Funktionaalianalyysi Exercises 2, 22.1.2018

1. Let $(x_k)_{k=1}^{\infty}$ and $(y_k)_{k=1}^{\infty}$ be convergent sequences in a normed space V and let $(\lambda_k)_{k=1}^{\infty}$ and $(\mu_k)_{k=1}^{\infty}$ be convergent sequences in the field \mathbb{K} . Prove that

$$\lim_{k \to \infty} (\lambda_k x_k + \mu_k y_k) = \lim_{k \to \infty} \lambda_k \lim_{k \to \infty} x_k + \lim_{k \to \infty} \mu_k \lim_{k \to \infty} y_k$$

2. Prove that the closure of a vector subspace of a normed space is a vector subspace.

3. Prove that a real normed space is separable if it has a countable subset that spans a dense subspace.

Let $(V, \|\cdot\|_V)$ and $(W, \|\cdot\|_W)$ be normed spaces.

4. Prove that

$$||(v,w)||_{\infty} = \max(||v||_{V}, ||w||_{W})$$

defines a norm in $V \times W$.

5. Olkoon $1 \le p < \infty$. The expression

$$|(v,w)||_p = \sqrt[p]{\|v\|_V^p + \|w\|_W^p}$$

defines a norm in $V \times W$.¹ Prove that the norms $\|\cdot\|_p$ are equivalent for all $p \ge 1$ and $p = \infty$.

6. Prove that the equivalence of norms is an equivalence relation in the set of norms of a vector space V.

7. Prove that the norms

$$\|f\|_1 = \int_{[0,1]} |f|$$

and

$$||f||_{\infty} = \max_{x \in [0,1]} |f(x)|$$

are not equivalent in $C^0([0,1])$.²

8. Let *H* be a finite-dimensional subspace of a normed space *V* and let $x_0 \in V - H$. Prove that there is some $h_0 \in H$ for which

$$d(x_0, H) = \|x_0 - h_0\|.$$

¹You are not asked to prove this!

 $^{^{2}}$ If a sequence converges in one norm and not in the other, then the norms are not equivalent.