Funktionaalianalyysi Exercises 6, 19.2.2018

1. Let $T_k: d^{\infty}(\mathbb{K}) \to \mathbb{K}$, $T_k \omega = k \omega(k)$. Use the mappings T_k to show that the theorem of Banach and Steinhaus does not hold without the assumption that the domain of definition of the mappings is a Banach space.

2. Prove that a uniformly convergent sequence of operators converges strongly.

3. Let X be a Banach space and let Y be a normed space. Let $T_k \in \text{Lin}_b(X, Y)$ such that $\sup_{k \in \mathbb{N}} ||T_k|| = \infty$. Prove that there is a point $x_0 \in X$, for which $\sup_{k \in \mathbb{N}} ||T_k x_0||_Y = \infty$.

4. Let X and Y be normed spaces. Prove that a linear mapping $T: X \to Y$ is open if 0 is an interior point of T(B(0,1)).

5. Let $i_{12}: \ell^1(\mathbb{R}) \to \ell^2(\mathbb{R})$ be the mapping $\iota(\omega) = \omega$. By testricting the target space we get a mapping $i_{12}: \ell^1(\mathbb{R}) \to i_{12}(\ell^1(\mathbb{R}))$ which is a bounded linear bijection. Prove that this mapping is not open.¹

6. Let X be a Banach space and let $T \in \text{Lin}_b(X, X)$ such that ||T|| < 1. Prove that the series $\sum_{k=0}^{\infty} T^k$ converges and determines the inverse mapping of $\text{id}_X - T$. Prove that

$$\|(\mathrm{id}_X - T)^{-1}\| \le \frac{1}{1 - \|T\|}.$$

Let X and Y be Banach spaces and let $T \in \text{Lin}_b(X, Y)$ be injective.

7. Prove that if T(X) is closed, then $||Tx|| \ge \beta ||x||$ holds for some $\beta > 0$ and all $x \in X$.²

8. Prove that T(X) is closed if $||Tx|| \ge \beta ||x||$ holds for some $\beta > 0$ and all $x \in X$.³

¹It may be useful to consider the subspace $d^2(\mathbb{R}) \subset \ell^2(\mathbb{R})$.

 $^{^{2}}$ Use the open mapping theorem.

³What does the assumption tell about $T^{-1}: T(X) \to X$?