Funktionaalianalyysi Exercises 10, 19.3.2018

1. Let X be a dense subspace of a normed space V. Let W be a Banach space and let $T \in \text{Lin}_b(X, W)$ be an isometric embedding. Prove that the extension of T is an isometric embedding.

2. Let *H* be a Hilbert space and let $U \subset H$ vector subspace. Prove that every bounded functional $u' \in U'$ has a bounded extension $\hat{u}' \in H'$.

3. Let *E* be an orthonormal set in a Hilbert space *H*. Prove that *H* has an orthonormal basis that contains E.¹

4. Let E be an orthonormal set in a Hilbert space H such that

$$\sum_{e \in E} |(h \mid e)|^2 = ||h||^2.$$

for all
$$h \in H$$
. Prove that $\sum_{i=1}^{n} (h_i)^{-1} h_i$

$$\sum_{e \in E} (x \mid e)(e \mid y) = (x \mid y)$$

for all $x, y \in H$.

5. Let E be an orthonormal set in a Hilbert space H such that

$$\sum_{e \in E} (x \mid e)(e \mid y) = (x \mid y)$$

for all $x, y \in H$. Prove that E is an orthonormal Hilbert basis.

6. Let $a, b, c, d \in \mathbb{R}$, a < b, c < d. Give an example of an isometric isomorphism $g: L^2([a, b]) \to L^2([c, d])$.

7. Determine the Fourier series of $f \in L^2([-\pi, \pi]), f(t) = |t|$.

8. Let $A \subset [-\pi, \pi]$ be a measurable set. Prove that

$$\lim_{k \to \infty} \int_A \cos(kt) \, dt = 0 \, .$$

 $^{^{1}}$ Use Zorn's lemma as in the proof of the correspondin result for Hamel bases.