Riemannian geometry Exercises 2, 10.11.2015

1. Compute the expression of the Riemannian metric of \mathbb{E}^2 in polar coordinates.

2. Show that the mappings $x \mapsto (-x_1, x_2)$ and $x \mapsto \frac{x}{\|x\|^2}$ are Riemannian isometries of the hyperbolic plane.

3. A Riemannian manifold (M, g) is called a symmetric spaces if for all $p \in M$ there is a Riemannian isometry of (M, g) ι_p such that $d\iota_p|_{T_pM} = -$ id. Show that the Riemannian manifolds \mathbb{E}^2 , \mathbb{S}^2 and \mathbb{H}^2 are symmetric spaces.

4. Let (M, g) be a Riemannian manifold and let $p \in M$. Let (U, x) and (V, y) be local coordinates such that $p \in U \cap V$. What is the relation between the coordinate expressions of g in these two coordinates?

5. Show that the directional derivative $(X, Y) \mapsto DYX$ is the Levi-Civita connection of the Riemannian manifold \mathbb{E}^n . It is enough to show that it has no torsion and that it is compatible with the Euclidean Riemannian metric.

6. Let $X, Y \in \mathscr{F}(M)$. Show that the mapping $L_{X,Y} \colon \mathscr{X}(M) \to \mathscr{F}(M)$, $L_{X,Y}(Z) = X g(Y,Z) + Y g(Z,X) - Z g(X,Y) - g(Y,[X,Z]) - g(Z,[Y,X]) + g(X,[Z,Y])$ is $\mathscr{F}(M)$ -linear.