Number theory 2 2024

Exercises 2

1. Determine all quadratic residues mod 8.

Solution. We compute easily that $0^2 = 0$, $1^2 = 1$, $2^2 = 4$, $3^2 = 9 \equiv 1 \mod 8$, $4^2 = 16 \equiv 0 \mod 8$, $5^2 = 25 \equiv 1 \mod 8$, $6^2 = 36 \equiv 4 \mod 8$, and $7^2 \equiv (-1)^2 = 1 \mod 8$. Collecting the results, we see that the quadratic residues mod 8 are 0, 1 and 4.

2. Let p > 2 be a prime. Prove that $p \equiv 1 \mod 4$, if -1 is a quadratic residue mod p.

Solution. Assume $p \equiv 3 \mod 4$. In this case, p = 4k+3 for some $k \in \mathbb{N}$, and $\frac{p-1}{2} = 2k+1$ is odd. Assume that $x^2 \equiv -1 \mod p$ for some $x \in \mathbb{Z}$. Fermat's little theorem implies

$$1 \equiv x^{p-1} = (x^2)^{\frac{p-1}{2}} \equiv (-1)^{\frac{p-1}{2}} = -1,$$

but this holds if and only if p = 2, a contradiction.

3. Let x, y, z ∈ Z.
(1) Prove that x² + y² + z² ≠ 7 mod 8.
(2) Let x, y, z ∈ Z such that 4 | x² + y² + z². Prove that x ≡ y ≡ z ≡ 0 mod 2.

Solution. (1) By Exercise 1, we know that the quadratic residues mod 8 are 0, 1 and 4.

4. Let $n = 4^a(8b+7) \in \mathbb{N}$ for some $a, b \in \mathbb{N}$. Prove that n is not the sum of three squares. This implies that the sum of three squares is congruent to one of the following

$$0 = 0 + 0 + 0 \equiv 4 + 4 + 0$$

$$1 = 1 + 0 + 0 \equiv 4 + 4 + 1$$

$$2 = 1 + 1 + 0$$

$$3 = 1 + 1 + 1$$

$$4 = 4 + 0 + 0 \equiv 4 + 4 + 4 \mod 8$$

$$5 = 4 + 1 + 0$$

$$6 = 4 + 1 + 1$$

but not 7.

5. Represent 2024 as a sum of four squares.

Solution. Note first that $2024 = 2^3 \cdot 11 \cdot 23$. It is easy to see that $8 = 2^2 + 2^2$, $11 = 3^2 + 1^2 + 1^2$ and $23 = 3^2 + 2^2 + 1^2 + 1^2$. Euler's Lemma¹ gives $88 = 8 \cdot 11 = 8^2 + 4^2 + 2^2 + 2^2$, and again $2024 = 88 \cdot 23 = 42^2 + 10^2 + 12^2 + 4^2$.

 $^{^{1}}$ Lemma 8.2

There are many other solutions, for example

$$2024 = 2^{2} + 16^{2} + 42^{2}$$

= 2² + 24² + 38²
= 2² + 18² + 20² + 36².

6. Represent 29887 as a sum of four squares.

Solution. Start with the prime decomposition $29887 = 11^2 \cdot 13 \cdot 19$. Easily, $13 = 3^2 + 2^2$, $19 = 3^2 + 3^2 + 1^2$. Euler's lemma gives $13 \cdot 19 = 15^2 + 3^2 + 3^2 + 2^2$, and multiplying with the square 11^2 , we have $29887 = 11^213 \cdot 19 = 165^2 + 33^2 + 33^2 + 22^2$.

Again, there are many solutions, for example

$$29887 = 1^{2} + 5^{2} + 31^{2} + 170^{2}$$

= 2² + 25² + 37² + 167²
= 9² + 9² + 85² + 150².

Let
$$k \in \mathbb{N}^*$$
 and let
 $g(k) = \inf \left\{ \ell \in \mathbb{N}^* : \forall n \in \mathbb{N} \exists x_1, x_2, \dots, x_\ell \in \mathbb{N}^*, \text{ such that } n = \sum_{j=1}^\ell x_j^k \right\}.$

7. Prove that $g(3) \ge 9$ and $g(4) \ge 19$.

Solution. The smallest positive cubes are $1^3 = 1$, $2^3 = 8$ ja $3^3 = 27$. We see that $23 = 2^3 + 2^3 + 7 \cdot 1^1$ requires 9 cubes.

The smallest positive fourth powers are $1^4 = 1$, $2^4 = 16$ ja $3^4 = 81$. We see that $79 = 4 \cdot 2^4 + 15 \cdot 1^4$ requires 19 fourth powers.