Differential geometry 2023

Exercises 11

1. Compute the expression of the form $d x^{1} \wedge d x^{2} \wedge d x^{3}$ in spherical coordinates.

Solution. The spherical coordinates of a point $x \in \mathbb{E}^{3} \backslash\{0\}$ are given by

$$
x=\left(r \cos \theta_{1} \sin \theta_{2}, r \sin \theta_{1} \sin \theta_{2}, r \cos \theta_{2}\right) .
$$

Thus,

$$
\begin{aligned}
d x^{1} & =\cos \theta_{1} \sin \theta_{2} d r-r \sin \theta_{1} \sin \theta_{2} d \theta_{1}+r \cos \theta_{1} \cos \theta_{2} d \theta_{2}, \\
d x^{2} & =\sin \theta_{1} \sin \theta_{2} d r+r \cos \theta_{1} \sin \theta_{2} d \theta_{1}+r \sin \theta_{1} \cos \theta_{2} d \theta_{2}, \\
d x^{3} & =\cos \theta_{2} d r-r \sin \theta_{2} d \theta_{2}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& d x^{1} \wedge d x^{2} \wedge d x^{3}=\cos \theta_{1} \sin \theta_{2} d r \wedge r \cos \theta_{1} \sin \theta_{2} d \theta_{1} \wedge\left(-r \sin \theta_{2} d \theta_{2}\right) \\
& -r \sin \theta_{1} \sin \theta_{2} d \theta_{1} \wedge\left(\sin \theta_{1} \sin \theta_{2} d r \wedge\left(-r \sin \theta_{2} d \theta_{2}\right)+r \sin \theta_{1} \cos \theta_{2} d \theta_{2} \wedge \cos \theta_{2} d r\right) \\
& +r \cos \theta_{1} \cos \theta_{2} d \theta_{2} \wedge r \cos \theta_{1} \sin \theta_{2} d \theta_{1} \wedge \cos \theta_{2} d r \\
& =r^{2} \cos ^{2} \theta_{1} \sin ^{3} \theta_{2} d r \wedge d \theta_{1} \wedge d \theta_{2}+r^{2} \sin ^{2} \theta_{1} \sin ^{3} \theta_{2} d \theta_{1} \wedge d r \wedge d \theta_{2} \\
& -r^{2} \sin ^{2} \theta_{1} \sin ^{2} \theta_{2} \cos \theta_{2} d \theta_{1} \wedge d \theta_{2} \wedge d r+r^{2} \cos ^{2} \theta_{1} \cos ^{2} \theta_{2} \sin \theta_{2} d \theta_{2} \wedge d \theta_{1} \wedge d r \\
& =-r^{2}\left(\cos ^{2} \theta_{1} \sin ^{3} \theta_{2}+\sin ^{2} \theta_{1} \sin ^{3} \theta_{2}+\sin ^{2} \theta_{1} \sin ^{2} \theta_{2} \cos \theta_{2}+r^{2} \cos ^{2} \theta_{1} \cos ^{2} \theta_{2} \sin \theta_{2}\right) d r d \theta_{1} d \theta_{2} \\
& =-r^{2} \sin \theta_{2} d r d \theta_{1} d \theta_{2}
\end{aligned}
$$

2. Let $\mathbb{E}^{3} \times \mathbb{E}^{1}$ be the 4 -dimensional spacetime, where the first 3 -dimensional component x of (x, t) corresponds to space and the fourth component t is time. Let $\mathbf{E}: \mathbb{E}^{3} \times \mathbb{E}^{1} \rightarrow \mathbb{E}^{3}$ be the electric field and let $\mathbf{B}: \mathbb{E}^{3} \times \mathbb{E}^{1} \rightarrow \mathbb{E}^{3}$ be the magnetic field. Maxwell's equations in the vacuum without charge or current are

$$
\begin{equation*}
\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t}, \quad \nabla \times \mathbf{B}=\frac{\partial \mathbf{E}}{\partial t}, \quad \nabla \cdot \mathbf{E}=0, \quad \nabla \cdot \mathbf{B}=0 \tag{1}
\end{equation*}
$$

In these equations, the curl and the divergence are taken with respect to the space coordinates. Maxwell's equations can be formulated using differential forms and the exterior derivative if we define a 1-form E using the components of the electric field

$$
E=E_{1} d x^{1}+E_{2} d x^{2}+E_{3} d x^{3}
$$

a 2-form B using the components of the magnetic field

$$
B=B_{1} d x^{2} \wedge d x^{3}+B_{2} d x^{3} \wedge d x^{1}+B_{3} d x^{1} \wedge d x^{2}
$$

and in the 4-dimensional spacetime the 2 -form

$$
F=E \wedge d t+B
$$

The equation $d F=0$ corresponds to two of Maxwell's equations (1). Which equations are these two?

Solution.

$$
\begin{aligned}
& d F=d E_{1} \wedge d x^{1} \wedge d t+d E_{2} \wedge d x^{2} \wedge d t+d E_{3} \wedge d x^{3} \wedge d t+ \\
& \quad d B_{1} \wedge d x^{2} \wedge d x^{3}+d B_{2} \wedge d x^{3} \wedge d x^{1}+d B_{3} \wedge d x^{1} \wedge d x^{2} \\
& =\frac{\partial E_{1}}{\partial x^{2}} d x^{2} \wedge d x^{1} \wedge d t+\frac{\partial E_{1}}{\partial x^{3}} d x^{3} \wedge d x^{1} \wedge d t+\frac{\partial E_{2}}{\partial x^{1}} d x^{1} \wedge d x^{2} \wedge d t+\frac{\partial E_{2}}{\partial x^{3}} d x^{3} \wedge d x^{2} \wedge d t \\
& +\frac{\partial E_{3}}{\partial x^{1}} d x^{1} \wedge d x^{3} \wedge d t+\frac{\partial E_{3}}{\partial x^{2}} d x^{2} \wedge d x^{3} \wedge d t+\frac{\partial B_{1}}{\partial x^{1}} d x^{1} \wedge d x^{2} \wedge d x^{3}+\frac{\partial B_{1}}{\partial t} d t \wedge d x^{2} \wedge d x^{3} \\
& +\frac{\partial B_{2}}{\partial x^{2}} d x^{2} \wedge d x^{3} \wedge d x^{1}+\frac{\partial B_{2}}{\partial t} d t \wedge d x^{3} \wedge d x^{1}+\frac{\partial B_{3}}{\partial x^{3}} d x^{3} \wedge d x^{1} \wedge d x^{2}+\frac{\partial B_{3}}{\partial t} d t \wedge d x^{1} \wedge d x^{2} \\
& =\left(\frac{\partial E_{3}}{\partial x^{2}}-\frac{\partial E_{2}}{\partial x^{3}}+\frac{\partial B_{1}}{\partial t}\right) d x^{2} \wedge d x^{3} \wedge d t+\left(\frac{\partial E_{1}}{\partial x^{3}}-\frac{\partial E_{3}}{\partial x^{1}}+\frac{\partial B_{2}}{\partial t}\right) d x^{3} \wedge d x^{1} \wedge d t \\
& +\left(\frac{\partial E_{2}}{\partial x^{1}}-\frac{\partial E_{1}}{\partial x^{2}}+\frac{\partial B_{3}}{\partial t}\right) d x^{1} \wedge d x^{2} \wedge d t+\left(\frac{\partial B_{1}}{\partial x^{1}}+\frac{\partial B_{2}}{\partial x^{2}}+\frac{\partial B_{3}}{\partial x^{3}}\right) d x^{1} \wedge d x^{2} \wedge d x^{3}
\end{aligned}
$$

Thus, $d F=0$ is equivalent with the equations $\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t}$ and $\nabla \cdot \mathbf{B}=0$.
3. Let M be a smooth manifold. Let $\omega \in \Omega^{k}(M)$ be an exact form and let $\tau \in \Omega^{\ell}(M)$ be a closed form. Prove that $\omega \wedge \tau$ is an exact form.

Solution. Let $\widehat{\omega} \in \Omega^{k-1}(M)$ be a form such that $d \widehat{\omega}=\omega$. The form $\omega \wedge \tau$ is exact because

$$
d(\widehat{\omega} \wedge \tau)=d \widehat{\omega} \wedge \tau+(-1)^{k} \widehat{\omega} \wedge d \tau=\omega \wedge \tau+(-1)^{k} \widehat{\omega} \wedge 0=\omega \wedge \tau
$$

4. Let M be a compact manifold. Let $\omega \in \Omega^{1}(M)$ be a 1 -form that has no zeros. ${ }^{1}$ Prove that ω is not an exact form.

Solution. By contradiction, let us assume that ω is an exact form, hence we can choose a real valued smooth function $f \in \mathscr{F}(M)$ such that $\omega=d f$. Since M is compact, the function f has a maximum at some point $p \in M$. Since the exterior derivative on $\mathscr{F}(M)$ is the differential, we have $d f_{p}=0$ i.e. p is a zero of $\omega=d f$.
5. (1) Prove that the restrictions of the coordinate forms of \mathbb{E}^{3} to the submanifold $\mathbb{S}^{2} \subset \mathbb{E}^{3}$ satisfy ${ }^{2} x^{1} d x^{1}+x^{2} d x^{2}+x^{3} d x^{3}=0$.
(2) Let $\omega=x^{1} d x^{2} \wedge d x^{3}+x^{2} d x^{3} \wedge d x^{1}+x^{3} d x^{1} \wedge d x^{2} \in \Omega^{2}\left(\mathbb{S}^{2}\right)$. Prove that

$$
\omega= \begin{cases}\frac{d x^{2} \wedge d x^{3}}{x^{1}}, & \text { when } x^{1} \neq 0 \\ \frac{d x^{3} \wedge d x^{1}}{x^{2}}, & \text { when } x^{2} \neq 0 \\ \frac{d x^{1} \wedge d x^{2}}{x^{3}}, & \text { when } x^{3} \neq 0\end{cases}
$$

Solution. (1) By Exercise 3 of week $8,{ }^{3}$, since \mathbb{S}^{2} is the regular level set $f^{-1}(1)$ of the smooth function $f=\left(x^{1}\right)^{1}+\left(x^{2}\right)^{2}+\left(x^{3}\right)^{2}$, then on \mathbb{S}^{2} we have

$$
0=d\left(\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}+\left(x^{3}\right)^{2}\right)=2\left(x^{1} d x^{1}+x^{2} d x^{2}+x^{3} d x^{3}\right) .
$$

[^0](2) Assume that $x^{1} \neq 0$. Part (1) implies that $x^{1} d x^{1}=-\left(x^{2} d x^{2}+x^{3} d x^{3}\right)$. Therefore,
$$
x^{2} d x^{3} \wedge d x^{1}=-\frac{\left(x^{2}\right)^{2} d x^{3} \wedge d x^{2}}{x^{1}}=\frac{\left(x^{2}\right)^{2} d x^{2} \wedge d x^{3}}{x^{1}}
$$
and
$$
x^{3} d x^{1} \wedge d x^{2}=-\frac{\left(x^{3}\right)^{2} d x^{3} \wedge d x^{2}}{x^{1}}=\frac{\left(x^{3}\right)^{2} d x^{2} \wedge d x^{3}}{x^{1}}
$$

Therefore,

$$
\begin{aligned}
\omega & =x^{1} d x^{2} \wedge d x^{3}+\frac{\left(x^{2}\right)^{2} d x^{2} \wedge d x^{3}}{x^{1}}+\frac{\left(x^{3}\right)^{2} d x^{2} \wedge d x^{3}}{x^{1}} \\
& =\frac{\left.\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}+\left(x^{3}\right)^{2}\right) d x^{2} \wedge d x^{3}}{x^{1}}=\frac{d x^{2} \wedge d x^{3}}{x^{1}} .
\end{aligned}
$$

The other cases are treated in the same way.

[^0]: ${ }^{1} p \in M$ is a zero of ω if $\omega_{p}=0$.
 ${ }^{2}$ Exercise 3 of week 8 may be useful here.
 ${ }^{3}$ Exercise 6.12 in the Finnish text.

