Differential geometry 2023

Exercises 8

1. In this exercise, x and y are the canonical coordinates in Euclidean spaces.
(1) Let $\left.\exp : \mathbb{E}^{1} \rightarrow\right] 0, \infty\left[\subset \mathbb{E}^{1}, \exp (x)=e^{x}\right.$. Let

$$
\omega_{1}=\frac{d y}{y} .
$$

Compute $\exp ^{*} \omega$.
(2) Let $F:\left\{x \in \mathbb{E}^{2}:\|x\|<1\right\} \rightarrow \mathbb{E}^{3}-\{0\}$,

$$
F(x)=\left(x^{1}, x^{2}, \sqrt{1-\|x\|^{2}}\right)
$$

and let $\omega_{2} \in \mathfrak{X}^{*}\left(\mathbb{E}^{3}-\{0\}\right)$,

$$
\omega_{2}=\left(1-\left(y^{1}\right)^{2}-\left(y^{2}\right)^{2}\right) d y^{3} .
$$

Compute $F^{*} \omega_{2}$.
(3) Compute the expression of $F^{*} \omega_{2}$ in polar coordinates of $B(0,1) \subset \mathbb{E}^{2}$.

Solution. (1) $\exp ^{*} \frac{d y}{y}=\exp ^{*}\left(\frac{1}{y} d y\right)=\frac{1}{e^{x}} \frac{d e^{x}}{d x} d x=d x$.
(2)

$$
\begin{aligned}
F^{*}\left(1-\left(y^{1}\right)^{2}-\left(y^{2}\right)^{2}\right) d y^{3} & =\left(1-\|x\|^{2}\right)\left(\frac{\partial \sqrt{1-\|x\|^{2}}}{\partial x^{1}} d x^{1}+\frac{\partial \sqrt{1-\|x\|^{2}}}{\partial x^{2}} d x^{2}\right) \\
& =-\sqrt{1-\|x\|^{2}}\left(x^{1} d x^{1}+x^{2} d x^{2}\right)
\end{aligned}
$$

(3) Thanks to the result of Exercise 2, the polar change of variable $\phi:(r, \theta) \rightarrow(r \cos (\theta), r \sin (\theta))$ gives

$$
\phi^{*}\left(F_{2}^{*} \omega_{2}\right)=\left(F_{2} \circ \phi\right)^{*} \omega_{2}=\left(1-r^{2}\right) \frac{\partial \sqrt{1-r^{2}}}{\partial r} d r+0 d \theta=-r \sqrt{1-r^{2}} d r
$$

2. Let $F_{1}: M_{1} \rightarrow M_{2}$ and $F_{2}: M_{2} \rightarrow M_{3}$ be smooth mappings and let $\omega \in \mathfrak{X}^{*}\left(M_{3}\right)$. Prove that

$$
\left(F_{2} \circ F_{1}\right)^{*} \omega=F_{1}^{*}\left(F_{2}^{*} \omega\right) .
$$

Solution. By definition of the pullback of a covector field

$$
\left(F_{2} \circ F_{1}\right)^{*} \omega=\omega \circ\left(F_{2} \circ F_{1}\right)=\left(\omega \circ F_{2}\right) \circ F_{1}=F_{1}^{*}\left(\omega \circ F_{2}\right)=F_{1}^{*}\left(F_{2}^{*} \omega\right) .
$$

3. Let M be a smooth manifold and let S be a regular level set of a smooth function $f \in \mathfrak{F}(M)$. Prove that $d f$ restricts to the 1-form $0 \in \mathfrak{X}^{*}(S)$ on the submanifold S.

Solution. Let $S=f^{-1}(c)$ for some $c \in \mathbb{E}^{1}$. If $i: S \rightarrow M$ is the inclusion map, then $f \circ i=c$, and we have $i^{*} d f=d(f \circ i)=d c=0$ because the differential of a constant function is zero: $d c(v)=v c=0$ for all $v \in T_{p} S$ for all $p \in S$.
4. Prove that the tensor product of real-valued linear mappings is a multilinear mapping.

Solution. Let V_{1}, \ldots, V_{n} be real vector spaces and $\omega_{1} \in V_{1}^{*}, \ldots, \omega_{n} \in V_{n}^{*}$. Their tensor product is defined from $V_{1} \times \ldots V_{n}$ to \mathbb{R} by the formula

$$
\omega_{1} \otimes \omega_{2} \ldots \otimes \omega_{n}\left(v_{1}, \ldots, v_{n}\right)=\omega_{1}\left(v_{1}\right) \omega_{2}\left(v_{2}\right) \ldots \omega_{n}\left(v_{n}\right)
$$

which is the formula of a multilinear map since all the maps ω_{i} are linear.
5. Express the evaluation tensor $E \in T^{(1,1)}\left(\mathbb{R}^{n}\right)$,

$$
E(\omega, v)=\omega v
$$

using tensor products of the standard basis of \mathbb{R}^{n} and its dual basis.

Solution. Recall that $T^{(1,1)}\left(\mathbb{R}^{n}\right)$ is the space of bilinear forms on $\left(\mathbb{R}^{n}\right)^{*} \times \mathbb{R}^{n}$. Denote the canonical basis of \mathbb{R}^{n} by $\left(e_{1}, \ldots, e_{n}\right)$. Its dual base will be denoted by $\left(e_{1}^{*}, \ldots, e_{n}^{*}\right)$. We recall that \mathbb{R}^{n} is identified with its bidual space, in particular every e_{i} is identified with the evaluation linear map $w \mapsto w\left(e_{i}\right)$ defined on $\left(\mathbb{R}^{n}\right)^{*}$. We compute, for all $\omega \in\left(\mathbb{R}^{n}\right)^{*}$ and $v \in \mathbb{R}^{n}$,

$$
E(\omega, v)=\omega v=\sum_{i=1}^{n} e_{i}^{*}(v) \omega\left(e_{i}\right)=\left(\sum_{i=1}^{n} e_{i} \otimes e_{i}^{*}\right)(\omega, v) .
$$

Thus $E=\sum_{i=1}^{n} e_{i} \otimes e_{i}^{*}$.
6. Let V be a real vector space. Let $A_{1}, A_{2} \in T^{\left(r_{1}, s_{1}\right)}(V), B_{1}, B_{2} \in T^{\left(r_{2}, s_{2}\right)}(V)$ and let $a_{1}, a_{2}, b_{1}, b_{2} \in \mathbb{R}$. Prove that
$\left(a_{1} A_{1}+a_{2} A_{2}\right) \otimes\left(b_{1} B_{1}+b_{2} B_{2}\right)=a_{1} b_{1} A_{1} \otimes B_{1}+a_{1} b_{2} A_{1} \otimes B_{2}+a_{2} b_{1} A_{2} \otimes B_{1}+a_{2} b_{2} A_{2} \otimes B_{2}$.

