Funktionaalianalyysi Exercises 14, 30.4.2018

1. Let *H* be a Hilbert space. Prove that the mapping † : $\operatorname{Lin}_b(H, H) \to \operatorname{Lin}_b(H, H)$ is conjugate linear, and that $(T^{\dagger})^{\dagger} = T$ for all $T \in \operatorname{Lin}_b(H, H)$.

2. Let $V \colon L^2([0,1]) \to L^2([0,1]),$

$$Vf(x) = \int_0^x f(t)dt \,.$$

The operator V is a Hilbert-Schmidt integral operator. Determine the kernel $k \in L^2([0,1] \times [0,1])$ for which $V = F_k$. Determine V^{\dagger} .

3. Let *H* be a Hilbert space and let $T \in \text{Lin}_b(H, H)$. Prove that

$$\ker T = T^{\dagger}(H)^{\perp}.$$

4. Let *H* be a Hilbert space. Prove that Hermitian operators form a closed real subspace of the normed space $\text{Lin}_b(H, H)$.

5. Let *H* be a complex Hilbert space. Let $Q: H \to H$ be an operator for which $(Qz \mid z) = 0$ for all $z \in H$. Prove that $Q = 0.^1$ Show that the corresponding statement does not hold in real Hilbert spaces.

6. Let *H* be a Hilbert space and let $T: H \to H$ be a Hermitian operator. Prove that 0 is not in the residual spectrum of *T*.

Let $\sigma, \rho \colon \ell^2(\mathbb{C}) \to \ell^2(\mathbb{C})$ be the left and right shifts defined by setting

$$\sigma\omega(k) = \omega(k+1)$$

$$\rho\omega(k) = \begin{cases} 0 & \text{, when } k = 0\\ \omega(k-1) & \text{, when } k \ge 1 \end{cases}$$

for all $\omega \in \ell^2$

7. Compute the adjoint operators of the left and right shifts.

8. Determine the point spectrum, continuous spectrum and residual spectrum of the left and right shifts.²

¹Let $v, w \in H$. Consider the cases z = v + w and z = v + iw.

²Use exercise 3 and the properties of the orthogonal complement. What is $(\sigma - \lambda)^{\dagger}$?