Riemannian geometry Exercises 5, 1.12.2015

1. Let M be a Riemannian manifold. Let $p \in M$ let q be a point in a normal ball neighbourhood of p. Show that the radial geodesic from p to q is the unique minimizing path up to renormalization.

2. Let *M* be a Riemannian manifold. Let $p, q \in M$. Show that if $\delta > 0$ is small enough, there is a point $p_0 \in \partial B(p, \delta)$ such that

$$d(p, p_0) + d(p_0, q) = d(p, q)$$
.

3. Let γ and η be two geodesics on a complete Riemannian manifold M such that for some a < b we have $\gamma(a) = \eta(a), \gamma(b) = \eta(b)$ and $\ell(\gamma|_{[a,b]}) = \ell(\eta|_{[a,b]})$. Show that $\gamma|_{[a,b+\epsilon]}$ is not minimizing for any $\epsilon > 0$.

Let M be a complete noncompact Riemannian manifold. We say that a mapping $\rho \colon [0, \infty[\to M \text{ is a minimizing ray if } \rho_{[0,T]}, T > 0 \text{ is a minimizing geodesic for all } T > 0.$

4. Let *M* be a complete noncompact Riemannian manifold. Show that for each $p \in M$ there is a minimizing ray ρ such that $\rho(0) = p$.

5. Show that the complex exponential map $\operatorname{Exp}: \mathbb{C} \to \mathbb{C} - \{0\},\$

$$\operatorname{Exp}(z) = \sum_{k=0^{\infty}} \frac{z^k}{k!} = e^{\operatorname{Re} z} (\cos(\operatorname{Im} z) + i\sin(\operatorname{Im} z))$$

is a Riemannian local isometry, when \mathbb{C} has the Euclidean Riemannian metric and in \mathbb{C} we use the Riemannian metric

$$g = \frac{dx^2 + dy^2}{x^2 + y^2}$$
.

6. Show that the Riemannian manifold $\left(\mathbb{R}^2 - \{0\}, \frac{dx^2 + dy^2}{x^2 + y^2}\right)$ is complete.

7. Describe the minimizing rays in $\left(\mathbb{R}^2 - \{0\}, \frac{dx^2 + dy^2}{x^2 + y^2}\right)$.