
Differential geometry 2023

Exercises 10

1. Let S be a smooth manifold and let (M, g) be a Riemannian manifold. Let F : S →
M be an immersion. Prove that F ∗g is a Riemannian metric.

Solution. The pullback F ∗g is a covariant 2-tensor field by Proposition 8.11 and Lemma
8.12. It is symmetric because pullback is defined by the slots:

(F ∗g)p(v, w) = gF (p)(dFpv, dFpw) = gF (p)(dFpw, dFpv) = (F ∗g)p(w, v) .

It remains to check positive-definiteness: Let v ∈ TpM −{0}. Then dFv ̸= 0 because F is
an immersion. Thus,

(F ∗g)p(v, v) = gF (p)(dFpv, dFpv) > 0 .

The stereographic projection S : S2 − {e3} → E2 = E2 × {0} from the north pole to the
equatorial plane, is the mapping

S (x) =
(

x1

1 − x3
,

x2

1 − x3

)
.

The mapping S is a diffeomorphism that assigns to x ∈ S2 − {e3} the unique point in
the plane E2 (thought of as the hyperplane E2 × {0} in E3) that lies on the line through
e3 and x. The inverse of the stereographic projection is given by

S −1(y) = 1
1 + ∥y∥2 (2y1, 2y2, ∥y∥2 − 1) .

S (y)

e3

x
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Figure 1: Stereographic projection.

Let i : Sn → En+1 be the inclusion mapping. Let gE =
n+1∑
k=1

(dxk)2 be the Euclidean
Riemannian metric of En+1. The Riemannian metric gS = i∗gE is the standard or round
Riemannian metric on S2. The Riemannian manifold (Sn, gS) is the standard or round
n-sphere.



2. Let gS be the Riemannian metric of the round 2-sphere S2. Compute (S −1)∗gS.

Solution. Notice that (S −1)∗gS = (S −1)∗(i∗gE) = (i ◦ S −1)∗gE. The Jacobian matrix
of i ◦ S −1 : E2 → E3 is

1
(1 + ∥y∥2)2

2(1 − (y1)2 + (y2)2) −4y1y2

−4y1y2 2(1 + (y1)2 − (y2)2)
4y1 4y2

 .

Therefore,

(i ◦ S −1)∗((dx1)2 + (dx2)2 + (dx3)2)

= 1
(1 + ∥y∥2)4

(
(2(1 − (y1)2 + (y2)2)dy1 − 4y1y2dy2)2

+ (−4y1y2dy1 + 2(1 + (y1)2 − (y2)2)dy2)2 + (4y1dy1 + 4y2dy2)2
)

= 1
(1 + ∥y∥2)4

(
(4(1 − (y1)2 + (y2)2)2 + 16(y1y2)2 + 16(y1)2)(dx1)2)

(4(1 + (y1)2 − (y2)2)2 + 16(y1y2)2 + 16(y2)2)(dx2)2 + 0 dx1 ⊗ dx2 + 0 dx1 ⊗ dx2
)

= 4
(1 + ∥y∥2)4

(
((1 + (y2)2)2 − 2(y1)2(1 + (y2)2) + (y1)4 + 4(y1y2)2 + 4(y1)2)(dx1)2)

((1 + (y1)2)2 − 2(y2)2(1 + (y1)2) + (y2)4 + 4(y1y2)2 + 4(y2)2)(dx2)2
)

= 1
(1 + ∥y∥2)4 ((1 + ∥y∥2)2(dy1)2 + (1 + ∥y∥2)2(dy2)2)

= (dy1)2 + (dy2)2

(1 + ∥y∥2)2 .

The Riemannian metric
gH = 1

(xn)2

n∑
i=1

(dxi)2

of the upper halfspace {x ∈ Rn : xn > 0} defines the upper halfspace model

Hn =
(
{x ∈ Rn : xn > 0}, gH

)
,

of hyperbolic n-space.

3. The mapping F : Bn(0, 1) → Hn

F (y) = −en + 2 y + en

∥y + en∥2

is a smooth diffeomorphism.1 Compute F ∗gH. It is sufficient to do the computation just
for n = 2.

Solution. We assume n = 2. In this case, we can write F (y) = (2y1,1−y2
1−y2

2)
y2

1+(y2+1)2 . The Jacobian
matrix of the map F is given by

1
∥y + e2∥4

(
2((y2 + 1)2 − (y1)2) −4y1(y2 + 1)

−4y1(y2 + 1) 2(y2
1 − (y2 + 1)2)

)
.

1This mapping is the restriction of the inversion in the sphere of radius
√

2 centred at −en to the
unit ball in En.



Then

F ∗gH =F ∗
( 1

(y2)2 ((dy1)2 + (dy2)2)
)

= 1
F2(y1, y2)2

(∂F1

∂y1 dy1 + ∂F1

∂y2 dy2
)2

+
(∂F2

∂y1 dy1 + ∂F2

∂y2 dy2
)2

)

= ∥y + e2∥4

(1 − ∥y∥2)2
1

∥y + e2∥8 ((2((y2 + 1)2 − (y1)2)dy1 + −4y1(y2 + 1)dy2)2

+ (−4y1(y2 + 1)dy1 + 2((y1)2 − (y2 + 1)2)dy2)2)

=4((dy1)2 + (dy2)2)
(1 − ∥y∥2)2 .

For a general dimension n, a similar computation gives

F ∗gH = 4
(1 − ∥y∥2)2

n∑
i=1

(dxi)2.

The unit ball (or disk if n = 2) B(0, 1) endowed with this metric is known as the Poincaré
ball (or disk).

4. Give an example of a 2-covector ω ∈ A2(R4) such that ω ∧ ω ̸= 0.

Solution. Let (ϵ1, ϵ2, ϵ3, ϵ4) be a basis of covectors dual to the standard basis of R4. Then

(ϵ1 ∧ ϵ2 + ϵ3 ∧ ϵ4) ∧ (ϵ1 ∧ ϵ2 + ϵ3 ∧ ϵ4)
= ϵ1 ∧ ϵ2 ∧ ϵ1 ∧ ϵ2 + ϵ1 ∧ ϵ2 ∧ ϵ3 ∧ ϵ4 + ϵ3 ∧ ϵ4 ∧ ϵ1 ∧ ϵ2 + ϵ3 ∧ ϵ4 ∧ ϵ3 ∧ ϵ4

= 2ϵ1 ∧ ϵ2 ∧ ϵ3 ∧ ϵ4

because the first and fourth summand have repeated covectors in the wedge products
and because (13)(24) is an even permutation. As ϵ1 ∧ ϵ2 ∧ ϵ3 ∧ ϵ4(e1, e2, e3, e4) = 1, the
4-covector 2ϵ1 ∧ ϵ2 ∧ ϵ3 ∧ ϵ4 is nonzero.

5. Let ω1, . . . ωk ∈ A1(V ). Assume that ωi = ωj for some indices 1 ≤ i, j ≤ k, i ̸= j.
Prove that ω1 ∧ · · · ∧ ωk = 0.

Solution. Using Proposition 7.17(2) several times and associtivity of the wedge product,
we can assume ω1 = ω2 Then

(ω1 ∧ ω1) ∧ (ω3 ∧ · · · ∧ ωk) = 0 ∧ (ω3 ∧ · · · ∧ ωk) = 0 ,

because 0 ⊗ A = 0 for any tensor A.

6. Assume that ω1, . . . , ωk ∈ A1(V ) are linearly dependent. Prove that ω1 ∧ · · · ∧ ωk = 0.

Solution. Up to using the anticommutativity formula ω∧ω′ = (−1)12
ω′∧ω = −ω′∧ω (for

all ω, ω′ ∈ A1(V )) several times, we can assume that ω1 is equal to the linear combination∑k
i=2 λiω

i (where λ1, . . . , λk ∈ R). Then, by linearity of the wedge product and the result
of Exercise 5, we obtain

ω1 ∧ · · · ∧ ωk =
k∑

i=2
λi(ωi ∧ · · · ∧ ωk) =

k∑
i=2

λi 0 = 0.


