by (4.11).

Let us collect a few easy facts for future reference:

(4'21) |Vn|| = pn Qn < ﬂ(Qn)

(1.22) [ = [P

(compare (4.17), (4.19) and (4.20));

(4.23) o] <1
(by (2.2)). Let us also check that

(4.24) Rea,, > aop.

If @, € MI, this follows from (4.7). Otherwise, we are not worried either; we can use
the fact that Q,, € I, and hence is not contained in any cube of LI. Since @,, is not
strictly contained in any cube of HD UMI (it is a maximal cube of HD UMI), it cannot
satisfy (4.9) because otherwise it would be in LI. This proves (4.24).

Now let us define F,, when (),, € PLL. Some amount of notation will be useful.
Denote by A,, the set of the children of ,, that lie in LI. These are the cubes Q such
that k(Q) = kn, Q C Qp, and @ € LI. Also let A% denote the set of the children of @,
that are not in LI. Set

(4.25) H,= |J @ and G.= |J @

QEA, QeA

Thus @,, is the disjoint union of H,, and G,,. We want to remove H,, and keep G,,.
Choose any cube Q2 € A,,, and take C,, = C(Q}). Also choose

H
/1’( ) dH1|Cn,

(4.26) dvy, = py, H(C,)
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where p} still denotes the constant value of p,_; on @, (which exists by induction
hypothesis). We want to define p,, by

pn—1(x) when z € E\ Qp
(4.27) pn(z) =12 0 when z € H,
(1 —=064) pn_1(z) when z € Gy,

with a number 6,, such that
(4.28) O, Re/ fdu = aou(Hy) — Re/ fdu.
Gp H,

Let us check that Re fG fdu # 0, and at the same time derive some estimates on 6,,.
First observe that H,, is a disjoint union of cubes of LI, and so (4.9) tells us that

(4.29) Re/H fdp < aop(Hy).
Also
(4.30) Re/ fdu > a1p(Qn)

n

by (4.10). Then
(4.31) Re/ fdu = Re fdu — Re/ fdu
Gn Qn Hy

> a14(Qn) — Re / Fdu

H,
> alll'(Qn) - aO,U(Hn)

> (a1 — ao) 4(Q@n)-
(From this we deduce that (4.28) defines a unique 6,,, and also that 6,, has the same
sign as aou(H,) — Re an fdu, i.e., is nonnegative by (4.29). From the second line of
(4.31) we deduce that Re [, fdu is larger than the right-hand side of (4.28). Thus
(4.32) 0<6, <1

We also have the brutal estimate that
aon(Ho) ~Re [ fdp < (a0 + 1) (Hy)
H,

(since || f]loo < 1), from which we deduce that

ag + 1 M(Hn)
(4.33) 0, < P

with the help of (4.31).
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We may now return to the definition of F,, when @),, € PLI. We already defined v,
and p,. Now take

(434) Re an = Qop,

(4.35) Ima, = M(Hn)_l{ Im/ fdp+ 0, Im/ fd,u}
H, Gy

and define F,, by

(436) Fn = 4L'n—-1— 1Hn pn—lfd,u' - Hn ]-Gn pn—lfd,ul + an an-

Then (4.15) follows from the definition (4.27) of p,, and our induction hypothesis.

Now we should check that Fj, has the form described above. First, 0 < p, < 1
because 0 < 6, < 1. Let us check that p, is constant on each cube Q,,, m > n. If
k(Qm) > ky, then this follows from the induction hypothesis, and the fact that the cubes
that compose H, and G, are of generation k,. Otherwise, ),, € PLI and k,, = k,,
because our order on [ is such that k,, > k,. In this case Q,, and @, are disjoint
because they are of the same generation, and p, = p,—1 or Q,,,.- Thus F;, has the form
required for the continuation of the induction.

This completes our definition of the sequence F,,. If I is finite, we simply stop when
there is no @), left and adapt the rest of this proof in the obvious way. Let us also
collect a few estimates from the construction of F,, when @), € PLI. Obviously (4.26)
gives

(4.37) lvnll = pr n(Hn) < p(Hp);
we deduce from (4.34), (4.35), (4.33) and the boundedness of f that
(4.38) lan| < C.

Let us check that

(4.39) /Fn = /F _

also when @,, € PLI. Replace p,_1 by its value p}, on @, in (4.36), and also recall that
lvn|| = pk 1(Hy) by (4.37); we see that (4.39) is the same as

(4.40) Qi Py, b = pn/ fdp+p;, 0 / fdp.

Now (4.40) holds because of (4.34) and (4.28) for the real part, and (4.35) for the
imaginary part.

Now we wish to define our function g and measure v. Of course gdv will be the limit
of the measures Fj,, but it will be better to spend some time and define g and v quietly.

First observe that the functions p,, are a decreasing sequence of nonnegative functions
on E. Denote by po, the limit of this sequence. Obviously, 0 < poo, < 1 on E. Also set
dlioo = Poo dp. This is the first half of dv. The second half is the sum of the measures
dv,,. In other words, we take

(4.41) dv = dpios + Y dtn = poo dpp+ Y _ dvp.
Set
(4.42) Ex ={z € E: px(x) # 0}.

Our intention is to take g(z) = f(z) on Fy and g(x) = a;, on Cp, but this will be more
pleasant to do once we know that those sets are disjoint. It will also be useful to know
that they are reasonably far from each other.
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4.43. Lemma. We have that

(4.44) dist(Cp, Eoo) > %A"“"
and
1
(4.45) dist (Cp,, Cpn) > 1 Max(A=kn | A=Fm)

for alln and m # n.

First suppose that Q,, € I;. Then C, = 8(%B(Qn)) and k,, = k(Qy). In this case,
1
(4.46) dist(Cp, E\ Qn) > EA—’%

by (4.3), and (4.44) follows from this (recall that p(z) = 0 on @,, by (4.18)).
When @,, € PLI, C, = C(Q},) for some child Q} of Q,, and k, = k(Q}) by (4.14).
Since H,, contains @} because Q7 € LI, (4.3) implies that

(4.47) dist(C,, E \ H,) > %A"“n;

(4.44) follows from this because p(z) = 0 on H,, by (4.27). Thus (4.44) holds in all
cases.

Clearly it is enough to prove (4.45) when n < m. By definition of the order on I,
km > kn and the maximum in (4.45) is A=%». Let Q and Q' be the cubes such that
Cn = C(Q) and C,, = C(Q'). Thus Q is @, itself, or a child Q% if @, € PLI, and
similarly for (). A first case is when k,,, = k,,, i.e., Q and @’ are of the same generation
kn. Then @ and @' are disjoint (the only “dangerous” case would be when @Q,, € PLI
and Q' C @, but then Q' € I and @ € LI so they are disjoint). In this case we may
use the fact that 5B(Q) and 5B(Q’) are disjoint (by (3.9)), and (4.45) follows from the
lower bound (3.7) or the radii of B(Q) and B(Q').

When k,,, > k,, Q' is still disjoint from @ (because they are both cubes of I; U LI,
and they are different because they are from different generations). Then dist(Q’,C,) >
1A=k by (4.3), and since the center of Cp, belongs to Q' and diamC,,, < CoA~Fm <
1A7Fn by (3.7), we get (4.45). This completes the proof of Lemma 4.43.

An easy consequence of this lemma is that the circles C,, are disjoint from each other

and from E,. This allows us to define g on F, U (Un Cn> by

(4.48) (@) = f(z) on Ea.

Next we want to check that g and v satisfy the properties required for Theorem 2.4,
except for the last one which is related to the Cauchy kernel.

{g(m) =a, onC,, and

4.2. THE EASY PROPERTIES OF gdv

We shall start with the upper-regularity condition (2.5). ;From now on throughout
the rest of the paper C will denote constants which may change from line to line and
which may depend only on Cy, A, M, a, ag, a1, p(E) and M, defined in (4.87). (But
recall that we can fix Cy and A as large absolute constants and ag and a; will depend
only on a™ ! u(E).)
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4.49. Lemma. There is a constant C > 0 such that
(4.50) pioo (B(z, 7)) < Cr  for all z € C and r > 0.

Since E is compact (and even has diameter < 1 by our earlier normalization), it is
enough to prove (4.50) when r < 1. Cover E N B(z,r) by cubes @ € Ag, where k is
chosen so that A= ~ r. You need less than C cubes @, because all the balls 5B(Q) are
disjoint and have radii > 547", while the balls 28 B(Q) all meet B(x,r) (when @Q meets
it) and have radii < 28CyA~*. We have that u(Q) < CA~* < Cr for all the cubes
of our collection that are not contained in any cube of I; U LI, by Remark 4.12. (If
u(A) > CA~* with C large enough, then @ is contained in O(M).) So the total mass
of these cubes is < Cr. On the other hand, if () is contained in some cube of I; U LI,
then po, = 0 on @ (because poo(z) = 0 on all cubes of I; ULI, by (4.18) and (4.27)).
Hence the total mass of these cubes for po, is zero. This proves the lemma.

Now we want to control the measures v,,. We start with estimates on the position of
the cubes Q,,. We claim that

(4.51) Y. u@<0or

QeI ULI
Q@ meets B(z,r)
ATR@ <y

for all x € C and r > 0.

Since diam EF < 1 by our earlier normalization, we can safely suppose that r < 1. If
Q € I; ULI, then its parent @ is not contained in O(M); this follows from Remark 4.12
and the disjointness property (4.11). If Q meets B(z,7) and A=*(@) < 7 then @ C
B(z,Cr) if C is large enough, and then B(z, Cr) is not contained in O(M) either. Thus
either the sum in (4.51) is empty, or else u(B(z,r)) < p(B(z,Cr)) < MCr, and (4.51)
follows from the disjointness property (4.11).

Let us also record that

(4.52) Y. w(Ha) <Cr

Qn€PLI
QnCB(z,r)

for all z € C and r > 0. This is an easy consequence of the proof of (4.51), because the
cubes @, are not contained in O(M) and the sets H,, are obtained from the cubes of
LI by regrouping brothers.

We are now ready to prove that v satisfies (2.5). Recall from (4.41) that v = peo +
> - Vn- Because of Lemma 4.49, it is enough to show that

(4.53) ZV" (B(z,r)) <Cr forallz € Candr > 0.

n

Since by construction all the circles C, lie in a fixed ball of radius C (and even with
C = 1), it is enough to prove (4.53) when r < 1. Let B(z,r) be given, and start with
the set NV} of integers n for which Q,, € I, C, meets B(z,r) and A=*¥%») < r. Then

(4.54) > va(Ba,r) < > wall € > w(@n) <Cr

neN; neN; neN;
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by (4.21) and (4.51). Similarly, if A is the set of integers n for which @,, € PLI and
Qn C B(z,2r), then

(4.55) S va(Ba,r) < D wall < w(H,) < Cr

neN, neN, neNs

by (4.37) and (4.52).

Thus we are left with the set N3 of integers n for which C,, meets B(z,r) and either
Qn € I and A=%®@) > ¢ or Q, € PLI and is not contained in B(z,2r). In this
last case we also have that A% > r/C, and (4.45) tells us that A3 has at most C

elements. Thus it is enough to prove that v, (B (z, r)) < Cr for each single C,,. This

is an immediate consequence of the fact that the densities p}, [‘ﬁ?c")) and p;, 5$€2")) in

(4.17) and (4.26) are less than C, which follows from (4.13) applied to Q,.

Thus v satisfies the upper regularity condition (2.5).

The constant that we obtain in (2.5) may depend wildly on FE, because it depends
on our initial choice of M, as in (4.6). On the other hand, if we start from a measure
p that already satisfies (2.5) with a constant Cy, then we can take M < CC; and v
satisfies (2.5) with a constant < C’Cy, where C and C’ are absolute constants. This
follows from the proof above, together with the fact that the constants that come from
the construction of dyadic cubes can be taken to be absolute constants.

Next we want to prove the accretivity condition (2.6). When z € C,,, g(x) = a,, and
so |ay,| < C (by (4.23) or (4.38)) and Re v, > ag (by (4.24) or (4.34)). When z € E,
g(z) = f(z) and so |g(z)| < 1 by (2.2). We shall not be able to prove that Re f(z) > ag
everywhere on F,, but only p-almost everywhere. Of course this is enough, because
modifying g on a subset of py-measure zero of F., will not alter the other properties
required for the theorem. We shall use a simple variant of the Lebesgue density theorem.

4.56. Lemma. For each x € E and each k > 0, denote by Q(x, k) the cube of Ay that
contains x. Then

(457) @) =t {(Q ) Lo s

k— 400

for p-almost every ¢ € E.

Let us first say why (2.6) follows from this lemma. Let € E be such that (4.57)
holds. If Re f(z) < ap, we can find a small cube @ that contains x and for which
Re fQ fdp < app(Q). Then Remark 4.12 says that @ is contained in a cube of Iy U LI.
Since p(z) = 0 or all cubes of I; U LI (by the definition of p, on @), x cannot lie in
E . This proves that Re f(z) > ao (and hence Re g(x) > ag) p-almost everywhere on
E . This completes the proof of (2.6), modulo the lemma.

The proof of Lemma 4.56 is standard. We certainly have (4.57) everywhere for all
continuous functions f. Because of the standard approximation argument, it is enough
to prove a weak-L! estimate for the associated maximal function. Let us make this
more precise.

For each L!'-function h on E, define the maximal function Mh by

(4.59) M(e) = sup { (e ) | e in}

k>0

for all x € F, and where Q(x, k) is as in the statement of Lemma 4.56.
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For each A > 0, set U(\) = {z € E : Mh(z) > A}, and denote by A()\) the set of
maximal cubes of A = [J, Ay such fQ |h| dp > Au(Q). Each cube of A(X) is clearly

contained in U()\), and conversely every point of U(A) lies in a @ € A(X). Thus U(X)
is the disjoint union of the cubes of A()), and

49w = Y w@<xt [ <ot [ pan

QEA(N) QREA(N)

This is the weak-L! estimate that we needed to deduce (4.57) for all f € L from the
case of continuous functions. This completes our proof of (2.6).

The next property (2.7) follows from (2.2), (4.22) and (4.39) by taking limits. The
reader should not worry about convergence: it is easy to see that ) | Fn41 — Fyl|
converges by (4.15), the fact that u is finite and the sequence {p,} is decreasing, and
because |ay,| < C and

Sl € 30 w@+ S p(Hy) < +oo

Qel Qn€PLI

by (4.21), (4.37), (4.51) and (4.52) (or directly (4.11).)
Next we want to prove (2.8). Set

(4.60) F={z € Fw : poo(z) 2 7},

where 7 = m. Note that dv = podp on F because F' C E,, and the circles C,

live away from F.,. Clearly 7dy < dv < dp on F, and so it is enough to prove that
W(F) > &

We know from (2.7) that [ gdv = a. Also v(F) > [pRe fdv = [ Regdv because
|fl <1and f =g on Es. Thus it is enough to prove that

(4.61) Re/ng—Re/ gdv < g.
F

Recall that dv = poodp + ), dvy, and that g(z) = f(z) on Ey and g(z) = a, on Cy,.
Then (4.61) is equivalent to

(4.62) Re /E .

oo

a

Fpocdpi+ ) [lvnl Reon < 5
F n

Note that peo(z) < 7 on Eo \ F, by the definition of F. Hence

(4.63) Re /E Fooodit < [[flloo Ti(E) <

o0

a

1

When Q,, € PLI, Rea,, = ag by (4.34) and ||v,|| < u(H,) by (4.37). Then
(4.64) llvn|| Re an < aou(Hy) when @, € PLIL.

When Q,, € I, ||vn|| = p}p(Qr) by (4.21), where p} is the constant value of p,_1 on
Qn, and oy, = p(Qy,) 7t fQ fdu by (4.19). So

(4.65) llvn|| Re ay, = pi, Re/ fdp  when @, € I.
Qn
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If furthermore @, € MI, then it satisfies (4.7) and so ||v,|| Rea,, < plaip(Qn) <

a11(Qyp). Otherwise we can only say that ||v,|| Reay, < pu(Qy) (because |f| < 1), but
we have the advantage of knowing that ) € HD. Altogether,

(4.66) > lvnll Rean <ao Y p(Hn)+ar Y w@u)+ D u(@n)-
n Qn€PLI Qn€I1NMI Qn€I1NHD
Recall from (4.11) that the cubes of I; U LI are disjoint. Also, > 5 cpryu(Hn) =

> ger1 #(Q), because the sets H,, are obtained from the set of cubes of LI by regrouping
brothers. Hence

(467) w0 wlHn) e Y w(Qn) < arp(E),

QnePLI QnEIl

and we can make this < ¢ by taking a; small enough. We can choose a; = for
instance.
The last sum is taken care of by noticing that the cubes of I; N HD are disjoint and

contained in O(M). Then

(4.68) > u(Qa) < p(0(M) < g

Qn EII NHD

81;(115) ’

by (4.6).

The desired estimate (4.62) follows from (4.67), (4.68), our choice of a1, (4.66) and
(4.63). This completes our proof of (2.8).

We did not choose ag yet. In fact, any value of ag in (0,a;) will work, but for the
sake of definiteness let us choose ag = %al.

We are now finished with the verification of the “easy properties” of g and v. Note
that the constant C in (2.6) and (2.8) can be taken to be < C; a~! y(E) for some abso-
lute constant Cq, as we announced after the statement of Theorem 2.4. The remaining
property, i.e., the L2-estimate for the maximal Cauchy integral of gdv, will keep us busy

for the rest of the paper.

4.3. L2-ESTIMATES: REDUCTION TO POSITIVE FUNCTIONS

Our proof that T*(gdv) € L?(dv) will be in the same spirit as the estimates in [C2],
even if we pay a rather high price for the fact that we are not working with a space of
homogeneous type.

In this section we reduce the proof of (2.9) to the study of certain positive functions.
The L2-estimates for these functions will be derived in the last chapter, using the small
boundary properties of our cubes (which we did not use so far).

We start with a few notations. First, it will be convenient to define H,, even when
Q. € I,. In this case we simply set H,, = Q,. Also set G,, = § when Q,, € I;. With
this convention,

(4.69) the sets H,, n € I, are disjoint

because the sets H,, ), € PLI, were obtained from the cubes @ € LI by regrouping
brothers, and by (4.11). Also

(4.70) Y. u(H,)<Cr

QnCB(z,r)
A~kn <y
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for all z € C and r > 0, by (4.51) and (4.52). Set

(4.71) on =F, — Fp_;

for n > 1. With our unified notations, (4.20) and (4.36) reduce to

(4.72) on = —1g, pn_1 fdp —On 1g, prn_1 fdp + o dvp;

we do not have to define #,, when @Q),, € I, since GG,, is then empty. We shall often use
the estimates

(4.73) an| <€ and lvn| < p(Hy),

which follow from (4.21), (4.23), (4.37) and (4.38).

Denote by BLI (brothers of LI) the union of all the sets A}, where @, € PLL. (The
definition of A} is given just before (4.25).) This is the set of the children of the cubes
of PLI that are not in LI. We should be a little more careful with the cubes of BLI,
because they are not necessarily disjoint. Set

(4.74) { 0(Q)=1 when Q€ I, ULL and

0(Q) =0, when Q€ A} and Q,, € PLL

There is a potential conflict here, because a given cube () could be in BLI and in I
at the same time. In this case 0(Q) will be defined twice. This will not be a problem;
it will always be clear from the context which 6(Q) we need to take, and the worse
thing that may happen is that a given cube will appear twice in a same sum, once with
0(Q) = 1 and once with 6(Q) = 6,,.

Note that for each @,, € PLI,

(4.75) > 0(Q) 1(Q) = b 1(Gr) < Cpu(Hy)

QeAx

by (4.33). Then

(4.76) Y. Qu@) <Cr

Q€BLI
QCB(s,r)
A~E@ <

when z € C and r > 0, because the left-hand side of (4.76) is less than

YD Q) @),

Q.ePLI QEA;
Qn CB(.Z,C’I“)

which is less than Cr by (4.75) and (4.52).
We are now ready to define the positive functions that will control T*(gdv). For each
cube Q € A, define a normalized inverse distance function pg by

(4.77) po(x) = {1+ A¥@ dist(z,Q)} ",
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and then set

. du(y)
478 =
(@79 (@) = ngl@) [ 520
for all z € C. Also set
(4.79) 2Q = {y € E : dist(y, Q) < A}
and

. dp(y)

4.80 e (z) = .
(4.80) () /QQ\Q e

The next proposition gives the control on T*(gdv) that we want on F.

4.81. Proposition. Ifz € E,, then

(4.82) T*(gdv)(z) <C+C ) 0(Q)1mo(2) efy(2)

Q€eI,ULIUBLI

+C ) 0(Q) 1g(x) hy(2).

QEBLI

We shall also have to estimate T*(gdv) on the circles C,,, and so we need a variant
of Proposition 4.81 for z € C,,. For each Q € I; ULIUBLI, let J(Q) denote the set of
integers m > 1 such that @,, does not meet @, or else ), € PLI and Q C G,,,. Then
set

(4.83) folx) = > 1, (z)eh(x),
neJ(Q)

and also

(4.84) ho(@)= > 1c,(z) hi()
n:Q,CQ

when @ € BLI.

4.85. Proposition. Ifz € |, Cy, then

(4.86) T*(gdv)(z) <C+C Y 0(Q) %) +C > 0(Q)ho().

Q€eI,ULIUBLI Q€eBLI

In this section we shall prove the two propositions; the functions eg and hg, will be
estimated in Part 5.

First we want to use the boundedness of T'(fdu) to get estimates on truncated inte-
grals. Our assumption from Chapter 2 says that

(4.87) My = sup {|T(fdp)(z)|: z € C\ E} < +o0,

where T'(fdu) is as in (2.3).
For each finite complex measure ¢ on C and all € > 0, set

(4.88) Tep(z) = /(C de(y)

\B(z,e) £ —Y
for all z € C.
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4.89. Lemma. We have that

(4.90) T*(fdu)(@)| < Mo + Csup {r~'u(B(z,r))}

for all x € C.

To prove this, let z and ¢ be given, and set h(z) = fC\B(m 0 %‘lg(y) for z € B(z, §).
Then

oy e - he < [ EE I < ()

by the usual computation. (Cut the domain of integration into annuli Ay : {y : 2ke <

|z —y| < 2"*1e}, k = 0,1,..., note that % < 272k¢=1 on Ay and p(Ag) <

2 esup, . {r~*u(B(z,7))}, and sum a geometric series.) Also, if z € B(z,£) \ E,

/ f) du(y)‘ < / dp(y)
B(z,¢) =Y N B(z,e) ‘Z - y| .

The mean value on B(z, 5) \ E of this last integral is (with |B| denoting the Lebesgue
measure of B)

(4.93) |B(ac,§)|_1/ {/ dny) }dz
B(z,e/2)\E B(z,) 1z =y

< 45—2/ {/ L}du(y)
B(z,e) B(z,e/2) |Z - y‘

< Ce'u(B(z,¢)).

(4.92) T (fdp)(2) = h(z)| =

Thus we may choose z € B(z,£) \ E so that |T(fdu)(z) — h(z)| < Ce 'p(B(z,¢)).
Since we already know that T'(fdu)(z) < My, (4.90) follows from this and (4.91).
Recall from (4.18) and (4.27) that p(z) = 0 on all cubes of I; ULI. Thus

(4.94) E does not meet any cube of I; ULI,

and Remark 4.12 says that E., does not even meet any cube @ such that @ C O(M).
(See the definitions (4.4) and (4.5).) From this we deduce that

(4.95) M, (z) = SI>118 {r='u(B(z,r)} <C forz € Ey.

Indeed, we can take C = 2M because if p(B(z,r)) > 2Mr, then u(B(y,2r)) > M2r
for y € B(z,r), whence B(z,r) C O(M) and all sufficiently small cubes containing z
would also be contained in O(M).

When z € C,, for some n, we may use the fact that the parent @n of @), is not
contained in I; U LI, plus Remark 4.12; to find that @, is not contained in O(M).
Because of this

(4.96) p(B(z,r)) < Cr whenz € C, and r > A7Fn,
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(See near (4.14) for the definition of k,,.)
;From (4.95), (4.96) and Lemma 4.89 we deduce that

(4.97) T*(fdp)(z) < C for x € Ey
and

A= Fn
(4.98) |T¢(fdp)(z)| < C forxz €C, and € > £
say.

Now we want to estimate T¢¢,,, with ¢,, = F,, — F,,_1, when x € E, or x € C,, for
some m # n. In both cases Lemma 4.43 says that dist(z,C,) > $ A%, Let us first use
(4.72) and estimate brutally:

(4.99) T (2)] < / dy) | o / du(y) . Cu(Hy)

H, |z =Yl G, lz—yl  dist(z,Cp)
d d
SC/ 1(y) +9n/ 1(y) ,
H, [T — Yl a, lz =yl
by (4.73), and then the fact that ﬁ > C~ldist(x,C,)" ! for all y € H,, because
dist(z,Cp) > $A7F» and diam(H, UC,) < CA™Fn.

We do not want to use (4.99) in all cases. In particular, when z is far from Q,, we
wish to “integrate by parts” and get an estimate with a better decay. Let us assume
that dist(z, Q,) > A7*»12 say, and that ¢ < dist(z, Q, UC,). In this case T¢p,(z) =
il dea(¥) 6. there is no truncation. Pick any point yo € Cy; then [ don (g) = 0, because

T—y ’

[ den =0, by (4.22) or (4.39). Hence

(4.100) ‘ / v y‘) d‘P" )

37 - ?Jo)
< lenll dlam(Qn U Cp) dist(z, Q, UCy,) 2

< Cu(H,) A=F dist(z, Q,) 2

by (4.72), (4.73), and the end of (4.75) when @,, € PLL.
When dist(z, Q,) > A% *2 but

(4.101) dist(z, Q, UCp) < € < dist(z, @, UCp) + diam(Q, UCy),

we may have a problem of truncation. In this case we shall prefer to use (4.99) which
takes the simpler form

(4.102) T pn(z)| < Cp(Hy,) dist(z, Qr)
(we still use (4.75) here when @,, € PLI). Set
(4.103) T(n,e) = {x € C: dist(z, Qn) > A~**2 and (4.101) holds}.

Our last case is when ¢ > dist(z, Q, UCy) +diam(Q, UCy). In this case T¢p,(z) =0
and we need not worry.
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Let us summarize this estimate. It will be convenient to set A, = {Q,} and A* =0
when @Q,, € I;. We claim that

(4.104)  |Tpu(z)[ <C ) 0(Q)ed(x) + Clppn,e)(w) p(Hy) dist(z, Qn) "
QEA UA*

when x € E, or x € C,, for some m # n.

When dist(z, Qn) < A7*»*2 this follows from (4.99) because pg(z) > C~! for all
Q € A, UA:. When dist(z,Q,) > A~ *+2 and x € T(n,¢), (4.104) follows from
(4.102). Otherwise we may use (4.100) (or else T¢¢,,(x) = 0). This completes the proof
of (4.104).

There are situations where we do not want to use (4.104), because some of the eg, (z)
are loo large. This is typically the case when @),, € PLI and x € () for one of the cubes
@ that compose G,,. We want to prove an alternate estimate for such cases.

For each m > 1, denote by Q7, the cube such that C,,, = 8(%3(@:@)) Thus Q}, = Qum
if @, € I, and @7, is one of the cubes of A,,, when @Q,, € PLL

4.105. Lemma. Let (Q € BLI, and suppose that x € E., N Q or that

1
(4.106) £ €Cpm, QF, CQ, ande > gA"“'".
Then

(4.107) T°(1q fdp)(z)| < C + hg(@).

Set a = T¢(1g fdu)(z). If ¢ > A7F@F1 then a = 0. So let us assume that
g < A7H@)+L Write 1g =1 — 1\ to get that

f(y) dp(y)
4.108 — T°(fd - S AY)
(1.108) =TG- [ T
Because of (4.97) and (4.98), we have that
(4.109) Te(fdp)(z)| < C
and

WD) _ 7@ o) < ¢

(4.110) ‘ /
(E\Q)\B(z,A-k(@+1) T —Y

For (4.109) we are also using (4.106) when z € C,,,. Since ¢ < A~*¥(@)*! we deduce from
(4.108), (4.109) and (4.110) that

d
(4.111) la| < C+/ #y)
(E\Q)NB(z,A—k(@+1) [z —y|

d
< C+h22(a:)+/ #y)
(E\2Q)NB(z,A—k(@)+1) z —y

(by (4.80)). Observe that dist(z, E\2Q) > $A7*®@). When z € Q, this comes from the
definition (4.79) of 2Q; if z € C,,, and @}, = @, then we even have that dist(z, £\ Q) >
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1AKQ) by (3.8); if z € Cy, and Q}, is strictly smaller than @, then dist(z,Q) <
CoAFm < LA=H@ and dist(z, E \ 2Q) > L A7*@ as well. Now the last integral in
(4.111) is less than CA*@) y(B(z, AM@+1)) which is < C by (4.95) or (4.96). This
proves the lemma.

We are now ready to prove Proposition 4.81. Let x € E, and € > 0 be given.
Obviously,

(4.112) T (gdv)(z)| < |T°(fdp)(z)|+ ) [T pn(@
n>1

The first term |T¢(fdp)(x)| is < C, by (4.97). Next let us take care of the set N7 of
integers n such that = ¢ Q,,. We apply (4.104) to each n € N7, sum, and get that

(4.113) Y Tn(@) <C >0 0(Q)1p\g(x)en (@)
neEN QeI ULIUBLI
+C Y Lrgne (@) p(Hn) dist(z, Qn) ™
neN

because the sets A, U A}, are all disjoint and contained in I; ULIUBLI. The first sum
is less than the right-hand side of (4.82); the second one is controlled as follows.

4.114. Lemma. For each x € C,

Z 17 (n.e) (@) p(Hy) dist(z, Qn) " < C.

n>1

If x € T(n,€), then dist(z, Q,) > A% 2 which is much larger than diam(Q,, UC,,).
(See (4.103) for the definition of T'(n,e).) Then (4.101) implies that dist(z,Q,) > 5
and @, C B(z,2¢). The lemma follows from (4.70).

So we control the set AV;. Now let N5 be the set of integers SHCE that x € ),,. Since
r € E, the only possibility is that @),, € PLI and = € GG,,. Let Q denote the cube of
A% that contains z. Let us use (4.72) to estimate T, (z). First,

(4.115) T (L, por fdu)(z)| < C Y 1mg() efy()
QEA,

by definition (4.78) of e, and the fact that pg(z) > C~' for Q € A,. Similarly,
(4.116) T*(6n 1, \g Pn—1 fdp) ()| < C D 0(Q) 1p\q(x) b ().

QEA,
Q#Q

Next observe that p,_; is constant on @; thus we may apply Lemma 4.105 to @ and
get that

@) T 001G pur Sl < OO pa () + OO(@) 1 5(a) ().
Finally
(4.118) T (v, dvy) ()| < Cp(Hy,) dist(z,C,) "t < C Z 1p\q(7)eg(z)

QEA,
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by (4.73) and the fact that |z — y| < Cdist(z,C,) for all y € H,, by Lemma 4.43.

We get an estimate for |T¢p,, ()| by summming (4.115), (4.116), (4.117) and (4.118).
When we sum this over all n € N5, we get terms that are obviously controlled by the
right-hand side of (4.82), plus C' )", 0, pp—1(z), which comes from (4.117). Now (4.27)
says that p,(z) = (1—0,,) pn—1(z) because z € G,. Thus 0,, pr—1(z) = pn—1(z) —pn(z),
and ). 0y pn—1(z) < 1. This completes our proof of Proposition 4.81.

We may now turn to the proof of Proposition 4.85. Let x € C,;, and € > 0 be given.
Let us first observe that we can reduce to the case when € > gy = A~%= /4. Indeed, if

€ < €y,
/ 9w dv(y)| _ -
B(z,eo)\B(z,e) T—Y |

because Lemma 4.43 tells us that on the range ¢ < |z—y| < g9, gdv is reduced to Q, dvp,;
the last inequality in (4.119) then follows from the good boundedness properties of the
Cauchy integral on a circle C,,, plus the fact that the density a,u(H,,) H'(Cp)™t of
Qmdvy, against Hausdorff measure is < C' by (4.73) and (4.13).

So let us assume that € > g¢ from now on. Then |T¢(fdu)(x)| < C by (4.98), and

(4.120) IT(gdv) (@) < C + 3 [T pu(a)].

Let N7 be the set of integers n such that m € J(Q) for all Q € A, UA%. (See just after
Proposition 4.81 for the definition of J(Q).) The cubes @,, n € N7, can be treated as
before: we use (4.104) for each n € N7, and when we sum we get

@21y Y M@ <0 Y Y 6@ e

neN; neN1 QEA, UAY

+C Y 1y (@) p(Hy) dist(z, Qn) .
nEN1

The first term is controlled by the right-hand side of (4.86) because eq(z) = e (z) for
all the cubes @ that show up (by the definition of 7). The second sum is less than C,
by Lemma 4.114.

Thus we are left with the set Ny of integers n for which m ¢ J(Q) for some Q €
A, UAY.

4.122. Lemma. Ifn € N>, then either m = n or else Q,, € PLI and Q,, C G,,.

Proof. Let n € N3. Since m ¢ J(Q) for some Q € A, U A%, Q,, and @, must meet.
Suppose m # n. Then either @), is strictly contained in Q,, or @, is strictly contained
in Q. Since the cubes in I; U LI are disjoint by (4.11), the first case implies that
Qm € PLI and Q,, C G,,. But then m € J(Q) for all @ € A,, U AY, which is not

possible since n € N,. Similarly, the second case implies that Q,, € PLI and Q,, C G,
which is what we want.

Now let n € N3, n # m, be given, and denote by @ the cube of A} that contains
Q- We want to use (4.72) and proceed as in (4.115-118) to estimate T, (z). First
let o = —-1g, pp—1 fdp — 0, 1Gn\§ pn—1 fdu. Then a brutal estimate gives that

(4.123) Tép(z) < C Y. 0(Q)eh(w)
QeA,UAY
Q#Q

(4.119) T (gdv)(z) — T (gdv)(z)| =
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because pg(z) > C~! for Q € A, U A¥. Notice that if Q@ € A, U A} \ {Q}, Q does not
meet Q, and hence m € J(Q) and ef)(z) = €q ().

Denote by p;, the constant value of p,_; on é Lemma 4.105 (applied to é) gives
that

(4.124) T(0n 15 pn—1 fdp)(z)| < COp py, + CH(Q) h% (z).
Notice also that th (z) = ﬁ@ (z), because Qn, C Q. The last piece from (4.72) is treated
as before:

(4.125) T (o, dvy ) (z)| < Cp(H,y,) dist(z,C,) "t < C Z eq(T)
QEA,

because dist(z,C,) > dist(Cp,,Cp) > iA_k" > C~ Yz —y| for all y € H,, by (4.45).
When we sum (4.123), (4.124) and (4.125) over all n € Ny \ {m}, we get terms that
are less than the right-hand side of (4.86), plus C')__ 6, p); that comes from (4.124).
Pick any point g € Q. Then p} = p,_1(z9) for all n € Ny \ {m}, and >, 0, p}, =
> On pn—1(z0) =Y, (Pn—1(z0) — pn(z0)) < 1, by the same argument using (4.27) as
before.

The proof of Proposition 4.85 will be complete as soon as we estimate T¢p,, ().
The good properties of the Cauchy integral on C,,, plus the fact that the density
|| ||V || HY(Crry) ™1 is less than C by (4.73) and (4.13), yield

(4.126) T (mdy ) ()| < C.

Next let @7, denote the cube such that C,, = 9(3B(Q%,))- (Thus QF, = Qu, if @, € I
and Q, € A, otherwise.) Let us check that

(4.127) T=(1gs, fdu)(@)| < C.

Indeed, T¢(1q: fdu)(z) =0 if ¢ > diam(Cp, U Qy,), and so we are reduced to the case
when A=Fm /4 < e < A7Fm+1 gsay. (Recall that we supposed that ¢ > A~Fm /4 using
(4.119). A simple computation gives that |T¢(1qs fdu)(z)| < CA* u(Qr,) < C, by
(4.13).

If Q. € I, we can sum (4.126) and (4.127) (multiplied by the constant value of
Pm—1 o0 Q) to get that |T¢¢p,,(x)| < C. Otherwise, we also have to add

(4.128) T(1g,\Qx, Pm—1 fdp+0m 1G,, pm—1 fdu) ()|
< Cp(Qm) dist(z, @ \ Q) H < C

by (4.13) and the fact that dist(z, Qm \ QF,) > dist(Com, E \ Qm) > A7%= /4. This
completes our proof of Proposition 4.85.

4.129. Remark. In Propositions 4.81 and 4.85 we stated estimates for T*(gdv)(z),
but our proof also gives estimates for the pieces that compose it. For each set J C N*
of indices, set

(4.130) T7(z) =T*(fdp)(x) + sup{ Z |T5g0n(a:)|} for z € Ew,
€>0 neJ
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where ¢,, = F,, — F},_1 is as above. If we follow the proof of Proposition 4.81, but forget
the estimates for Ty, () when n ¢ J, we get that

(4.131) Ti(x) <C+CY Y 0(Q) 1pg(r) ehy(x)

10 Y Y 0Q) 1o k)
neJ QEA}
Q,€PLI

for all x € F.

There is a similar estimate when € J,, Crn, but we have to be slightly careful
because we do not have any good estimate for T¢(fdu)(z) when z € Cp, and ¢ < A= Fm.
So we set

(4152) T3 (a) = sup {|T*(Fdp)(@)] : € > £ A~*n)
1
+ su T pn(x)| e > Z A Fm
p{% ¢ . }

when x € C,,,. Then our proof of Proposition 4.85 also gives that

(4.133) Ti(z)<C+CY_ Y 0(Q)eg(z)

neJ QEA,UA}

+C Y Y 0@ ho(z) forzel| JCm.
neJ QEA; m
QrEPLI

5. THE L2-ESTIMATES

Set R = I, U LIUBLI, and define four functions by

(5.1) Wi= > 0(Q)1gne. kb,
QeBLI

(5.2) Wi= Y 0(Q) hg,
QeBLI

(5.3) Wa= Y 0(Q1g\qeh
QER

and

(5.4) Wa =Y 0(Q) g
QER

In this part we show that W1, Wl, Wy and Wg lie in L2(dv); of course Theorem 2.4
will follow from this and Propositions 4.81 and 4.85.

The estimates that follow are a little unpleasant at times. It is probably a good idea
to keep in mind that when p is a nice doubling measure, we know how to prove the
desired estimates. Here we shall try to keep the same general organization. A typical
thing that we like to do is try to estimate scalar products in terms of the measures p(Q)
themselves, rather than quantities like ,u(lOOB(Q)), because the u(Q)’s are easier to
sum since the cubes are often disjoint. This is why we often do not want to get “bad
cubes”, i.e., cubes that do not satisfy (3.14). It will often be useful to decompose bad
cubes into smaller good cubes, as in the next section.
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5.1. THE FUNCTIONS W7 AND W;

First we introduce a few definitions that will make it possible to estimate the functions

W1 and Wl in a unified way and save some time. Let M; be a large constant, to be
chosen soon, and define a function r» on E by

(5.5) {r(:v) =0 if M,(zr) < M;, and

r(z) =sup {r > 0: u(B(z,r)) > Mir} otherwise.

We choose M; so large, compared with the constants from (4.95) and (4.96), that

(5.6) r(x) =0 when z € E
and
(5.7) r(xz) < A7Fn when z € Q,.
Next set

_ _duly)
(5.8) ho(e) = 1o(s) | TR

for each @ € A. A rapid comparison with the definition (4.80) of hg)(z) shows that
hq(z) = 1g(z) hi)(z) for x € E. Set

(5.9) Ws= Y 0(Q)hq.

QEBLI

5.10. Lemma. We have that
(5.11) W1 + Wil z2(aw) < CllWallL2(ap)-

It is clear that [Wa|32g,, = [z Wi Poodpt = ”Wjﬂi?(pw iy < IWal[Z2 (4, because
dv = poo dpp on Eoy. So it will be enough to control W;. We write that

(5.12) Wil = D>, Y. 0(Q) Q") (hg, hg)w

QEBLIQ'eBLI

with

(5.13) (TLQ,TLQ,),,:/'EQ%Q, v= Y / hé hiy dvy.
n:QnCQNQ’ /Cn

Fix n such that Q, C Q N Q’'. We claim that
(5.14) ho(z) < Chg(x) for each x € C,, and each 7 € H,,.
Indeed, if z € C,,, T € H,, and y € 2Q \ Q,

(5.15) r(z)+ T —y| < A7 |7 —y| < CA™Fn 4 |z —y| < Clz —yl,
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by (5.7) and because |z — y| > dist(Cp,, E \ Q) > dist(Cp,, E \ Q) > A% /2. (We used
the fact that @, C @ and (4.46).) Also, £ € @ because H, C @, C Q, and (5.14)
follows from (5.15) by taking inverses and integrating on y € 2Q \ Q. Of course the
analogue of (5.14) for @’ holds as well, and so

(5.16) /C

because ||v,|| < Cu(H,), by (4.73). Now we use the fact that the sets H,, are disjoint
subsets of @ (by (4.69)) to sum and get that

(o) Wiy (&) () < C [ (@) hey (@) du@

n

(5.17) (hq,hg)w < Clhg, hr),

where

(5.18) (hg,hgr) = / hg hg: dp.
QNQ’

Lemma 5.10 follows at once from this and (5.12) because

(5.19) WalZe@n = > D 0(Q)6(Q") (hq, ha)-

QEBLI Q’eBLI

Next we want to estimate the functions hg. Let us first check that

(5.20) dnly) C’<1 +log :—j)

/B(w,rg)\B(w,rl) r(z)+lz—yl

for all x € E and ro > r; > 0. This is easy to prove. First observe that

(5.21) / dp(y)  _ w(Bla,r(@) C

(z,r) T‘(.’E) + |J? - y‘ N T("I:) N

by the definition of r(z). So we may as well assume that r1 > r(z). Set Ay = {y €
E :2Fr <|z—y| <2FFlr} for all k > 0. Then p(Ag) < C2%ry because r(z) < rq,

and hence [ A, %ﬁ?—m < C for all k. Our claim (5.20) follows from this, because the

domain of integration in (5.20) can be covered by less than C(1 + log I2) domains Ay.

5.22. Lemma. For each Q € A and A > 0,

(5.23) p({z € Q:ho(z) > A}) < Ce™ u(90B(Q)),

where ¢ is some small positive constant.

For each z € Q, set d(z) = dist(z, E \ Q). Then d(z) < |z — y| < 100CoA~*@) say,
for all y € 2Q \ Q. Thus (5.20) tells us that

(5.24) ho(z) < C{1+log(1l +d(z)~" A_k(Q))}.
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The lemma will not be difficult to deduce from this and the small boundary property
of our cubes. Set

(5.25) N(Q) = {z € E\ Q :dist(z,Q) < A~F@~!}
U{z € Q:dist(z, E\ Q) < A~H@-1],

This is the same set as in (3.10-12); (3.13) and our choice of A = CC% in (4.1) give
that

(5.26) 1(M(Q)) < Cy%%u(90B(Q))

for all Q € A and I > 0. Of course the power 93 will not be needed precisely here; this
is just what we get by being too cautious.

Now let A > 0 be reasonably large (otherwise, there is nothing to prove). From (5.24)
we deduce that if hg(z) > A, then d(z) < CA™F(@ ¢=2C and hence z € Ni(Q) for
some [ > &;. The lemma follows from this and (5.26).

We shall find Lemma 5.22 more pleasant to use when @) is a good cube, i.e., when

(5.27) 1(100B(Q)) < Con(B(Q)) < Con(Q)

(the second inequality is automatic, since @} always contains F N B(Q)). Otherwise,
we shall find it useful to cut @ into a bunch of maximal good cubes, and then apply
Lemma, 5.22 to each of them separately.

For each @ € A, we denote by S(Q) the set of maximal good cubes contained in Q.
Thus, if @ already satisfies (5.27), then S(Q) is just composed of @ itself. Obviously
the cubes of S(Q) are disjoint. What is more interesting is that they almost cover Q.

5.28. Lemma. For each (Q € A,

u(Q\ U R) = 0.

ReS(Q)

To prove the lemma we intend to use the property (3.16) of our cubes: if @Q is a
bad cube (i.e., if (5.27) does not hold), then (100B(Q)) < Cq'p (10041 B(Q)) for all
integers [ such that 100" < Cy. We want to apply this with [ = [y, where [; is the largest
integer such that 100"+ < Cy. We get that

(5.29) 1(100B(Q)) < Cy°u(CoB(Q)) when Q is a bad cube.

Recall that we decided to take A = CCL°, where C is an absolute constant, and that
we still have the right to choose Cj as large as we want. Since C lo- decreases faster
than any given power of Cj, we can choose Cy so large that Cj o A=10 gay. Then

(5.29) implies that
(5.30) (100B(Q)) < A™°u(CoB(Q)) < A°u(100B(Q))

whenever () is a bad cube, and where @ still denotes the parent of (). Let us derive a
consequence of (5.30) and then return to Lemma 5.28.
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5.31. Lemma. Let Q € A, and let R C @Q be a cube such that all the intermediate
cubes S, RG S & Q, are bad. Then

(5.32) 1(100B(R)) < A7HRE=KD=1 4, (100B(Q)).

When R = @ and when R is a child of @, (5.32) is trivially true. Otherwise, we even
have that

(5:33)  p(100B(R)) < p(100B(R)) < AOHM @D, (100B(Q))

by repeated applications of (5.30). This proves Lemma 5.31.

Return to Lemma 5.28. Let @@ € A be given and, for each k£ > k(Q), denote by Zj
the set of cubes R C @ of generation k£ which are not contained in any cube of §(Q).
Also let Uy be the union of the cubes of Z;. Thus

(5.34) Q\ |J RcU forallk>k(Q).
ReS(Q)

Note that Lemma 5.31 applies to each cube of Z, and so
(5.35) p(R) < A-100=KQ-1) (100 B(Q))

for all R € Zk.

On the other hand, the balls B(R), R € Zy, are disjoint by (3.9), have radii > A%,
and are all contained in a ball of radius 100Cy, say. Thus Z; has at most C A?F elements.
Then (5.35) implies that pu(Uy) < CAYHE@)+1) A=8k and hence that u(Uy) tends to zero
when k£ — +oo. Lemma 5.28 follows from this and (5.34).

5.36. Lemma. If Q € BLI and R € §(Q),
(5.37) ho(z) < hg(z)+C

for all x € R.

Let Q@ € BLIL, R € S(Q) and = € R be given. For each integer k£ such that £(Q) <
k < k(R), let Ry denote the cube of Ay that contains R. Also set Dy = 2Ry \ 2Rk41
for k(Q) < k < k(R). Then

(5.38) ho(z) < h dny) AN

) o(x) < R($)+/2Q\2Rm > ka(Q)‘/D —|—|3:—y\
(compare with the definition (5.8)). Now

(5.39) #(Dy) < p(100B(Ry)) < A~10¢R=K@=1),(100B(Q))

by Lemma 5.31, and |z —y| > A%~ on Dy, because € Ry and by definition (4.79)
of 2Ry 1. Then

dp(y) (k—k(Q)) Ak(Q)
(5.40) /D @+l <CA™? AMP) 14(100B(Q))
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and (5.37) follows from (5.38) together with our assumption that ) € BLI and the
density estimate (4.13) (applied to (). This proves the lemma.

We are now ready to estimate scalar products. Fix a cube Qg € BLI, and first
consider cubes in the set

(5.41) B1(Qo) = {Q € BLI: Q C Qg and Q is not strictly
contained in any cube R € S(Qo)}.

Note that if @ € B1(Qo) and R € §(Q), then R € §(Qp) as well. Then
(5 42) <hQ7hQ0>_/ h’Q th dlj’_ Z / h’Q th d/”’< Z / hR+C) d
ReS(Q) ReS(Q)

by the definition (5.18) of the scalar product, Lemma 5.28, and Lemma 5.36 applied to
@ and to Qg. Next,

(5.43) / (hi +C)* dp < Cu(90B(R)) < Cu(R)
R
for each R € §(Q), by Lemma 5.22 and because R is a good cube. Thus (5.42) yields

(5.44) (hq hg,) <C > u(R)=Cu(Q) for all Q € By(Qo).
ReS(Q)

Now suppose that @ € By(Qo), where

(5.45) B2(Qo) = {Q € BLI: Q C Qo and there is
a cube R € §(Qy) such that Q & R}.

Denote by R = R(Q,Qo) the cube of S(Qp) that contains (). Let us first apply
Lemma 5.36 to Q)¢ and R to get that

(5.46) (hq, hq,) < /QhQ(hR +C) dp.

Denote by 1(Q) the largest integer I > 0 such that @ C N;(R), where N;(R) is as in
(5.25). When @ is not even contained in Ny(R), still take I(Q) = 0.

5.47. Lemma. We have that
(5.48) hr(z) < hg(z)+ C(1+1(Q)) on Q.

By definitions,

(5.49) be(a) < holo) + [ -,

z) + |z —y|
with D = 2R\ (2Q U R). We claim that

(5.50) C7LATFRZNQ) < g — y| < CA™FB) for x € Q and y € D.
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The second inequality is easy, because z and y both lie in 2R. We also have that
lz —y| > A7*@) because z € Q and y € E \ 2Q. This proves the first inequality
when A—FR)-UQ)=2 < A-K(@Q) gay. So let us assume that A~FE-UQ)-2 5 A-kQ),
Since @ is not contained in Njygy;1(R), we can find zo € @ such that dist(zo, E \
R) > A F®)-H@)~1  Then |z — y| > dist(z,E\ R) > A-MB-UD-1 _ diam@Q >
%A"“(R)_I(Q)_l, because we are in the case when A=F(@) < A=k(R)-UQ)=2  This proves
our claim (5.50).

The lemma follows at once from (5.50), (5.49), and (5.20).

;From (5.46) and Lemma 5.47 we deduce that

(551)  (hayhoy) < /QhQ (hg +C +CUQ)) du < C(1+1(Q)) /Q ho(hg + 1) dp.

Next we use Lemma 5.28 to decompose ) into maximal good cubes S, S € §(Q), and
then Lemma 5.36 to replace hg with hg + C. This gives

(5.52) / holhg +1)dp= > / hqg(hg +1)
Q SES(Q)
< Y / hs + C)?
 s€8@)
<C Z (90B(S
SeS(Q)
<C > s =cuQ),
SES(Q)

by Lemma 5.22, the goodness of the cubes S, and their disjointness. Because of (5.51),
this yields

(5.53) (hq hae) < C(1+1(Q)) w(Q) for all Q € Ba(Q).

Now we want to sum our estimates from (5.44) and (5.53). Let us first check that

(5.54) Y. 0@ (hqshq,) < Cu(Qo).
QeEB1(Qo)

Of course the contribution of Qg itself is < Cu(Qo), by (5.44). All the other cubes
Q € B1(Qo) lie in A% for some n such that @Q),, € PLI and Q,, C Q. For each such Q,,

(5.55) 3" 0(Q) (hq, hgo) < COn u(Gr) < Cu(H.,)
QEA;,

by (5.44) and (4.33). Now we can use the fact that the sets H,, are disjoint (by (4.69))
and contained in Qo to sum over n and get (5.54).

We want to prove a similar estimate for B2 (Qg). Decompose Ba(Qo) into the subsets

= {Q €BLI: Q & R}, R € §(Qq). For each I > 0, let B(R,[) denote the set of

the cubes in B(R) such that I(Q) =1[. If | > 2, each cube Q € B(R,!) is contained in

Ni(R) (by the definition of [(Q)). In particular the centre of B(Q), which indeed lies in
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Q, lies at distance < A7*(®)~! from E \ Q (compare with (5.25)). Since it also lies at
distance > A=*®) from E\Q (because ENB(Q) C Q), we get that A=F(Q) < A—kER)—I
and then @ C N;_3(R). Moreover, by the definition of B(R), @ is a cube of BLI and
its parent is a cube Q,, € PLI. We may now regroup cubes with a given parent @Q,, and
get that for | > 2,

(5.56) > 0Q) hg hgo) SCA+D) ) Q) p

QEB(R,I) QEB(R,1)

<SCA+D) > 0, pu(Gy)

Qn€PLI
QnCN;_2(R)

<SCA+1) ) u(Hy)

Qn€ePLI
QnCN;-2(R)

< C(1+1) p(Ni—2(R))
< C(1+1) C3*™ p(90B(R))
by (5.53), (4.33), the disjointness of the sets H,,, and (5.26). When [ < 2, we simply
repeat the argument for (5.54) or replace N;_2(R) by R in (5.56), and get less than
Cu(R) < Cu(90B(R)).
We may now sum over [ and then R € §(Qy) to get that

(5.57) >, 0@ (hgihg) < D, D COL+1)Cy' u(90B(R))
QEB2(Qo) RES(Qo) 1>0

<C Z (90B(R
ReS(Qo)

<C Y wR)<Cu(Qo)

ReS(Qo)

because the cubes R € §(Qp) are good, disjoint, and contained in Q. From this and
(5.54) we deduce that

(5.58) Y 0(Q) (hqs hgo) < Cu(Qo)-

QEBLI
QCQo

Let us observe, also for future reference, that

(5.59) D 0(Q) (@) < Cu(E).

QER

This follows by the same argument which was used to prove (4.51) and (4.76). Hence

(5.60) IWsl|2 40 = Z Ze@o) 0(Q) (hq, hq,)

<22 D 0(Qo) 0(Q) (hq, ha,)

Qo QCQo
< 020 Qo) 1(Qo) < Cu(E)
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by (5.9), the fact that (hg,hg,) = 0 when @ does not meet Qo, (5.58) and (5.59).
Because of Lemma 5.10, this also implies that

(5.61) W1+ Will3 () < Cu(E),
and completes our study of W7 and Wl.

5.2. THE FUNCTIONS eg, THE FARAWAY PIECE

We would like to estimate the functions W5 and Wg in a unified way, and to this
effect we introduce a variant of the functions ef, and € that will be easier to deal with.
For each cube Q € A, define a function eg on E by

(5.62) eo() = Lpo(a) pola) [ W)
Q |~’U ?/|
Set
(5.63) W(z)= > 0(Q)eq,
QER

with R = I; U LIUBLI. Let us first check that W dominates W5 and W; First
Wy (z) = W(z) for x € Ey, (compare (5.62) with (5.3) and (4.78)). Then

(5.64) IW2llZo () < IWIZ2 ()

because dv = po dpp on E,. Next set

(565) <5Q,ng>y = /gQ gQI dv
and
(5.66) (eq,eq) =/E€Q eq: dp

for all Q, Q' € R. We claim that
(5.67) <€Q,ng>y S C(eQ, 6Ql> for all Q, Q’ €eR.
To prove this claim, first observe that
(5.68) o= Y / ety ety dv,
neJ(@NI(Q) " Cn

where J(Q) and J(Q') are defined just after Proposition 4.81.

Let n € J(Q) be given. First observe that H,, C E \ Q by definitions. (Recall that
H, = Q, when Q, € I, and H, = Q. \ G,, when Q,, € PLL) Then dist(C,,Q) >
dist(C,, E\ H,,) > A=%n /2 by (4.47). Thus for all choices of Z € H,,, x € C,, and y € Q,
we have that

(5.69) |z —y| < CA™Fn 4 |z —y| < Clz —yl.
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If we integrate over y and observe that H,, C E \ @, we get that
(5.70) eg(r) < Ceq(z) forz €C, and = € H,.

Of course a similar estimate for @’ holds if n € J(Q') as well, and

(5.71) / eg egr Avn < C’/ e eq du
H

n n

because ||V, || < u(Hy) by (4.73). We may now use the fact that the sets H,, are disjoint
(by (4.69)) to sum (5.71) and prove our claim (5.67).

Of course a brutal expansion of ||W2||%2(dy) and ||W||%2(du) from their definitions
(5.4) and (5.63) now yields

(5.72) IW2llZ2 vy < ClIW L2 (g -

Thus it will be enough to control the function W.
We start with the “faraway piece”

(5.73) W =" 0(Q) 1ma2q e,
QER

which we even split further as follows. For each integer m > 0, set

(5.74) 68 = 1Dm(Q) 6Q,
where
(5.75) Dim(Q) = {z € E: A7H@+™ < dist(z, Q) < AH@+m+11

It is clear that E'\ 2Q = |J,,>o Pm(Q) (compare with (4.79)), and hence
(5.76) W = f: { D 0Q) eg}.

m=0 * QeR
A brutal estimate using the definitions (5.62) and (4.77) gives that
(5.77) 68(33) < CAR@—2m n(Q) 1p,.(@)-
We also have that
(5.78) 1(Dm(Q)) < CATHQ+m,

because @ € I; U LIUBLI and by (4.13) (applied to @ or one of its ancestors).
Next let @ and @ be two cubes of R, and assume for definiteness that k(Q') > k(Q).
Then

(5.79) (e, efn) < CAM@HRRD=4m Q) 1(Q") u(Dim(Q')) < CAFD=3™ Q) (@)

by (5.77) and (5.78).
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Denote by R.,,(Q) the set of cubes @' € R such that (e}, ef) # 0. If Q' € R (Q),

then D, (Q’) meets Dy, (Q), and hence Q' C B(zg, CA~F@)+™) where z¢ is for in-
stance the centre of B(Q). Then (4.51) and (4.76) tell us that

(5.80) Y Q) (@) < CATHOTm,
QERMm(Q)
Now
2
(5.81) H D 0(Q)ed
QeR L2(dp)
<2y > 0(@)0Q) (eF, e
QER Q'er
k(Q)>k(Q)

<CY, D, 0(QOQ)ANDTM Q) u(@)
RERQ'ERm(Q)

<03 0@Q) A7 u(Q)

QER
< CA™*™ u(E)

by (5.79), (5.80), and (5.59). Of course (5.81) and the definition (5.76) yield
(5.8 I 24y < Ou(E).

5.3. ESTIMATES FOR THE SEMI-LOCAL PART OF eg

Now we wish to study the remaining part of the functions eq, i.e., the functions
eqQ—1p\2¢ €@ = 129\ eq- Here again it will be helpful to use the almost decomposition
of the domain ) into maximal good cubes R, R € S(Q). Thus we set

dp(y)
5.83 gr(z) = /
(58 D= JaTe—y
for z € E'\ R, and then observe that
(5.84) Loweee < Y. lag\o9r-
ReS(Q)

We further decompose each 139\ gr into its very local part

(5.85) eo.r = 12r\Q 9R

and its less local part

(5.86) eQ,r = lag\(2rRUQ) 9R-
Set
(5.87) Wa=Y_ > 0Qeqnr

QER ReS(Q)
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and

(5.88) Ws=> > 0@Qe)r

QER RES(Q)

From the discussion above it is clear that

(5.89) W—-W>* = Z 0(Q) Lg\geq < Wy + Ws.
QER

In this section we want to estimate the semi-local part Wy.
Let @, Q' € R and R € §(Q), R' € S(Q') be given. We want to estimate the scalar
product

(5.90) (eq,r-€qQ' ') = / 9r gr' Ay,
D(R,R’)

where

(5.91) DR,R)=(2Q0n2Q")\ 2RU2R'UQUQ").

Obviously gr(z) < dist(xz, R)~! u(R), and similarly for R’. Thus

(5.92) (eq.r eq k) < W(R) u(R) a(R, R'),

where

(5.93) a(R,R") = / dist(z, R) ™" dist(z, R)) ! du(z).
D(R,R')

Next we continue and cut each a(R, R') into pieces ay, as follows. For each k¥ > 0 and
1 >0, set

(5.94) Up = {z €2Q : A7F@~F < dist(x, R) < A} @~k
(5.95) Vi = {z€2Q" : AFQ@)-! < dist(z, R') < A¥F@)-1]
and

(5.96) Dy, =D(R,RYNU,NV.

Clearly, 2Q \ @ is covered by the Ug’s and the set {z € E '\ Q : dist(z, Q) = 0} which
has p measure zero by (3.13). Using a similar fact for 2Q’ \ @’ and the V}’s we see that
D(R, R') is the union of the Dy ;’s and a set of y measure zero. Thus

(597) a(R, RI) = Z Z Qk.1,

k>0 1>0

where

(5.98)  ag; = /D dist(z, R) " dist(z, R") " du(z) < AP+ AM@) 4@ Dy ).
k,l
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If Dy is not empty, then Uy meets E \ 2R. Since dist(z, R) > A*®) on E \ 2R,
this forces A~k < A1=k(@)~k_ Of course there is a similar condition on I, and so

(5.99) 0<k<k(R)—k(Q)+1 and 0<I<k(R)—k(Q)+1 when Dy, #0.
For 0 < k < k(R) — k(Q) + 1, let Ry denote the cube of generation k(Q) + k — 1 that
contains R, and for k£ = 0 let Ry = ). Since R is a maximal good subcube of @), we
can apply Lemma 5.31 to Rg. Also, Uy C 100B(Ry) by definitions and so

(5.100) u(Us) < w(100B(Ry)) < CA7u(100B(Q)).

Because @ € R = I; ULIUBLI, we may apply (4.13) to @ or its parent and get that
1(100B(Q)) < CA™H@) . So

(5.101) p(Uy) < CATI0F A=k @) for 0 < k < k(R) — k(Q) + 1.
Of course the same argument applies to V; and gives that
(5.102) p(Vi) < CA™Y 14 (100B(Q")) < CA~10 A=H@D

for 0 <I<Ek(R)-EkQ)+1.
We want to distinguish two cases, depending on the size of

(5.103) § = dist(R, R).
We start with the case when
(5.104) E(Q) < k(Q') and &< ATR@)+T

(The first condition is just here for the sake of definiteness, but the second one is
serious.) In this first case we want to refine the estimate (5.102) before we apply it.
The idea will be that if )’ is somewhat smaller than @, Lemma 5.31 will tell us that
1(100B(Q")) < A=k@).

Let us assume that we are in Case 1, and that D(R, R’) is not empty. If z € D(R, R’),

(5.105) dist(z, R) < dist(z, Q") + diam Q' + dist(R’, R)
< A7RQ) 1 100C,AHQ@) 4 § < 24~ K(@)+1

because R’ C Q', z € 2@Q)’, and by (5.104). Since z € D(R, R') C E \ 2R, we also have
that dist(z, R) > A~*®) and so (5.105) yields

(5.106) E(Q") —1<Ek(R).

Now suppose that in addition £(Q') —1 > k(Q), and denote by R the cube of generation
k(Q') — 1 that contains R. Then R C R C @, and we may apply Lemma 5.31 to R and
get, that

(5.107) 1#(100B(R)) < CATIOR@I=K@) ;,(100B(Q)).
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Since D(R, R') meets 2Q)’, (5.105) tells us that all points of 100B(Q’) lie at distance
< 3ATR@)HL = 34-k(B) from R. Hence 100B(Q’) C 100B(R). We also know (from

(4.13) applied to Q or its parent) that x(100B(Q)) < CA™*@), and so (5.107) implies
that
(5.108) 1(100B(Q")) < CA™1ORQI~R(@) 4~k(Q),

This was when k£(Q’) —1 > k(Q). In this first case where (5.104) holds, the only other
possibility is that k(Q’) = k(Q), and in this case (5.108) also holds, more trivially, by
(4.13). So (5.108) always holds, provided that D(R, R') # () and we are in Case 1. Now
we use the first half of (5.102) to get that

(5.109) p(Vy) < CA—T00HRQ)-K(@)) 4—KQ)

Then we say that pu(Dy ;) < Min{pu(Ux), #(V1)}, and use (5.98), (5.101) and (5.109) to
obtain

(5110) ap) < CAk;—I—l Ak:(Q') Min {A—10k7A—lO(l—i—k(Q')—k(Q))}.
Next Min(u!? v1%) < 4?8 and so

(5.111) ap < CAFH AR@) g—2k 4—8(+K(Q")-k(@))
— CA~F—T A—Th(Q")+8K(Q) < C A=k ARQ)

(The other convergence factors will not help, and so we drop them.) Now use (5.92)
and (5.97), and sum over k£ and [ to get that

(5.112) (eq,r, e ,r) < p(R) p(R)a (R R’)
_ZZM akz
k

u(R) n(R') AMQ).

Now denote by Z; the set of all quadruples (@, R,Q’, R') where Q € R, R € §(Q),
Q e€R,R €8(Q), D(R,R') # (0 and (5.104) holds (i.e., we are in Case 1). Also set

(5.113) o1 = > 0(Q)0(Q") {eq.r: €' 1)
(Q,R,Q',R")EZ;
Then
(5.114) 01<020 )0(Q") w(R) p(R') AH@
scz > 0(Q)0(Q) (@) m(Q) AM9),
QER Q' eER(Q)
where

(5.115) R(Q) ={Q € R:k(Q') > k(Q) and 2Q N2Q’ # 0}.
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(The last condition is needed if we want any of the sets D(R, R') to be nonempty.)
Notice that all the cubes @', @' € R(Q), are contained in a fixed ball centered on @
and with radius CA~%®), Then (4.51) and (4.76) imply that

(5.116) Y Q) @) < CATHD
Q'ER(Q)
and then
(5.117) 01 <C Y 0(Q) Q) < Cu(E)
QER
by (5.59).

Now we come to our second case when k(Q’) > k(Q), but (5.104) fails, i.e., when
(5.118) E(Q) > k(Q) and &> AR@)+L

In this case there is an additional constraint that we want to use: if Dy ; is not empty,
then Uy meets V; and

(5.119) 5 = dist(R, R) < AI=H@ =k 4 g1-K(@Q)~1

(Compare with (5.94) and (5.95).) Since in this case § > A~F@)+1 » A-k(@)-I
(because | > 0), we even have that

(5.120) § < 2A7RQ@)k

Here diam @’ is much smaller than ¢ (by (5.118)), and hence not much larger than the
“scale” A~F(@)=F of [}, (by (5.120) and the definition (5.94)). Thus it will be reasonable
to derive our estimate of y(Dy ;) only from the estimate (5.102) on p(V;). Let us do
this. From (5.98) and (5.102) we deduce that

(5.121) ap,y < CAFI ARQ),

Sum this first over I, with k fixed. We get less than CA*¥T%(Q)_ Then sum again over
all k> 0 such that (5.120) holds. This gives < C6~1. Thus (5.92) and (5.97) yield

(5.122) (eq,r:eqr') < u(R) u(R') a(R, ')
= pu(R) u(R)D ) an
k l
< Cp(R) u(R') 67"

Let Z5 denote the set of quadruples (@, R,Q', R') with Q € R, R € §(Q), Q' € R,
R’ € §(Q'), and for which (5.118) holds and D(R, R') # (. Also set,

(5.123) o9 = > 0(Q)0(Q") (eq.r, eqr.r')-

(Q,R,Q",R")EZ,

Then
(5.124) o2 <Y 0(Q)0(Q) n(R) p(R') dist(R, R')™".

Next we fix Q € R and R € §(Q), and we wish to sum over ' and R’. We want to
compare the sum with an integral.
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5.125. Lemma. If (5.118) holds and D(R, R') # 0,

(5.126) the parent Q' of Q' is contained in
{z € E : dist(z,Q) < CATH@)},
(5.127) dist(R, R') > % A-R®R)
and
(5.128) dist(z, R) < Cdist(R,R') forallz € Q'

Recall from (5.91) that D(R, R') C 2Q N2Q’ and that £(Q’) > k(Q) by (5.118). Our
first assertion follows from this.

Next D(R, R') C 2Q'\ 2R, and so 2Q)' meets E'\ 2R and in particular there are points
in 2Q’ at distance > A~*(®) from R. On the other hand all points of 2Q’ lie at distance
< diam 2Q" + dist(R/, R) from R, and this number is < 2dist(R, R") by (5.118). This
proves (5.127).

Finally, if z € @', then dist(z,R) < dist(z,R') + dist(R’,R) < CA=*@)+! 4
dist(R', R) < C'dist(R, R’) by (5.118). The lemma follows.

5.129. Lemma. For each choice of (Q and R, set
(5.130) =Y ") 0(Q) w(R) dist(R, R') 1,
I RI

where we sum over pairs (Q', R') such that (Q,R,Q',R') € Z5. Then
(5.131) 7(@Q.R)<C [ pndn,
Q

where Q = {z € E: dist(z,Q) < CAT*@)} s the same set as in (5.126), and

—1

(5.132) pr(z) = [A7*B) 4 dist(z, R)]
To prove the lemma, first observe that if (Q,R,Q',R') € Z,, the hypotheses of

Lemma 5.125 are satisfied. Then dist(R, R')~* < Cmg(Q'), where mg(Q') = inf {pr(z) ]
x € @'} This follows from (5.127) and (5.128). Next

(5.133) > u(®)dist(R, R) ™t < Cu(Q) ma(Q").
R'es(Q")

Now all cubes @’ that show up in (5.130) lie in A,, U A} for some cube @, such that
Qrn C Q. (This comes from (5.126).) Thus

(5.134) s@QR<C Y > 0Q) w@) mr(@Q)
n:Q, CO @ EARUAL
< C Z mR Qn)
n: QnCQ
<C Z / prdp
n:Q.cg’ in

<c /Q o () dy(z)
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with a definition of mp(Q,) similar to the definition of mz(Q’) above, and by (4.75)
and the disjointness property (4.69) for the H,,’s. This proves the lemma.

Our next task is to estimate the integral in (5.131). As usual, we cut it in slices
and use the fact that there is no good cube between R and ). Let us start with the
contribution of the “annuli” Ug, 0 < k < k(R) — k(Q) + 1, from (5.94). We can use
(5.101) to get that

(5.135) / prdp < AHOTF (U) < CATF,
Uk

The contribution of the region near R can be estimated in the same way. If Dy =
{z € E : dist(z, R) < A~*B®)~11 then pr(r) < A*® on Dy (and even everywhere),
and Dy C 100B(R). Then u(Do) < p(100B(R)) < CA-WOEE-K@) ,(100B(Q)) <
C A~ 10k(R)+9K(Q) by Lemma 5.31 and the density estimate (4.13), applied to Q or its
parent. Thus

(5.136) / ordp < AFB) (Do) < CAIRID=R@)),
Do

For the exterior “annulus” Dy, = {z € Q : dist(z, R) > AT} we use (4.13) again

(applied to an ancester of @, possibly its grandparent) to get that ,u(@) < CAKQ),
and then

(5.137) / vrdp < C.
D

;From (5.135), (5.136), (5.137) and the fact that Q = Dug U Do U (UZ(:%)_’C(Q) Uk), we
deduce that

(5.138) /~ vrdp < C,
Q

and then Lemma 5.129 tells us that ¢(Q,R) < C. If we compare (5.124) with the
definition (5.130), we obtain that

(5.139) 5<CY Y 6QuER) <C Y 0Q) uQ) < Cu(E)

QER RES(Q) QER

by (5.59). Note that oy and o9 control all the terms where £(Q') > k(Q), and so

(5.140) Wallfo@m =11, Y. 0(Q)eq.rll3 < 201 + 202 < Cu(E)
QER RES(Q)

by the definition (5.87) of Wy, the definitions (5.113) and (5.123) of o1 and o3, and the
estimates (5.117) and (5.139). This completes our study of the function Wjy.
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5.4. THE VERY LOCAL PART Wy

We are left with W5 = 3 "ncr D res(o) 0(Q) g gy With e p as in (5.85). We start
with an estimate of e%, g for Q and R fixed. Of course we may assume that z € 2R\ @,
since otherwise ey p(z) = 0. Set

(5.141) dg(z) = AF® dist(z, R).
5.142. Lemma. We have that
(5.143) e p(x) < Cdp(z)~ 10 ARR)-R(Q),
Before we prove the lemma, observe that we could have proved an estimate with only

a logarithmic singularity in dg(x), but we prefer (5.143) because of the convergence
factor A—9k(E)=KQ)),

To prove the lemma, recall first from (5.26) that u(Q\Q) = 0. Let z € 2R\ Q be given
and denote by I(z) the largest integer [ such that x € Nj(R), where N;(R) is as in (5.25)
(or Chapter 3). Note that the only case when x ¢ Ny(R) is when dist(z, R) = A=),
because x € 2R. In this case we still set [(z) = 0. In all events

(5.144) AR~ < dist(z, R) < A~FHEB)=I(@),

We split the domain of integration R into regions

(5.145) Dy={yeR: A" <|z—y|<AF}

Let us check first that if Dy is not empty, then

(5.146) k(R) <k < k(R) + l(z) + 1.

If y € R, then |z —y| < A~F(B)*! hecause « € 2R, and so A~* < A=*BE)+1if D is not
empty; this proves the first inequality. Similarly, the first inequality in (5.144) forces
A~FB)=@)-1 « A=F+1if Dy is not empty; this completes the proof of (5.146).

Next d(y, E\ R) < |z —y| < A" for y € Di, and so D C Ny_p(r)—1(R) if
k > k(R). (If k = k(R), we shall simply remember that Dy C R.) Then

(5.147) | g“_(y;‘ < AFp(Dy) < CAFCy™EHD) (00 3(R))
k

by (5.26). Recall from (4.1) that A = CCE% for some absolute constant C, and so

ACy® = cCf < CY10CE0 = AY10 if Cy is large enough, which we are happy to
assume. Because of this,

/ dply)
D Tyl —

(5.148)

5 (k—k(R)) 4—9(k(R)—k(Q)) A’“(Q)M(looB(Q))
75 (k—k(R)) 4—9(k(R)—k(Q))
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by Lemma 5.31, the fact that R is a maximal good subcube of @), and the usual density
estimate (4.13) applied to @ or its parent.

When we sum (5.148) over k, we get a geometric series whose leading term is when
k is largest, i.e., k = k(R) + I(x) + 1. Also note that A=**) ~ dp(x) by (5.144). Thus

=

< Cdp(z)~ 15 A~9KERB-KQ).

k(R)+1(z)+1

(5.149) ed) p(z) = / dnly) _
Rz -y k=k(R)

< CA'E A 9K(B)-K(Q)

This proves Lemma 5.142.
Now we fix the cubes Q, Q', R, R’, and we estimate

(5150) I(R, RI) = (eOQ,R, 60Q17R/> = / 60Q,R eOQI’RI d/lv,
D(R,R')

where

(5.151) D(R,R) = (2RN2R)\ (QUQ").

Obviously by Lemma 5.142

(5.152) I(R,R') < CA 2R —R(@)+K(E)=KQ") j(R R"),

where

(5.153) HRR) = [ (dn(o) dro(a)) ™ due)
D(R,R')

and dp is defined like dg (i.e., dp: (z) = AFE) dist(z, R).)
5.154. Lemma. Suppose for definiteness that k(R') > k(R). Then
A—Fk(R) 5

R)).
A5 1 g )| M)

(5.155) J(R,R) < c[

We start the proof of Lemma 5.154 in the case when
(5.156) dist(R, R') > diam R’ + A~F(&),

In this case the function dg(z) is essentially constant on D(R, R") (because D(R, R') C
2R’) and

(5.157) J(R,R') < C[AF®) dist(R, R’)]‘% / dr (2)7 10 du(z).
D(R,R’)

The last integral is easy to estimate. Since we are going to need a variant later, let us
state a slightly more general lemma.
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5.158. Lemma. For each cube R € A, set
Sr(z) = AP dist(z, R) + dist(z, E\ R)}

for allz € EN100B(R). Then
(5.159) / r(z)~% du(z) < Cu(100B(R)).
EN100B(R)

To prove the lemma, we use the sets N;(R) of (5.25) and Chapter 3. For each | > 0,

(5.160)

/ Sml@) ¥ dp(x) < A3V u(N(R))
Ni(R)\Ni41(R)

< CA5 C3 % u(90B(R))
<C(C'C3 Cy*) n(90B(R))

by (5.26), and because A = C'° C1% for some absolute constant C’, as in (4.1). We
may sum over [ > 0 and get that

(5.161) /N - Sr(z) 73 du(z) < Cu(90B(R)).

(The set where d0g(x) = 0 has measure zero by (5.26), so we can forget about it.)

On the rest of E N 100B(R), that is, on (E N 100B(R)) \ No(R), dr(z) > C~* and
the corresponding integral is < Cp(100B(R)). The lemma follows.

Notice that 6g = dr on 2R \ R, and so it follows from (5.157) and Lemma 5.158
(applied to R’) that

(5.162) J(R,R') < C[AF® dist(R, R')] "™ 11(100B(R)).

This is less than the right-hand side of (5.155) because of (5.156) and the fact that
1(100B(R’)) < Cop(R') since R’ is a good cube. This proves (5.155) when (5.156)
holds.

Now assume that dist(R, R') < diam R’ + A~*®)_ Cover 2R’ \ (RU R') by the
cubes S of generation k(R') + 1 that meet 2R’ \ (R U R’). Note that 100B(S) C
100B(R’) for each such cube S, and also that we need less than C cubes S. If z € S,
dg(z) dp: (z) > AFR) ARER) dist(z, E \ S)2, because S does not meet R or R’. (Recall
that k(S) > k(R') > k(R).) Thus

(5.163) / (dR dR/)_ll_O dlu'
D(R,R')
< AT ERTE) 3 / dist(z, B\ §)7* du(x)
5 /s
< CA- 35 RR+R(R) ZA%k(R') 11(100B(S))
5

< C A 10 R(B)—k(R) 1(100B(R))
< C A~ 10 (R(B)—k(R") u(R")
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by Lemma 5.158 (applied to each S), and the fact that R’ is a good cube. This time
AFE) 4 dist(R, R') ~ A~FE) because dist(R, R') < diam R’ + A~*®) and (5.155)
follows from (5.163). This completes our proof of Lemma 5.154.

Now let us fix Q, Q" and R, and try to sum I(R, R’) over all cubes R’ € S(Q"). We

want to do a comparison with an integral. If R’ € S(Q') and & is any point of Q' (the
parent of Q'), and if D(R, R') is not empty,

(5.164) dist(z, R) + dist(z, E'\ R)
< dist(z, R') + diam R’ + dist(R’, R) + dist(z, E' \ R)
< CA™HQ) 4 dist(R', R) + dist(z, E \ R)
< CA™*@) 1 dist(R, R') + dist (z, D(R, R))
< CA™M@) 4 dist(R, R) + CA~*Q)
< CAFE) =@ A=FE) | qist(R, R')]

because R’ C Q', and D(R,R') = (2RN2R')\ (QUQ') is contained in E \ R and meets
2(Q)'. With the notation of Lemma 5.158,

(5.165) Sr(z) < C i

for all z € @'.

Now suppose that
(5.166) Q' C 100B(R),

and let Sp(Q') denote the set of cubes R’ € S§(Q') such that k(R') > k(R).(We need
not prove that (5.166) implies that k(Q') > k(R), so let us not bother.) Then

(5.167) > IRR)

R'eSr(Q")

<CY AE)=RQ)

A-k(R) A
—k(R' . / IJ’(R)
A—K®) + dist(R, R')

< C’Zinf {(53(35)_1_10 cx € @'} w(R)
Y

< Cinf{6p(z) ™ :z € Q'} u(@Q)

by (5.152), (5.155) and (5.165). We have dropped most of the convergence factor in
(5.152) because it will no longer be useful here. Now we want to sum over Q' as well.
Set

(5.168) =3 ) 0@ I(R,R),

I RI

where we sum on pairs @', R’ such that (5.166) holds and k(R’) > k(R). For each cube
@, such that Q,, C 100B(R),
(5.169) S 0(Q) u(Q') inf {0r(z) T 1z € Qn)

QeEAUAY

< Cu(H,) inf {0g(z)" % :z € H,}

<c / 6 (x) T dp(z)

H

n
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by definitions, and (4.33) when @,, € PLI. Then

(5.170) nmw<c Y / 10 gy,

n:Q, C100B(R)

<C / 577 dy < Cu(100B(R)) < Cu(R)
100B(R)

because all the cubes @' for which (5.166) holds lie in A,, U A for some @Q,, such that
Qn C Q' C 100B(R), by (5.167), (5.169), Lemma 5.158, and the fact that R is a good
cube.

Let Z; be the set of all quadruples (Q, R,Q’, R') for which @, Q" € R, R € §(Q),
R' € §(Q’), (5.166) holds, and k(R') > k(R). Then

(5.171) Ze ) ety rr €D ) = Ze )I(R,R)
<C Z D (@) u(R)

QER RES(Q)

<C ) 0(Q) Q) < Cu(E)

QER

by (5.150), (5.168), (5.170), and (5.59).

Now let Z5 denote the set of quadruples (Q, R,Q’, R') with Q, Q" € R, R € §(Q),
R' € §(Q'), and k(R') > k(R) as before, but (5.166) does not hold.

If (5.166) does not hold and D(R, R') # 0, then k(Q’) < k(R) + 1 because Q' is not
contained in 100B(R) while 2Q)" meets 2R. Then

A_k(R) / 7 !
< ARB)—K(R) < gR(R)—K(@Q)+1

5.172
( ) A~kER) 4 dist(R, R') ~

and we deduce from (5.155) that J(R, R') < CA*E)=kQ") ,(R’) and then from (5.152)
that

(5.173) I(R,R') < CAFE)TKQ) | (R".

(Here again we may drop most of the convergence factor.) Because D(R, R') C 2RN2R’
and k(R’) > k(R), we only need to consider cubes R’ that are contained in 100B(R).

For a given cube R’ C 100B(R), the sum over all cubes @)’ of generations < k(R) +1
of the right-hand side of (5.173) is less than CA—*E)+k(R) |,(R') because there is at
most one cube Q' per generation. If we sum this bound over all cubes R’ of a given
generation k' > k(R), we get less than CA~F +k(R) 1£(100B(R)), and if we sum again
over all possible generations k' > k(R), we get less than Cp(100B(R)) < Cu(R) because
R is a good cube. Thus for each Q € R and each R € S(Q),

(5.174) Y ) IR, R) < Cu(R),

Ql RI
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where we sum over all pairs ', R’ such that (Q, R,Q', R") € Z>. Hence

(5.175) Ze )0(Q) (e r €D rr) Ze I(R,R)
<C Z d 0@
QER RES(Q)
<C ) 0(Q) mQ) < Cu(E),
QeR

by (5.150), (5.174), and (5.59).
When we collect the sum over Z; U Z5, we get all the terms for which k(R') > k(R);
the other ones can of course be obtained by symmetry, and so

2 < Cu(E)

(5.176) ||W5||%2<du)=\ Y Y 0Q)dn

QER RES(Q)

by (5.171) and (5.175).

This completes our estimate of the last piece of W. (See (5.82), (5.89), (5.140) and
now (5.176) for the control of W.) Since we have seen also that W controls W and W
(see (5.64) and (5.72)), we get the desired bounds on these functions as well. Thus the
proof of Theorem 2.4 is complete.

5.177. Remark. Suppose we give ourselves a set J C N* and define functions Wy,
W, Ws and Wy as in (5.1)—(5.4), but where we sum only on those cubes Q € R that
lie in A, U A}, for some n € J. A close look at the arguments in this chapter shows that
we also get that

(5.178) W 122y + W 2y + WS 172 a0y + IWS (12 a0
<C Z p(Hy) < CU( U Qn)
neJ neJ

where the last inequality comes from (4.69). The proof is the same; we simply have
to replace the usual estimate that ) - 0(Q) u(Q) < Cu(E) at the end of our various
estimates (i.e., in (5.60), (5.81), (5.117), (5.171) and (5.175)) with the corresponding

fact that Zn { Z.AnU.A; Q(Q) ,U,(Q)} <C Zn IU’(H”)

5.179. Remark. In our L2-estimates we have used the measure v, but we could also
have used the following slightly larger measure

5.180 tT=15 d Ydv, =15_d )dchn,
( ) v E M_{_T;(pn v E M_{_T;Hl(c) ‘

where p} denotes the constant value of p,_; on @, as in the definitions (4.17) and
(4.26) of v,. (Compare (5.180) with the definition (4.41) of v.) Note that

(5.181) (pr) "t Il = p(Ha)
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by definitions (or by (4.21) and (4.37)).

We claim that our proof also allows the same control on the norms of Wi, Wl, Wy
and W in L?(dv*), and similarly that

(5.182)
W 1122 a0ty + W 122 a0ty + W3 122 a0y + IV (12 a0ty

<CY u(Hn) scw( U Qn).

neJ neJ

__This time we only have to recall the way we obtained our control on W7, Wl, Wy and
W in terms of the L2-norms (for du) of the functions W3 and W defined in (5.9) and
(5.63). For W1, we only noticed that hq(z) = 1¢(z) h¢y(z) for € Ex, so that W1 = W3

on E. Thus ||W1||%2(d,,+) < ”W3”%2(du) directly (i.e., without using the weight po).

As for Wl, let us note that the proof of Lemma 5.10 only uses the information that
lvn|| < u(H,), and not any more precise informations that would have used the fact
that ||v,|| = pf w(H,) and the precise size of p%. Thus we may replace v with v+

in Lemma 5.10 and use (5.181). Similar remarks apply to our control on Wy and W5
using the function W: we only used the fact that Wa(z) = W(z) on E (and not the
size of py, on F,) and the fact that ||v,|| < p(H,) (and not the precise value of p).
Except for these initial reductions (i.e., Lemma 5.10, (5.64) and (5.72)), the argument
of Chapter 5 does not need to be modified; we were only working with the measure pu.
The same modifications also work with W7 and its colleagues, and gives (5.182).

Remarks 5.177 and 5.179 are probably the first step towards a BMO-type estimate
on the T¢(gdv).
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