Number theory 22024

Exercises 5

Rational numbers $\frac{a}{c}, \frac{b}{d} \in \mathbb{Q}$ are adjacent, if $|a d-b c|=1$.

1. Determine the rational numbers that are adjacent to $\frac{2}{3}$.
2. Determine the rational numbers that are adjacent to $\frac{23}{41}$.
3. Let $\frac{a}{c}$ and $\frac{b}{d}$ be adjacent. Prove that $\frac{b+k a}{d+k c}$ is adjacent to $\frac{b+(k+1) a}{d+(k+1) c}$.

If $\frac{a}{c}$ and $\frac{b}{d}$ are adjacent, the rational number $\frac{a+b}{c+d}$ is their mediant.
4. Let $r, s \in \mathbb{Q} \cup\left\{\frac{1}{0}\right\}$ be adjacent. Prove that there are exactly two elements of $\mathbb{Q} \cup\left\{\frac{1}{0}\right\}$ and that one of these is the mediant of r and s.

Let $\frac{p}{q} \in \mathbb{Q}$ with $\operatorname{gcd}(p, q)=1$. The Ford disk at $\frac{p}{q}$ is

$$
\mathscr{H}_{\frac{p}{q}}=\left\{(x, y) \in \mathbb{R}^{2}:\left\|w-\left(\frac{p}{q}, \frac{1}{2 q^{2}}\right)\right\| \leq \frac{1}{2 q^{2}}\right\} .
$$

The boundary $\partial \mathscr{H}_{\frac{p}{q}}$ of $\mathscr{H}_{\frac{p}{q}}$ is the Ford circle at $\frac{p}{q}$.
The half-plane

$$
\mathscr{H}_{\frac{1}{0}}=\left\{(x, y) \in \mathbb{R}^{2}: y \geq 1\right\}
$$

is the Ford disk at infinity.
5. Let $\frac{a}{c}, \frac{b}{d} \in \mathbb{Q} \cup\{\infty\}$. Prove that the Ford disks $\mathscr{H}_{\frac{a}{c}}$ and $\mathscr{H}_{\frac{b}{d}}$ are tangent if $\frac{a}{c}$ is adjacent to $\frac{b}{d}$, and that the disks are disjoint if $\frac{a}{c}$ is not adjacent to $\frac{b}{d}$.

If $r, s, t \in \mathbb{Q} \cup\{\infty\}$ are pairwise adjacent, then the compact region in the complement of $\mathscr{H}_{r}, \mathscr{H}_{s}$ and \mathscr{H}_{t} in the plane \mathbb{R}^{2} is the Ford triangle $\Delta(r, s, t)$.
6. Let

$$
\begin{aligned}
& A=\left(A_{1}, A_{2}\right)=\mathscr{H}_{\frac{p}{q}}^{(} \cap \mathscr{H}_{\frac{r}{s}}, \\
& B=\left(B_{1}, B_{2}\right)=\mathscr{H}_{\frac{r}{s}}^{\square} \cap \mathscr{H}_{\frac{t}{u}} \text { and } \\
& C=\left(C_{1}, C_{2}\right)=\mathscr{H}_{\frac{t}{u}}^{\frac{1}{u}} \cap \mathscr{H}_{\frac{p}{q}}
\end{aligned}
$$

be the vertices of the Ford triangle $\Delta=\Delta\left(\frac{p}{q}, \frac{r}{s}, \frac{t}{u}\right)$ as in Figure 0.1. Prove that

$$
A_{1}=\frac{p q+r s}{q^{2}+s^{2}}, \quad B_{1}=\frac{r s+t u}{s^{2}+u^{2}} \quad \text { and } \quad C_{1}=\frac{t u+p q}{u^{2}+q^{2}}
$$

7. Find four rational solutions to the inequality

$$
\left|\frac{1}{\sqrt{2}}-\frac{p}{q}\right|<\frac{1}{2 q^{2}}
$$

with the help of Figures 0.20 .3 .

Figure 0.2: Irrationaaliluvun $\frac{1}{\sqrt{2}}$ arviointia.

Figure 0.3: Irrationaaliluvun $\frac{1}{\sqrt{2}}$ arviointia, lähikuvia.

