Differential geometry 2023

Exercises 10

1. Let S be a smooth manifold and let (M, g) be a Riemannian manifold. Let F': S —
M be an immersion. Prove that F*g is a Riemannian metric.

Solution. The pullback F*g is a covariant 2-tensor field by Proposition 8.11 and Lemma
8.12. It is symmetric because pullback is defined by the slots:
(F7g)p(v, w) = gr@p) (dFpv, dFyw) = gry) (dFyw, dFyv) = (F*g)y(w,v) .

It remains to check positive-definiteness: Let v € T,M —{0}. Then dFv # 0 because F is
an immersion. Thus,

(F7g)p(v,v) = gpp)(dFyv,dF,v) > 0.

The stereographic projection #: S* — {e3} — E? = E? x {0} from the north pole to the
equatorial plane, is the mapping
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The mapping . is a diffeomorphism that assigns to z € S* — {e*} the unique point in
the plane E? (thought of as the hyperplane E? x {0} in E?) that lies on the line through
ez and x. The inverse of the stereographic projection is given by

1
Ly = ——— (21,2 Z_1).

€3

Figure 1: Stereographic projection.

n+1
Let i: S* — E™! be the inclusion mapping. Let gz = 3 (da*)? be the Euclidean
k=1
Riemannian metric of E"™!. The Riemannian metric gs = i*gg is the standard or round
Riemannian metric on S?. The Riemannian manifold (S", gs) is the standard or round

n-sphere.




2. Let gs be the Riemannian metric of the round 2-sphere S?. Compute (. ~1)*gs.

Solution. Notice that (. 1)*gs = (. 1)*(i*gg) = (i 0 S !)*gg. The Jacobian matrix
ofio. ™1 E* — E3is

. 2(1 = (y')* + (v*)?) —4y'y’
s —Ayle? N2 (,2)2 .
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Therefore,
(i0 1) ((da')? + (da?)? + (dz°)?)
1

SN MEE ((2(1 — W)+ (W) )dy' — dy'y dy?)’

F(—AyyPdy + 201+ () = D)y + (g dy’ + 4y

= (1_{_‘1|y’|2)4<(4(1 _ (yl)Q + (y2)2)2 + 16(y1y2)2 + 16(y1)2)(d:p1)2)

A1+ () = (022 + 1607 + 167)°) (0o + 04! @ do? + 0’ @ do?
= (Hﬁyurzy (((1 + )2 =22+ WP + (¥ + 4"y + 4y (dah)?)
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of the upper halfspace {z € R™ : ™ > 0} defines the upper halfspace model

H" = ({x eR": 2" > 0},gH),

of hyperbolic n-space.

3. The mapping F': B"(0,1) — H"

is a smooth diffeomorphism[]] Compute F*gy. It is sufficient to do the computation just
for n = 2.

_ 2.2
Solution. We assume n = 2. In this case, we can write F'(y) = % The Jacobian
1

matrix of the map F' is given by
1 22 + 1) = (v1)?)  —4yi(y2 +1)
ly+eaf* \  —dmy2+1) 28— (12 +1)%))°

IThis mapping is the restriction of the inversion in the sphere of radius /2 centred at —e,, to the
unit ball in E”.




Then
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For a general dimension n, a similar computation gives

d
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The unit ball (or disk if n = 2) B(0,1) endowed with this metric is known as the Poincaré
ball (or disk).

F*gH
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4. Give an example of a 2-covector w € A%(R?) such that w A w # 0.

Solution. Let (¢!, €2, €3, ¢!) be a basis of covectors dual to the standard basis of R*. Then
(EANE+eENe )/\(61/\€2+63/\€4)
= NEANSNE+ENENENE+HENNENE+ENENE NE
=2 NENENE

because the first and fourth summand have repeated covectors in the wedge products

and because (13)(24) is an even permutation. As €' A€ A €3 A el(ey, e, e3,64) = 1, the
4-covector 2¢! A €2 A €2 A €? is nonzero.

5. Let w!,...wk € AYV). Assume that w® = w’ for some indices 1 < i,j < k, i # j.
Prove that w' A --- Aw* = 0.

Solution. Using Proposition 7.17(2) several times and associtivity of the wedge product,
we can assume w! = w? Then

(W AW AWIA A =0A WP A AUF) =0,

because 0 ® A = 0 for any tensor A.
6. Assume that w!, ... w* € AY(V) are linearly dependent. Prove that w! A--- Aw* = 0.

Solution. Up to using the anticommutativity formula wAw’ = (=1)w'Aw = —w'Aw (for
all w,w’ € A(V)) several times, we can assume that w is equal to the linear combination

¥ o Aw’ (where Ap, ..., A\ € R). Then, by linearity of the wedge product and the result
of Exercise 5, we obtain



