Funktionaalianalyysi Exercises 8, 5.3.2018

1. Prove that the norm of the Banach space $C^0([0,1])$ is not defined by an inner product.

2. Let $(x_k)_{k=1}^{\infty}$ be a sequence in a Hilbert space H and let $x \in H$ such that

$$\lim_{k \to \infty} (x_k \mid x) = (x \mid x)$$

and

 $\lim_{k\to\infty}\|x_k\|=\|x\|\,.$

Prove that the sequence $(x_k)_{k=1}^{\infty}$ converges to x.

3. Give an example of a Hilbert space H and a sequence $(h_k)_{k \in \mathbb{N}}$, $h_k \in H$ for all $k \in \mathbb{N}$, such that $\lim_{k \to \infty} (h_k \mid x) = (0 \mid x)$ and $(h_k)_{k \in \mathbb{N}}$ does not converge to 0.

4. Let $(V, (\cdot | \cdot))$ be an inner product space, let W be a vector space and let $\Phi \colon W \to V$ be a linear bijection. Prove that $\langle w_1 | w_2 \rangle = (\Phi(w_1) | \Phi(w_2))$ defines an inner product in W.

5. Let

$$A = \{ f \in C^0([0,1]) : f(1) = 1 \}.$$

is a closed convex subset of the normed space $C^0([0, 1])$ that has infinitely many elements of minimal norm.

6. Let

$$B = \Big\{ f \in \mathcal{C}^0([0,1]) : f(0) = 0, \ \int_0^1 f(t) \, dt = 1 \Big\}.$$

Prove that B is a closed convex subset of the normed space $C^{0}([0, 1])$ that does not have any element of minimal norm.

7. Let *H* be a Hilbert space. Prove that $A \subset (A^{\perp})^{\perp}$ for all $A \subset H$. Give an example of a subspace *A* of some inner product space, such that $(A^{\perp})^{\perp} \neq A$.

8. Let H be a real inner product space and let $T: H \to H'$ be the mapping

$$(Tx)(y) = (y \mid x)$$

Prove that the mapping T is a linear isometric embedding.