Number theory 22024

Exercises 2

1. Determine all quadratic residues $\bmod 8$.

Solution. We compute easily that $0^{2}=0,1^{2}=1,2^{2}=4,3^{2}=9 \equiv 1 \bmod 8,4^{2}=16 \equiv$ $0 \bmod 8,5^{2}=25 \equiv 1 \bmod 8,6^{2}=36 \equiv 4 \bmod 8$, and $7^{2} \equiv(-1)^{2}=1 \bmod 8$. Collecting the results, we see that the quadratic residues $\bmod 8$ are 0,1 and 4 .
2. Let $p>2$ be a prime. Prove that $p \equiv 1 \bmod 4$, if -1 is a quadratic residue $\bmod p$.

Solution. Assume $p \equiv 3 \bmod 4$. In this case, $p=4 k+3$ for some $k \in \mathbb{N}$, and $\frac{p-1}{2}=2 k+1$ is odd. Assume that $x^{2} \equiv-1 \bmod p$ for some $x \in \mathbb{Z}$. Fermat's little theorem implies

$$
1 \equiv x^{p-1}=\left(x^{2}\right)^{\frac{p-1}{2}} \equiv(-1)^{\frac{p-1}{2}}=-1,
$$

but this holds if and only if $p=2$, a contradiction.
3. Let $x, y, z \in \mathbb{Z}$.
(1) Prove that $x^{2}+y^{2}+z^{2} \not \equiv 7 \bmod 8$.
(2) Let $x, y, z \in \mathbb{Z}$ such that $4 \mid x^{2}+y^{2}+z^{2}$. Prove that $x \equiv y \equiv z \equiv 0 \bmod 2$.

Solution. (1) By Exercise 1, we know that the quadratic residues mod 8 are 0,1 and 4 .
4. Let $n=4^{a}(8 b+7) \in \mathbb{N}$ for some $a, b \in \mathbb{N}$. Prove that n is not the sum of three squares. This implies that the sum of three squares is congruent to one of the following

$$
\begin{aligned}
& 0=0+0+0 \equiv 4+4+0 \\
& 1=1+0+0 \equiv 4+4+1 \\
& 2=1+1+0 \\
& 3=1+1+1 \\
& 4=4+0+0 \equiv 4+4+4 \bmod 8 \\
& 5=4+1+0 \\
& 6=4+1+1
\end{aligned}
$$

but not 7 .
5. Represent 2024 as a sum of four squares.

Solution. Note first that $2024=2^{3} \cdot 11 \cdot 23$. It is easy to see that $8=2^{2}+2^{2}, 11=3^{2}+1^{2}+1^{2}$ and $23=3^{2}+2^{2}+1^{2}+1^{2}$. Euler's Lemma gives $88=8 \cdot 11=8^{2}+4^{2}+2^{2}+2^{2}$, and again $2024=88 \cdot 23=42^{2}+10^{2}+12^{2}+4^{2}$.

[^0]There are many other solutions, for example

$$
\begin{aligned}
2024 & =2^{2}+16^{2}+42^{2} \\
& =2^{2}+24^{2}+38^{2} \\
& =2^{2}+18^{2}+20^{2}+36^{2} .
\end{aligned}
$$

6. Represent 29887 as a sum of four squares.

Solution. Start with the prime decomposition $29887=11^{2} \cdot 13 \cdot 19$. Easily, $13=3^{2}+2^{2}$, $19=3^{2}+3^{2}+1^{2}$. Euler's lemma gives $13 \cdot 19=15^{2}+3^{2}+3^{2}+2^{2}$, and multiplying with the square 11^{2}, we have $29887=11^{2} 13 \cdot 19=165^{2}+33^{2}+33^{2}+22^{2}$.

Again, there are many solutions, for example

$$
\begin{aligned}
29887 & =1^{2}+5^{2}+31^{2}+170^{2} \\
& =2^{2}+25^{2}+37^{2}+167^{2} \\
& =9^{2}+9^{2}+85^{2}+150^{2} .
\end{aligned}
$$

Let $k \in \mathbb{N}^{*}$ and let

$$
g(k)=\inf \left\{\ell \in \mathbb{N}^{*}: \forall n \in \mathbb{N} \exists x_{1}, x_{2}, \ldots, x_{\ell} \in \mathbb{N}^{*}, \text { such that } n=\sum_{j=1}^{\ell} x_{j}^{k}\right\} .
$$

7. Prove that $g(3) \geq 9$ and $g(4) \geq 19$.

Solution. The smallest positive cubes are $1^{3}=1,2^{3}=8$ ja $3^{3}=27$. We see that $23=2^{3}+2^{3}+7 \cdot 1^{1}$ requires 9 cubes.

The smallest positive fourth powers are $1^{4}=1,2^{4}=16$ ja $3^{4}=81$. We see that $79=4 \cdot 2^{4}+15 \cdot 1^{4}$ requires 19 fourth powers.

[^0]: ${ }^{1}$ Lemma 8.2

