Number theory 22024

Exercises 4

1. Find a solution to the inequality

$$
\left|\sqrt{3}-\frac{p}{q}\right|<\frac{1}{q^{2}}
$$

that satisfies $|q \sqrt{3}-p|<\frac{1}{9} \|^{1}$
2. Let $\frac{a}{b} \in \mathbb{Q}$. Prove that the inequality

$$
\begin{equation*}
\left|\frac{a}{b}-\frac{p}{q}\right|<\frac{1}{q^{2}} \tag{1}
\end{equation*}
$$

has only finitely many solutions.

The discriminant of a polynomial $P(X)=a X^{2}+b X+c$ of degree 2 is

$$
\operatorname{Disc}(P(X))=b^{2}-4 a c
$$

3. Let $a, b, c \in \mathbb{R}$ with $a \neq 0$, and let α and α^{\prime} be the roots of the polynomial $P(X)=$ $a X^{2}+b X+c$. Prove that

$$
\operatorname{Disc}(P(X))=a^{2}\left(\alpha-\alpha^{\prime}\right)^{2}
$$

Let $F_{0}=0$ and $F_{1}=1$ and set for all $n \geq 2$

$$
F_{n}=F_{n-1}+F_{n-2} .
$$

The sequence $\left(F_{n}\right)_{n \in \mathbb{N}}$ is the Fibonacci sequence.

The roots of the polynomial $P(X)=X^{2}-X-1$ are the golden ratio $\varphi=\frac{1+\sqrt{5}}{2}$ and $\widehat{\varphi}=\frac{1-\sqrt{5}}{2}$.
4. Prove ${ }^{2}$ that

$$
F_{n}=\frac{\varphi^{n}-\hat{\varphi}^{n}}{\sqrt{5}}
$$

for all $n \in \mathbb{N}$.
5. Prove that

$$
\lim _{n \rightarrow \infty} \frac{F_{n+1}}{F_{n}}=\varphi .
$$

6. Prove that

$$
F_{n+2} F_{n}-F_{n+1}^{2}=(-1)^{n+1}
$$

for all $n \in \mathbb{N}$.

[^0]7. What do the previous exercises tell about how well the golden ratio φ is approximated by the sequence of rational numbers $\left(\frac{F_{n+1}}{F_{n}}\right)_{n \in \mathbb{N}}$?

[^0]: ${ }^{1}$ Example 10.3.
 ${ }^{2}$ Induction.

