Number theory 22024

Exercises 3

1. Let (a, b, c) be a primitive Pythagorean triple. Prove that a or b is divisible by 3 , but c is not divisible by 3 .

Solution. If $x \not \equiv 0 \bmod 3$, then $x^{2} \equiv 1 \bmod 3$. Therefore, if $a \not \equiv 0 \bmod 3$ and $b \not \equiv 0$ $\bmod 3$, we have $c^{2} \equiv 2 \bmod 3$. But this is not possible. Therefore, $a \equiv 0 \bmod 3$ or $b \equiv 0 \bmod 3$.

If $c \equiv 0 \bmod 3$ and $b \equiv 0 \bmod 3$, then $a^{2}=c^{2}-b^{2} \equiv 0 \bmod 9$, which implies $a \equiv 0$ $\bmod 3$. Thus, $\operatorname{gcd}(a, b, c) \geq 3$, and (a, b, c) is not primitive.
2. Let (a, b, c) be a primitive Pythagorean triple. Prove that exactly one of the numbers a, b and c is divisible by 5 .

Solution. The quadratic residues $\bmod 5$ are 0,1 ja 4 . If $a^{2} \equiv b^{2} \equiv 1 \bmod 5$, then $c^{2} \equiv 2$ $\bmod 5$, which is not possible. If $a^{2} \equiv 1 \bmod 5$ and $b^{2} \equiv 4 \bmod 5$, then $c^{2} \equiv 0 \bmod 5$, which implies $c \equiv 0 \bmod 5$.
3. Assume that it is known that the Diophantine equation

$$
x^{p}+y^{p}=z^{p}
$$

has no solutions that satisfy $x y z \neq 0$ for any odd prime p. Prove that for any $n \in \mathbb{N}$, $n \geq 3$, the Diophantine equation

$$
x^{n}+y^{n}=z^{n}
$$

has no solutions that satisfy $x y z \neq 0$.

Solution. Assume that n has an odd prime factor p. Then $n=p k$ for some $k \in \mathbb{N}^{*}$. If

$$
x^{n}+y^{n}=z^{n},
$$

then

$$
\left(x^{k}\right)^{p}+\left(y^{k}\right)^{p}=x^{n}+y^{n}=z^{n}=\left(z^{k}\right)^{p}
$$

implies $x y z=0$.
4. Let (a, b, c) be a Pythagorean triple. Prove that

$$
(a b)^{4}+(b c)^{4}+(c a)^{4}=\left(c^{4}-a^{2} b^{2}\right)^{2} .
$$

Solution. Expanding the right-hand side of the equation we get

$$
\left(c^{4}-a^{2} b^{2}\right)^{2}=c^{8}-2 c^{4} a^{2} b^{2}+(a b)^{4}
$$

Using the equation $a^{2}+b^{2}=c^{2}$, we get

$$
c^{8}=c^{4}\left(a^{2}+b^{2}\right)^{2}=(a c)^{4}+2 c^{4} a^{2} b^{2}+(b c)^{4} .
$$

Therefore,

$$
\left.c^{4}-a^{2} b^{2}\right)^{2}=(a c)^{4}+2 c^{4} a^{2} b^{2}+(b c)^{4}-2 c^{4} a^{2} b^{2}+(a b)^{4}=(a b)^{4}+(b c)^{4}+(c a)^{4} .
$$

5. Prove that the Diophantine equation

$$
x^{2}+y^{2}=3 z^{2}
$$

has no solutions that satisfy $x y z \neq 0$.

Solution. Assume the equation has a solution with $x y z \neq 0$. We may assume that $x, y, z>0$. Pick a solution (a, b, c) with minimal z. Considering the equation mod 3 , we have $a^{2}+b^{2} \equiv 0 \bmod 3$. By the computations done in Exercise 1, we see that $a \equiv b \equiv 0$ $\bmod 3$. This implies that there are $x_{0}, y_{0} \in \mathbb{N}^{*}$ such that $x=3 x_{0}$ and $y=3 y_{0}$. But this gives

$$
9 x_{0}^{2}+9 y_{0}^{2}=3 z^{2},
$$

which implies $z^{2} \equiv 0 \bmod 3$ and, therefore, $z \equiv 0 \bmod 3$. Thus, there is some $z_{0} \in \mathbb{N}^{*}$ for which $z=3 z_{0}$. Cancelling the factors 9 , we get

$$
x_{0}^{2}+y_{0}^{2}=3 z_{0}^{2},
$$

contradicting the minimality of z.
6. Use the method of infinite descent to prove that $\sqrt{2}$ is an irrational number.

Solution. Assume $m^{2}=2 n^{2}$ is a solution with minimal m. As $m^{2} \equiv 0 \bmod 2$, we have $m \equiv 0 \bmod 2$. But this implies that $m=2 m 1$ for some $m_{1} \in \mathbb{N}^{*}$, and we get $2 m_{1}^{2}=n^{2}$. But note that the first equation implies that $n<m$, contradicting the minimality of m.

Let $a, b, c, d \in \mathbb{N}^{*}$. If

$$
a^{2}+b^{2}+c^{2}=d^{2}
$$

then (a, b, c, d) is a Pythagorean quadruple. If, furthermore, $\operatorname{gcd}(a, b, c, d)=1$, then (a, b, c, d) is a primitive Pythagorean quadruple.
7. Let $m, n, p \in \mathbb{N}^{*}$ and let

$$
\begin{aligned}
a & =2 m p \\
b & =2 n p \\
c & =p^{2}-\left(m^{2}+n^{2}\right) \\
d & =p^{2}+\left(m^{2}+n^{2}\right) .
\end{aligned}
$$

Prove that (a, b, c, d) is a Pythagorean quadruple.

Solution. $d^{2}-c^{2}=\left(p^{2}+\left(m^{2}+n^{2}\right)\right)^{2}-\left(p^{2}-\left(m^{2}+n^{2}\right)\right)^{2}=4 p^{2}\left(m^{2}+n^{2}\right)=a^{2}+b^{2}$.

