## Number theory 22024

## Exercises 1

1. Determine the number of unrestricted partitions of $6 . \mathrm{V}^{\text {I }}$

Solution. There are 11 partitions:

$$
\begin{aligned}
6 & =5+1=4+2=4+1+1=3+3=3+2+1=3+1+1+1 \\
& =2+2+2=2+2+1+1=2+1+1+1+1=1+1+1+1+1+1
\end{aligned}
$$

2. Prove that a positive natural number $n$ can be represented as the sum of positive integers in $2^{n-1}$ when two sums with the same numbers in a different order are counted separately ${ }^{2}$

Solution. Place $n$ stones in a row. There are $n-1$ gaps between the stones where one can choose to place a separator or no separator. Each way to place from 0 to $n-1$ separators is identified with a binary number $\left(a_{n-2} a_{n-3} \cdots a_{i} a_{0}\right)_{2}$, and all binary numbers from 0 to $(11 \cdots 11)_{2}=\sum_{i=0}^{n-2} i^{2}=2^{n-1}-1$ can be realized in this way.
3. Let $a, b, c, d \in \mathbb{Z}$. Prove that

$$
\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=(a c-b d)^{2}+(a d+b c)^{2}
$$

Solution. Expand both expressions an compare.
4. Represent 10285 as a sum of two squares.

Solution. The prime decomposition is $10285=5 \cdot 11^{1} \cdot 17$. Exercise 3 gives

$$
5 \cdot 17=\left(2^{1}+1^{2}\right)\left(4^{2}+1^{2}\right)=2^{2}+9^{2}
$$

and, therefore,

$$
10285=11^{2}\left(2^{2}+9^{2}\right)=22^{2}+99^{2}
$$

If you do the computations in a different order, you may also get

$$
10285=66^{2}+77^{2}
$$

5. Represent 1517 as a sum of two squares.

Solution. The prime decomposition is $1517=37 \cdot 41$. Exercise 3 gives

$$
1517=37 \cdot 41=\left(6^{2}+1^{2}\right)\left(5^{2}+4^{2}\right)=26^{2}+29^{2}
$$

If you do the computations in a different order, you may also get

$$
1517=19^{2}+34^{2}
$$

[^0]6. Which of the numbers 105,2205 and 5951 are sums of two squares? ${ }^{3}$

Solution. The primes 3 and $7 \equiv 3 \bmod 4$ appear with odd exponent 1 in the prime decomposition $105=3 \cdot 5 \cdot 7$. By the sum of two squares theorem, 105 is not the sum of two squares.

The primes 3 and $7 \equiv 3 \bmod 4$ appear with even exponent 2 in the prime decomposition $2205=3^{2} \cdot 5 \cdot 7^{2}$. By the sum of two squares theorem, $2205\left(=21^{2}\left(2^{2}+1^{2}\right)=42^{2}+21^{2}\right)$ is the sum of two squares.

The alternating sum of digits test for divisibility shows that $5951=11.541$ and that 541 is not divisible by $11 \equiv 3 \bmod 4$. By the sum of two squares theorem, 5951 is not the sum of two squares. It is not necessary to check that 541 is, in fact, a prime.

[^1]
[^0]:    ${ }^{1}$ See for example $\S 19.2$ of Hardy and Wright.
    ${ }^{2}$ Place $n$ stones in a row. There are $n-1$ gaps between the stones where one can choose to place a separator or no separator. This choice can be coded by the numbers 1 and $0 \ldots$

[^1]:    ${ }^{3}$ It is not required to give the representations.

