Riemannian geometry

Exercises 2, 10.11.2015

1. Compute the expression of the Riemannian metric of \mathbb{E}^{2} in polar coordinates.
2. Show that the mappings $x \mapsto\left(-x_{1}, x_{2}\right)$ and $x \mapsto \frac{x}{\|x\|^{2}}$ are Riemannian isometries of the hyperbolic plane.
3. A Riemannian manifold (M, g) is called a symmetric spaces if for all $p \in M$ there is a Riemannian isometry of $(M, g) \iota_{p}$ such that $\left.d \iota_{p}\right|_{T_{p} M}=-\mathrm{id}$. Show that the Riemannian manifolds $\mathbb{E}^{2}, \mathbb{S}^{2}$ and \mathbb{H}^{2} are symmetric spaces.
4. Let (M, g) be a Riemannian manifold and let $p \in M$. Let (U, x) and (V, y) be local coordinates such that $p \in U \cap V$. What is the relation between the coordinate expressions of g in these two coordinates?
5. Show that the directional derivative $(X, Y) \mapsto D Y X$ is the Levi-Civita connection of the Riemannian manifold \mathbb{E}^{n}. It is enough to show that it has no torsion and that it is compatible with the Euclidean Riemannian metric.
6. Let $X, Y \in \mathscr{F}(M)$. Show that the mapping $L_{X, Y}: \mathscr{X}(M) \rightarrow \mathscr{F}(M)$, $L_{X, Y}(Z)=X g(Y, Z)+Y g(Z, X)-Z g(X, Y)-g(Y,[X, Z])-g(Z,[Y, X])+g(X,[Z, Y])$ is $\mathscr{F}(M)$-linear.
