Funktionaalianalyysi Exercises 8, 12.3.2018

1. Let *H* be a Hilbert space and let *U* be a closed linear subspace of *H*. Prove that (a) ker $P_U = U^{\perp}$, (b) id $-P_U = P_{U^{\perp}}$.

2. Let *H* be a Hilbert space and let *U* be a closed linear subspace of *H*. Prove that $(P_U x \mid y) = (x \mid P_U y)$ for all $x, y \in H$.

Let $P \in \text{Lin}_b(H, H)$ be an operator such that $P \circ P = P$ and $(x \mid Py) = (Px \mid y)$ for all $x, y \in H$.

- **3.** Prove that U = P(H) is a closed subspace.
- 4. Prove that $P = P_U$.

5. Let $M \neq \emptyset$ be a subset of a Hilbert space. Prove that $\langle M \rangle$ is dense if and only if $M^{\perp} = \{0\}.$

- 6. Prove that an orthonormal set is linearly independent.
- 7. Let $\{e_1, \ldots, e_N\}$ be a finite orthonormal set and let $U = \langle e_1, \ldots, e_N \rangle$. Prove that

$$P_U v = \sum_{j=1}^N (v \mid e_j) \, e_j$$

for all $v \in H$.

8. Let $c_n, s_n \colon [0, 2\pi] \to \mathbb{R}$ be the functions

$$c_n(t) = \frac{1}{\sqrt{\pi}} \cos(nt)$$
 and $s_n(t) = \frac{1}{\sqrt{\pi}} \sin(nt)$.

Prove that

$$\left\{\mathbf{c}_{n}: n \in \mathbb{N} - \{0\}\right\} \cup \left\{\frac{1}{\sqrt{2\pi}}\right\} \cup \left\{\mathbf{s}_{n}: n \in \mathbb{N} - \{0\}\right\}$$

is an orthonormal set in $L^2([0, 2\pi])$.¹

¹One can get useful trigonometric identities from the equations $e^{int}e^{imt} = e^{i(n+m)t}$.