Riemannian geometry Exercises 2, 17.11.2015

1. Check the properties $(\nabla 3)$ and $(\nabla 4)$ of an affine connection and the compatibility of the connection with the metric in the proof of Theorem 4.2.

2. Determine the Levi-Civita connection in of the Euclidean plane in polar coordinates in terms of Christoffel symbols.

3. Let $\overline{\nabla} \colon \mathscr{X}(M) \times \mathscr{X}(M) \to \mathscr{X}(M)$ be a mapping that has the properties $(\nabla 1) - (\nabla 3)$ of an affine connection. Let $T \colon \mathscr{X}(M) \times \mathscr{X}(M) \to \mathscr{X}(M)$ be a mapping defined by

$$T(X,Y) = \bar{\nabla}_X Y - \bar{\nabla}_Y X - [X,Y].$$

Show that T is a tensor (in the generalized sense). T is called the *torsion tensor* of $\overline{\nabla}$.

4. Determine the parallel transport in the hyperbolic plane \mathbb{H}^2 along the horizontal path $\gamma \colon \mathbb{R} \to \mathbb{H}^2$, $\gamma(t) = (t, 1)$. How does the parallel transport map the tangent vector $\dot{\gamma}(0)$ of γ ?

5. Compare parallel transport along the paths $\gamma_0:] - \pi, \pi[\rightarrow \mathbb{R}^2,$

$$\gamma_0(t) = (\tan(t/2), 0)$$

and $\gamma_1 \colon \mathbb{R} \to \mathbb{R}^2$,

 $\gamma_1(t) = (\cos t, \sin t)$

in the plane \mathbb{R}^2 , with the Euclidean Riemannian metric $g_{\rm E}$ and with the spherical metric $g_S = \frac{4}{(1+x_1^2+x_2^2)^2} g_{\rm E}$ that was discussed in Example 3.2.

6. Determine the parallel transport along the following triangles in S^2 : Start at the South Pole. Move to the Equator along the Greenwich meridian. Move along the Equator to the east a distance ϕ . Then return to the South Pole along the meridian.