
Differential geometry 2023

Exercises 11

1. Compute the expression of the form dx1 ∧ dx2 ∧ dx3 in spherical coordinates.

Solution. The spherical coordinates of a point x ∈ E3 \ {0} are given by

x = (r cos θ1 sin θ2, r sin θ1 sin θ2, r cos θ2) .

Thus,

dx1 = cos θ1 sin θ2dr − r sin θ1 sin θ2dθ1 + r cos θ1 cos θ2dθ2 ,

dx2 = sin θ1 sin θ2dr + r cos θ1 sin θ2dθ1 + r sin θ1 cos θ2dθ2 ,

dx3 = cos θ2dr − r sin θ2dθ2

Thus,

dx1 ∧ dx2 ∧ dx3 = cos θ1 sin θ2dr ∧ r cos θ1 sin θ2dθ1 ∧ (−r sin θ2dθ2)
− r sin θ1 sin θ2dθ1 ∧ (sin θ1 sin θ2dr ∧ (−r sin θ2dθ2) + r sin θ1 cos θ2dθ2 ∧ cos θ2dr)
+ r cos θ1 cos θ2dθ2 ∧ r cos θ1 sin θ2dθ1 ∧ cos θ2dr

= r2 cos2 θ1 sin3 θ2dr ∧ dθ1 ∧ dθ2 + r2 sin2 θ1 sin3 θ2dθ1 ∧ dr ∧ dθ2

− r2 sin2 θ1 sin2 θ2 cos θ2dθ1 ∧ dθ2 ∧ dr + r2 cos2 θ1 cos2 θ2 sin θ2dθ2 ∧ dθ1 ∧ dr

= −r2(cos2 θ1 sin3 θ2 + sin2 θ1 sin3 θ2 + sin2 θ1 sin2 θ2 cos θ2 + r2 cos2 θ1 cos2 θ2 sin θ2)drdθ1dθ2

= −r2 sin θ2drdθ1dθ2

2. Let E3 × E1 be the 4-dimensional spacetime, where the first 3-dimensional component
x of (x, t) corresponds to space and the fourth component t is time. Let E : E3 ×E1 → E3

be the electric field and let B : E3 × E1 → E3 be the magnetic field. Maxwell’s equations
in the vacuum without charge or current are

∇ × E = −∂B
∂t

, ∇ × B = ∂E
∂t

, ∇ · E = 0 , ∇ · B = 0 . (1)

In these equations, the curl and the divergence are taken with respect to the space coor-
dinates. Maxwell’s equations can be formulated using differential forms and the exterior
derivative if we define a 1-form E using the components of the electric field

E = E1dx1 + E2dx2 + E3dx3 ,

a 2-form B using the components of the magnetic field

B = B1dx2 ∧ dx3 + B2dx3 ∧ dx1 + B3dx1 ∧ dx2 ,

and in the 4-dimensional spacetime the 2-form

F = E ∧ dt + B .

The equation dF = 0 corresponds to two of Maxwell’s equations (1). Which equations
are these two?



Solution.

dF = dE1 ∧ dx1 ∧ dt + dE2 ∧ dx2 ∧ dt + dE3 ∧ dx3 ∧ dt+
dB1 ∧ dx2 ∧ dx3 + dB2 ∧ dx3 ∧ dx1 + dB3 ∧ dx1 ∧ dx2

= ∂E1

∂x2 dx2 ∧ dx1 ∧ dt + ∂E1

∂x3 dx3 ∧ dx1 ∧ dt + ∂E2

∂x1 dx1 ∧ dx2 ∧ dt + ∂E2

∂x3 dx3 ∧ dx2 ∧ dt

+ ∂E3

∂x1 dx1 ∧ dx3 ∧ dt + ∂E3

∂x2 dx2 ∧ dx3 ∧ dt + ∂B1

∂x1 dx1 ∧ dx2 ∧ dx3 + ∂B1

∂t
dt ∧ dx2 ∧ dx3

+ ∂B2

∂x2 dx2 ∧ dx3 ∧ dx1 + ∂B2

∂t
dt ∧ dx3 ∧ dx1 + ∂B3

∂x3 dx3 ∧ dx1 ∧ dx2 + ∂B3

∂t
dt ∧ dx1 ∧ dx2

=
(

∂E3

∂x2 − ∂E2

∂x3 + ∂B1

∂t

)
dx2 ∧ dx3 ∧ dt +

(
∂E1

∂x3 − ∂E3

∂x1 + ∂B2

∂t

)
dx3 ∧ dx1 ∧ dt

+
(

∂E2

∂x1 − ∂E1

∂x2 + ∂B3

∂t

)
dx1 ∧ dx2 ∧ dt +

(
∂B1

∂x1 + ∂B2

∂x2 + ∂B3

∂x3

)
dx1 ∧ dx2 ∧ dx3

Thus, dF = 0 is equivalent with the equations ∇ × E = −∂B
∂t

and ∇ · B = 0.

3. Let M be a smooth manifold. Let ω ∈ Ωk(M) be an exact form and let τ ∈ Ωℓ(M) be
a closed form. Prove that ω ∧ τ is an exact form.

Solution. Let ω̂ ∈ Ωk−1(M) be a form such that dω̂ = ω. The form ω∧τ is exact because

d(ω̂ ∧ τ) = dω̂ ∧ τ + (−1)kω̂ ∧ dτ = ω ∧ τ + (−1)kω̂ ∧ 0 = ω ∧ τ .

4. Let M be a compact manifold. Let ω ∈ Ω1(M) be a 1-form that has no zeros.1 Prove
that ω is not an exact form.

Solution. By contradiction, let us assume that ω is an exact form, hence we can choose
a real valued smooth function f ∈ F (M) such that ω = df . Since M is compact, the
function f has a maximum at some point p ∈ M . Since the exterior derivative on F (M)
is the differential, we have dfp = 0 i.e. p is a zero of ω = df .

5. (1) Prove that the restrictions of the coordinate forms of E3 to the submanifold S2 ⊂ E3

satisfy2 x1dx1 + x2dx2 + x3dx3 = 0.
(2) Let ω = x1dx2 ∧ dx3 + x2dx3 ∧ dx1 + x3dx1 ∧ dx2 ∈ Ω2(S2). Prove that

ω =



dx2 ∧ dx3

x1 , when x1 ̸= 0

dx3 ∧ dx1

x2 , when x2 ̸= 0

dx1 ∧ dx2

x3 , when x3 ̸= 0

Solution. (1) By Exercise 3 of week 8,3, since S2 is the regular level set f−1(1) of the
smooth function f = (x1)1 + (x2)2 + (x3)2, then on S2 we have

0 = d((x1)2 + (x2)2 + (x3)2) = 2(x1dx1 + x2dx2 + x3dx3) .

1p ∈ M is a zero of ω if ωp = 0.
2Exercise 3 of week 8 may be useful here.
3Exercise 6.12 in the Finnish text.



(2) Assume that x1 ̸= 0. Part (1) implies that x1dx1 = −(x2dx2 + x3dx3). Therefore,

x2dx3 ∧ dx1 = −(x2)2dx3 ∧ dx2

x1 = (x2)2dx2 ∧ dx3

x1

and
x3dx1 ∧ dx2 = −(x3)2dx3 ∧ dx2

x1 = (x3)2dx2 ∧ dx3

x1 .

Therefore,

ω = x1dx2 ∧ dx3 + (x2)2dx2 ∧ dx3

x1 + (x3)2dx2 ∧ dx3

x1

= (x1)2 + (x2)2 + (x3)2) dx2 ∧ dx3

x1 = dx2 ∧ dx3

x1 .

The other cases are treated in the same way.


