Riemannian geometry

Exercises 2, 17.11.2015

1. Check the properties $(\nabla 3)$ and $(\nabla 4)$ of an affine connection and the compatibility of the connection with the metric in the proof of Theorem 4.2.
2. Determine the Levi-Civita connection in of the Euclidean plane in polar coordinates in terms of Christoffel symbols.
3. Let $\bar{\nabla}: \mathscr{X}(M) \times \mathscr{X}(M) \rightarrow \mathscr{X}(M)$ be a mapping that has the properties $(\nabla 1)-$ $-(\nabla 3)$ of an affine connection. Let $T: \mathscr{X}(M) \times \mathscr{X}(M) \rightarrow \mathscr{X}(M)$ be a mapping defined by

$$
T(X, Y)=\bar{\nabla}_{X} Y-\bar{\nabla}_{Y} X-[X, Y] .
$$

Show that T is a tensor (in the generalized sense). T is called the torsion tensor of $\bar{\nabla}$.
4. Determine the parallel transport in the hyperbolic plane \mathbb{H}^{2} along the horizontal path $\gamma: \mathbb{R} \rightarrow \mathbb{H}^{2}, \gamma(t)=(t, 1)$. How does the parallel transport map the tangent vector $\dot{\gamma}(0)$ of γ ?
5. Compare parallel transport along the paths $\left.\gamma_{0}:\right]-\pi, \pi\left[\rightarrow \mathbb{R}^{2}\right.$,

$$
\gamma_{0}(t)=(\tan (t / 2), 0)
$$

and $\gamma_{1}: \mathbb{R} \rightarrow \mathbb{R}^{2}$,

$$
\gamma_{1}(t)=(\cos t, \sin t)
$$

in the plane \mathbb{R}^{2}, with the Euclidean Riemannian metric g_{E} and with the spherical metric $g_{S}=\frac{4}{\left(1+x_{1}^{2}+x_{2}^{2}\right)^{2}} g_{\mathrm{E}}$ that was discussed in Example 3.2.
6. Determine the parallel transport along the following triangles in \mathbb{S}^{2} : Start at the South Pole. Move to the Equator along the Greenwich meridian. Move along the Equator to the east a distance ϕ. Then return to the South Pole along the meridian.

