Riemannian geometry

Exercises 4, 24.11.2015

1. Show that the path $t \mapsto(\cos t, \sin t, 0)$ is a geodesic on the Riemannian manifold \mathbb{S}^{2}.
2. Determine the maximal geodesics of speed 1 of the Riemannian manifold \mathbb{S}^{2}.
3. The mapping $F: B(0,1) \rightarrow\left\{x \in \mathbb{R}^{2}: x_{1}>0\right\}$,

$$
F(x)=\frac{\left(2 x_{1}, 1-\|x\|^{2}\right)}{x_{1}^{2}+\left(x_{2}+1\right)^{2}}
$$

is a diffeomorphism. Show that it is an isomorphism from the Riemannian manifold $\left(B(0,1), \frac{4 g_{E}}{\left(1-\|x\|^{2}\right)^{2}}\right)$ to the upper haplfplane model \mathbb{H}^{2} of the hyperbolic plane. The Riemannian manifold $\left(B(0,1), \frac{4 g_{E}}{\left(1-\|x\|^{2}\right)^{2}}\right)$ is the Poincaré disc model of the hyperbolic plane.
4. Determine the maximal geodesics of speed 1 of the Poincaré disc model of the hyperbolic plane.
5. Determine the exponential map of the Poincaré disc model of the hyperbolic plane at 0 .
6. Compute the length of the circle of radius r and the expression of the hyperbolic metric in normal coordinates with polar cordinates.
7. Show that a Riemannian manifold is connected if and only if any two points can be connected by a piecewise geodesic path.

[^0]
[^0]: ${ }^{1}$ Vihje: Use the stereographic projection.
 ${ }^{6}$ Vihje: Use the Poincaré disc model.

