Differential geometry 2023

Exercises 10

1. Let S be a smooth manifold and let (M, g) be a Riemannian manifold. Let $F: S \rightarrow$ M be an immersion. Prove that $F^{*} g$ is a Riemannian metric.

Solution. The pullback $F^{*} g$ is a covariant 2-tensor field by Proposition 8.11 and Lemma 8.12. It is symmetric because pullback is defined by the slots:

$$
\left(F^{*} g\right)_{p}(v, w)=g_{F(p)}\left(d F_{p} v, d F_{p} w\right)=g_{F(p)}\left(d F_{p} w, d F_{p} v\right)=\left(F^{*} g\right)_{p}(w, v) .
$$

It remains to check positive-definiteness: Let $v \in T_{p} M-\{0\}$. Then $d F v \neq 0$ because F is an immersion. Thus,

$$
\left(F^{*} g\right)_{p}(v, v)=g_{F(p)}\left(d F_{p} v, d F_{p} v\right)>0 .
$$

The stereographic projection $\mathscr{S}: \mathbb{S}^{2}-\left\{e_{3}\right\} \rightarrow \mathbb{E}^{2}=\mathbb{E}^{2} \times\{0\}$ from the north pole to the equatorial plane, is the mapping

$$
\mathscr{S}(x)=\left(\frac{x_{1}}{1-x_{3}}, \frac{x_{2}}{1-x_{3}}\right) .
$$

The mapping \mathscr{S} is a diffeomorphism that assigns to $x \in \mathbb{S}^{2}-\left\{e^{3}\right\}$ the unique point in the plane \mathbb{E}^{2} (thought of as the hyperplane $\mathbb{E}^{2} \times\{0\}$ in \mathbb{E}^{3}) that lies on the line through e_{3} and x. The inverse of the stereographic projection is given by

$$
\mathscr{S}^{-1}(y)=\frac{1}{1+\|y\|^{2}}\left(2 y_{1}, 2 y_{2},\|y\|^{2}-1\right) .
$$

Figure 1: Stereographic projection.

Let $i: \mathbb{S}^{n} \rightarrow \mathbb{E}^{n+1}$ be the inclusion mapping. Let $g_{\mathbb{E}}=\sum_{k=1}^{n+1}\left(d x^{k}\right)^{2}$ be the Euclidean Riemannian metric of \mathbb{E}^{n+1}. The Riemannian metric $g_{\mathbb{S}}=i^{*} g_{\mathbb{E}}$ is the standard or round Riemannian metric on \mathbb{S}^{2}. The Riemannian manifold $\left(\mathbb{S}^{n}, g_{\mathbb{S}}\right)$ is the standard or round n-sphere.
2. Let $g_{\mathbb{S}}$ be the Riemannian metric of the round 2 -sphere \mathbb{S}^{2}. Compute $\left(\mathscr{S}^{-1}\right)^{*} g_{\mathbb{S}}$.

Solution. Notice that $\left(\mathscr{S}^{-1}\right)^{*} g_{\mathbb{S}}=\left(\mathscr{S}^{-1}\right)^{*}\left(i^{*} g_{\mathbb{E}}\right)=\left(i \circ \mathscr{S}^{-1}\right)^{*} g_{\mathbb{E}}$. The Jacobian matrix of $i \circ \mathscr{S}^{-1}: \mathbb{E}^{2} \rightarrow \mathbb{E}^{3}$ is

$$
\frac{1}{\left(1+\|y\|^{2}\right)^{2}}\left(\begin{array}{cc}
2\left(1-\left(y^{1}\right)^{2}+\left(y^{2}\right)^{2}\right) & -4 y^{1} y^{2} \\
-4 y^{1} y^{2} & 2\left(1+\left(y^{1}\right)^{2}-\left(y^{2}\right)^{2}\right) \\
4 y^{1} & 4 y^{2}
\end{array}\right)
$$

Therefore,

$$
\begin{aligned}
& \left(i \circ \mathscr{S}^{-1}\right)^{*}\left(\left(d x^{1}\right)^{2}+\left(d x^{2}\right)^{2}+\left(d x^{3}\right)^{2}\right) \\
& =\frac{1}{\left(1+\|y\|^{2}\right)^{4}}\left(\left(2\left(1-\left(y^{1}\right)^{2}+\left(y^{2}\right)^{2}\right) d y^{1}-4 y^{1} y^{2} d y^{2}\right)^{2}\right. \\
& \left.+\left(-4 y^{1} y^{2} d y^{1}+2\left(1+\left(y^{1}\right)^{2}-\left(y^{2}\right)^{2}\right) d y^{2}\right)^{2}+\left(4 y^{1} d y^{1}+4 y^{2} d y^{2}\right)^{2}\right) \\
& =\frac{1}{\left(1+\|y\|^{2}\right)^{4}}\left(\left(4\left(1-\left(y^{1}\right)^{2}+\left(y^{2}\right)^{2}\right)^{2}+16\left(y^{1} y^{2}\right)^{2}+16\left(y^{1}\right)^{2}\right)\left(d x^{1}\right)^{2}\right) \\
& \left.\left(4\left(1+\left(y^{1}\right)^{2}-\left(y^{2}\right)^{2}\right)^{2}+16\left(y^{1} y^{2}\right)^{2}+16\left(y^{2}\right)^{2}\right)\left(d x^{2}\right)^{2}+0 d x^{1} \otimes d x^{2}+0 d x^{1} \otimes d x^{2}\right) \\
& =\frac{4}{\left(1+\|y\|^{2}\right)^{4}}\left(\left(\left(1+\left(y^{2}\right)^{2}\right)^{2}-2\left(y^{1}\right)^{2}\left(1+\left(y^{2}\right)^{2}\right)+\left(y^{1}\right)^{4}+4\left(y^{1} y^{2}\right)^{2}+4\left(y^{1}\right)^{2}\right)\left(d x^{1}\right)^{2}\right) \\
& \\
& \left.\left(\left(1+\left(y^{1}\right)^{2}\right)^{2}-2\left(y^{2}\right)^{2}\left(1+\left(y^{1}\right)^{2}\right)+\left(y^{2}\right)^{4}+4\left(y^{1} y^{2}\right)^{2}+4\left(y^{2}\right)^{2}\right)\left(d x^{2}\right)^{2}\right) \\
& =\frac{1}{\left(1+\|y\|^{2}\right)^{4}}\left(\left(1+\|y\|^{2}\right)^{2}\left(d y^{1}\right)^{2}+\left(1+\|y\|^{2}\right)^{2}\left(d y^{2}\right)^{2}\right) \\
& =\frac{\left(d y^{1}\right)^{2}+\left(d y^{2}\right)^{2}}{\left(1+\|y\|^{2}\right)^{2}} .
\end{aligned}
$$

The Riemannian metric

$$
g_{\mathbb{H}}=\frac{1}{\left(x^{n}\right)^{2}} \sum_{i=1}^{n}\left(d x^{i}\right)^{2}
$$

of the upper halfspace $\left\{x \in \mathbb{R}^{n}: x^{n}>0\right\}$ defines the upper halfspace model

$$
\mathbb{H}^{n}=\left(\left\{x \in \mathbb{R}^{n}: x^{n}>0\right\}, g_{\mathbb{H}}\right),
$$

of hyperbolic n-space.
3. The mapping $F: B^{n}(0,1) \rightarrow \mathbb{H}^{n}$

$$
F(y)=-\mathbf{e}_{n}+2 \frac{y+\mathbf{e}_{n}}{\left\|y+\mathbf{e}_{n}\right\|^{2}}
$$

is a smooth diffeomorphism. 1 Compute $F^{*} g_{\mathbb{H}}$. It is sufficient to do the computation just for $n=2$.

Solution. We assume $n=2$. In this case, we can write $F(y)=\frac{\left(2 y_{1}, 1-y_{1}^{2}-y_{2}^{2}\right)}{y_{1}^{2}+\left(y_{2}+1\right)^{2}}$. The Jacobian matrix of the map F is given by

$$
\frac{1}{\left\|y+\mathbf{e}_{2}\right\|^{4}}\left(\begin{array}{cc}
2\left(\left(y_{2}+1\right)^{2}-\left(y_{1}\right)^{2}\right) & -4 y_{1}\left(y_{2}+1\right) \\
-4 y_{1}\left(y_{2}+1\right) & 2\left(y_{1}^{2}-\left(y_{2}+1\right)^{2}\right)
\end{array}\right) .
$$

[^0]Then

$$
\begin{aligned}
F^{*} g_{\mathbb{H}}= & F^{*}\left(\frac{1}{\left(y^{2}\right)^{2}}\left(\left(d y^{1}\right)^{2}+\left(d y^{2}\right)^{2}\right)\right) \\
= & \left.\frac{1}{F_{2}\left(y^{1}, y^{2}\right)^{2}}\left(\frac{\partial F_{1}}{\partial y^{1}} d y^{1}+\frac{\partial F_{1}}{\partial y^{2}} d y^{2}\right)^{2}+\left(\frac{\partial F_{2}}{\partial y^{1}} d y^{1}+\frac{\partial F_{2}}{\partial y^{2}} d y^{2}\right)^{2}\right) \\
= & \frac{\left\|y+\mathbf{e}_{2}\right\|^{4}}{\left(1-\|y\|^{2}\right)^{2}} \frac{1}{\left\|y+\mathbf{e}_{2}\right\|^{8}}\left(\left(2\left(\left(y^{2}+1\right)^{2}-\left(y^{1}\right)^{2}\right) d y^{1}+-4 y^{1}\left(y^{2}+1\right) d y^{2}\right)^{2}\right. \\
& \left.+\left(-4 y^{1}\left(y^{2}+1\right) d y_{1}+2\left(\left(y^{1}\right)^{2}-\left(y^{2}+1\right)^{2}\right) d y^{2}\right)^{2}\right) \\
= & \frac{4\left(\left(d y^{1}\right)^{2}+\left(d y^{2}\right)^{2}\right)}{\left(1-\|y\|^{2}\right)^{2}} .
\end{aligned}
$$

For a general dimension n, a similar computation gives

$$
F^{*} g_{\mathbb{H}}=\frac{4}{\left(1-\|y\|^{2}\right)^{2}} \sum_{i=1}^{n}\left(d x^{i}\right)^{2} .
$$

The unit ball (or disk if $n=2$) $B(0,1)$ endowed with this metric is known as the Poincaré ball (or disk).
4. Give an example of a 2-covector $\omega \in A^{2}\left(\mathbb{R}^{4}\right)$ such that $\omega \wedge \omega \neq 0$.

Solution. Let $\left(\epsilon^{1}, \epsilon^{2}, \epsilon^{3}, \epsilon^{4}\right)$ be a basis of covectors dual to the standard basis of \mathbb{R}^{4}. Then

$$
\begin{aligned}
& \left(\epsilon^{1} \wedge \epsilon^{2}+\epsilon^{3} \wedge \epsilon^{4}\right) \wedge\left(\epsilon^{1} \wedge \epsilon^{2}+\epsilon^{3} \wedge \epsilon^{4}\right) \\
& =\epsilon^{1} \wedge \epsilon^{2} \wedge \epsilon^{1} \wedge \epsilon^{2}+\epsilon^{1} \wedge \epsilon^{2} \wedge \epsilon^{3} \wedge \epsilon^{4}+\epsilon^{3} \wedge \epsilon^{4} \wedge \epsilon^{1} \wedge \epsilon^{2}+\epsilon^{3} \wedge \epsilon^{4} \wedge \epsilon^{3} \wedge \epsilon^{4} \\
& =2 \epsilon^{1} \wedge \epsilon^{2} \wedge \epsilon^{3} \wedge \epsilon^{4}
\end{aligned}
$$

because the first and fourth summand have repeated covectors in the wedge products and because (13)(24) is an even permutation. As $\epsilon^{1} \wedge \epsilon^{2} \wedge \epsilon^{3} \wedge \epsilon^{4}\left(e_{1}, e_{2}, e_{3}, e_{4}\right)=1$, the 4-covector $2 \epsilon^{1} \wedge \epsilon^{2} \wedge \epsilon^{3} \wedge \epsilon^{4}$ is nonzero.
5. Let $\omega^{1}, \ldots \omega^{k} \in A^{1}(V)$. Assume that $\omega^{i}=\omega^{j}$ for some indices $1 \leq i, j \leq k, i \neq j$. Prove that $\omega^{1} \wedge \cdots \wedge \omega^{k}=0$.

Solution. Using Proposition 7.17(2) several times and associtivity of the wedge product, we can assume $\omega^{1}=\omega^{2}$ Then

$$
\left(\omega^{1} \wedge \omega^{1}\right) \wedge\left(\omega^{3} \wedge \cdots \wedge \omega^{k}\right)=0 \wedge\left(\omega^{3} \wedge \cdots \wedge \omega^{k}\right)=0
$$

because $0 \otimes A=0$ for any tensor A.
6. Assume that $\omega^{1}, \ldots, \omega^{k} \in A^{1}(V)$ are linearly dependent. Prove that $\omega^{1} \wedge \cdots \wedge \omega^{k}=0$.

Solution. Up to using the anticommutativity formula $\omega \wedge \omega^{\prime}=(-1)^{1^{2}} \omega^{\prime} \wedge \omega=-\omega^{\prime} \wedge \omega$ (for all $\left.\omega, \omega^{\prime} \in A^{1}(V)\right)$ several times, we can assume that ω^{1} is equal to the linear combination $\sum_{i=2}^{k} \lambda_{i} \omega^{i}$ (where $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{R}$). Then, by linearity of the wedge product and the result of Exercise 5, we obtain

$$
\omega^{1} \wedge \cdots \wedge \omega^{k}=\sum_{i=2}^{k} \lambda_{i}\left(\omega^{i} \wedge \cdots \wedge \omega^{k}\right)=\sum_{i=2}^{k} \lambda_{i} 0=0
$$

[^0]: ${ }^{1}$ This mapping is the restriction of the inversion in the sphere of radius $\sqrt{2}$ centred at $-\mathbf{e}_{n}$ to the unit ball in \mathbb{E}^{n}.

