Riemannian geometry

Exercises 6, 8.12.2015

In problems 1 to 3 , let g be the Riemannian metric

$$
g=\frac{d x^{2}+d y^{2}}{\left(x^{2}+y^{2}\right) \log ^{2} \sqrt{x^{2}+y^{2}}} .
$$

on the punctured disc $B(0,1)-\{0\}$.

1. Let \mathbb{H}^{2} be the upper halfplane model of the hyperbolic plane. Let $J: \mathbb{C} \rightarrow \mathbb{C}$ be the mapping

$$
J(z)=i z
$$

Show that the mapping $\left.\operatorname{Exp} \circ \mathrm{J}\right|_{\mathbb{H}^{2}}: \mathbb{H}^{2} \rightarrow(B(0,1)-\{0\}, g)$ is a local Riemannian isometry.
2. Show that the Riemannian manifold $(B(0,1)-\{0\}, g)$ is complete.
3. Describe the minimizing rays of the Riemannian manifold $(B(0,1)-\{0\}, g)$.
4. Show that the (1,3)-curvature tensor of a Riemannian manifold M is a $\mathscr{F}(M)$ multilinear mapping and that the $(0,4)$-curvature tensor is a $(0,4)$-tensor.
5. Let M be a Riemannian manifold and let $p \in M$. Show that

$$
R(y, x, z, w)=R(x, y, w, z)=-R(x, y, z, w)
$$

for all $x, y, z, w \in T_{p} M$.
6. Show that the cone

$$
\left\{(x, y, z) \in \mathbb{E}^{n}: x^{2}+y^{2}=c z^{2}:(x, y, z) \neq 0\right\},
$$

is a flat submanifold of the Riemannian manifold \mathbb{E}^{3}.
7. Let M be a Riemannian manifold and let $p \in M$. Let P be a 2 -dimensional plane in $T_{p} M$. Let $x, y \in P$ be linearly independent. Show that the expression

$$
K(P)=\frac{R(x, y, x, y)}{g(x, x) g(y, y)-g(x, y)^{2}}
$$

is independent of the choice of x, y.

[^0]
[^0]: ${ }^{6}$ Vihje: Spherical coordinates may turn out to be useful.

