Differential geometry 2023

Exercises 10

1. Let S be a smooth manifold and let (M, g) be a Riemannian manifold. Let $F: S \to M$ be an immersion. Prove that F^*g is a Riemannian metric.

Solution. The pullback F^*g is a covariant 2-tensor field by Proposition 8.11 and Lemma 8.12. It is symmetric because pullback is defined by the slots:

$$(F^*g)_p(v,w) = g_{F(p)}(dF_pv, dF_pw) = g_{F(p)}(dF_pw, dF_pv) = (F^*g)_p(w,v)$$

It remains to check positive-definiteness: Let $v \in T_pM - \{0\}$. Then $dFv \neq 0$ because F is an immersion. Thus,

$$(F^*g)_p(v,v) = g_{F(p)}(dF_pv, dF_pv) > 0.$$

The stereographic projection $\mathscr{S}: \mathbb{S}^2 - \{e_3\} \to \mathbb{E}^2 = \mathbb{E}^2 \times \{0\}$ from the north pole to the equatorial plane, is the mapping

$$\mathscr{S}(x) = \left(\frac{x_1}{1-x_3}, \frac{x_2}{1-x_3}\right).$$

The mapping \mathscr{S} is a diffeomorphism that assigns to $x \in \mathbb{S}^2 - \{e^3\}$ the unique point in the plane \mathbb{E}^2 (thought of as the hyperplane $\mathbb{E}^2 \times \{0\}$ in \mathbb{E}^3) that lies on the line through e_3 and x. The inverse of the stereographic projection is given by

$$\mathscr{S}^{-1}(y) = \frac{1}{1 + \|y\|^2} (2y_1, 2y_2, \|y\|^2 - 1).$$

Figure 1: Stereographic projection.

Let $i: \mathbb{S}^n \to \mathbb{E}^{n+1}$ be the inclusion mapping. Let $g_{\mathbb{E}} = \sum_{k=1}^{n+1} (dx^k)^2$ be the Euclidean Riemannian metric of \mathbb{E}^{n+1} . The Riemannian metric $g_{\mathbb{S}} = i^* g_{\mathbb{E}}$ is the standard or round Riemannian metric on \mathbb{S}^2 . The Riemannian manifold $(\mathbb{S}^n, g_{\mathbb{S}})$ is the standard or round *n-sphere*. **2.** Let $g_{\mathbb{S}}$ be the Riemannian metric of the round 2-sphere \mathbb{S}^2 . Compute $(\mathscr{S}^{-1})^* g_{\mathbb{S}}$.

Solution. Notice that $(\mathscr{S}^{-1})^* g_{\mathbb{S}} = (\mathscr{S}^{-1})^* (i^* g_{\mathbb{E}}) = (i \circ \mathscr{S}^{-1})^* g_{\mathbb{E}}$. The Jacobian matrix of $i \circ \mathscr{S}^{-1} : \mathbb{E}^2 \to \mathbb{E}^3$ is

$$\frac{1}{(1+\|y\|^2)^2} \begin{pmatrix} 2(1-(y^1)^2+(y^2)^2) & -4y^1y^2\\ -4y^1y^2 & 2(1+(y^1)^2-(y^2)^2)\\ 4y^1 & 4y^2 \end{pmatrix} \,.$$

Therefore,

$$\begin{split} (i \circ \mathscr{S}^{-1})^* ((dx^1)^2 + (dx^2)^2 + (dx^3)^2) \\ &= \frac{1}{(1+||y||^2)^4} \Big((2(1-(y^1)^2 + (y^2)^2) dy^1 - 4y^1 y^2 dy^2)^2 \\ &+ (-4y^1 y^2 dy^1 + 2(1+(y^1)^2 - (y^2)^2) dy^2)^2 + (4y^1 dy^1 + 4y^2 dy^2)^2 \Big) \\ &= \frac{1}{(1+||y||^2)^4} \Big((4(1-(y^1)^2 + (y^2)^2)^2 + 16(y^1 y^2)^2 + 16(y^1)^2) (dx^1)^2) \\ (4(1+(y^1)^2 - (y^2)^2)^2 + 16(y^1 y^2)^2 + 16(y^2)^2) (dx^2)^2 + 0 \, dx^1 \otimes dx^2 + 0 \, dx^1 \otimes dx^2 \Big) \\ &= \frac{4}{(1+||y||^2)^4} \Big(((1+(y^2)^2)^2 - 2(y^1)^2(1+(y^2)^2) + (y^1)^4 + 4(y^1 y^2)^2 + 4(y^1)^2) (dx^1)^2) \\ ((1+(y^1)^2)^2 - 2(y^2)^2(1+(y^1)^2) + (y^2)^4 + 4(y^1 y^2)^2 + 4(y^2)^2) (dx^2)^2 \Big) \\ &= \frac{1}{(1+||y||^2)^4} ((1+||y||^2)^2 (dy^1)^2 + (1+||y||^2)^2 (dy^2)^2) \\ &= \frac{(dy^1)^2 + (dy^2)^2}{(1+||y||^2)^2}. \end{split}$$

The Riemannian metric

$$g_{\mathbb{H}} = \frac{1}{(x^n)^2} \sum_{i=1}^n (dx^i)^2$$

of the upper halfspace $\{x \in \mathbb{R}^n : x^n > 0\}$ defines the upper halfspace model

$$\mathbb{H}^n = \left(\{ x \in \mathbb{R}^n : x^n > 0 \}, g_{\mathbb{H}} \right),$$

of hyperbolic n-space.

3. The mapping $F: B^n(0,1) \to \mathbb{H}^n$

$$F(y) = -\mathbf{e}_n + 2\frac{y + \mathbf{e}_n}{\|y + \mathbf{e}_n\|^2}$$

is a smooth diffeomorphism.¹ Compute $F^*g_{\mathbb{H}}$. It is sufficient to do the computation just for n = 2.

Solution. We assume n = 2. In this case, we can write $F(y) = \frac{(2y_1, 1-y_1^2-y_2^2)}{y_1^2+(y_2+1)^2}$. The Jacobian matrix of the map F is given by

$$\frac{1}{\|y+\mathbf{e}_2\|^4} \begin{pmatrix} 2((y_2+1)^2-(y_1)^2) & -4y_1(y_2+1) \\ -4y_1(y_2+1) & 2(y_1^2-(y_2+1)^2) \end{pmatrix}.$$

¹This mapping is the restriction of the inversion in the sphere of radius $\sqrt{2}$ centred at $-\mathbf{e}_n$ to the unit ball in \mathbb{E}^n .

Then

$$\begin{split} F^*g_{\mathbb{H}} = & F^* \bigg(\frac{1}{(y^2)^2} ((dy^1)^2 + (dy^2)^2) \bigg) \\ = & \frac{1}{F_2(y^1, y^2)^2} \bigg(\frac{\partial F_1}{\partial y^1} dy^1 + \frac{\partial F_1}{\partial y^2} dy^2 \bigg)^2 + \bigg(\frac{\partial F_2}{\partial y^1} dy^1 + \frac{\partial F_2}{\partial y^2} dy^2 \bigg)^2 \big) \\ = & \frac{\|y + \mathbf{e}_2\|^4}{(1 - \|y\|^2)^2} \frac{1}{\|y + \mathbf{e}_2\|^8} ((2((y^2 + 1)^2 - (y^1)^2) dy^1 + -4y^1(y^2 + 1) dy^2)^2 \\ & + (-4y^1(y^2 + 1) dy_1 + 2((y^1)^2 - (y^2 + 1)^2) dy^2)^2) \\ = & \frac{4((dy^1)^2 + (dy^2)^2)}{(1 - \|y\|^2)^2}. \end{split}$$

For a general dimension n, a similar computation gives

$$F^*g_{\mathbb{H}} = \frac{4}{(1 - \|y\|^2)^2} \sum_{i=1}^n (dx^i)^2.$$

The unit ball (or disk if n = 2) B(0, 1) endowed with this metric is known as the Poincaré ball (or disk).

4. Give an example of a 2-covector $\omega \in A^2(\mathbb{R}^4)$ such that $\omega \wedge \omega \neq 0$.

Solution. Let $(\epsilon^1, \epsilon^2, \epsilon^3, \epsilon^4)$ be a basis of covectors dual to the standard basis of \mathbb{R}^4 . Then

$$\begin{aligned} (\epsilon^{1} \wedge \epsilon^{2} + \epsilon^{3} \wedge \epsilon^{4}) \wedge (\epsilon^{1} \wedge \epsilon^{2} + \epsilon^{3} \wedge \epsilon^{4}) \\ &= \epsilon^{1} \wedge \epsilon^{2} \wedge \epsilon^{1} \wedge \epsilon^{2} + \epsilon^{1} \wedge \epsilon^{2} \wedge \epsilon^{3} \wedge \epsilon^{4} + \epsilon^{3} \wedge \epsilon^{4} \wedge \epsilon^{1} \wedge \epsilon^{2} + \epsilon^{3} \wedge \epsilon^{4} \wedge \epsilon^{3} \wedge \epsilon^{4} \\ &= 2\epsilon^{1} \wedge \epsilon^{2} \wedge \epsilon^{3} \wedge \epsilon^{4} \end{aligned}$$

because the first and fourth summand have repeated covectors in the wedge products and because (13)(24) is an even permutation. As $\epsilon^1 \wedge \epsilon^2 \wedge \epsilon^3 \wedge \epsilon^4(e_1, e_2, e_3, e_4) = 1$, the 4-covector $2\epsilon^1 \wedge \epsilon^2 \wedge \epsilon^3 \wedge \epsilon^4$ is nonzero.

5. Let $\omega^1, \ldots, \omega^k \in A^1(V)$. Assume that $\omega^i = \omega^j$ for some indices $1 \leq i, j \leq k, i \neq j$. Prove that $\omega^1 \wedge \cdots \wedge \omega^k = 0$.

Solution. Using Proposition 7.17(2) several times and associtivity of the wedge product, we can assume $\omega^1 = \omega^2$ Then

$$(\omega^1 \wedge \omega^1) \wedge (\omega^3 \wedge \dots \wedge \omega^k) = 0 \wedge (\omega^3 \wedge \dots \wedge \omega^k) = 0,$$

because $0 \otimes A = 0$ for any tensor A.

6. Assume that $\omega^1, \ldots, \omega^k \in A^1(V)$ are linearly dependent. Prove that $\omega^1 \wedge \cdots \wedge \omega^k = 0$.

Solution. Up to using the anticommutativity formula $\omega \wedge \omega' = (-1)^{1^2} \omega' \wedge \omega = -\omega' \wedge \omega$ (for all $\omega, \omega' \in A^1(V)$) several times, we can assume that ω^1 is equal to the linear combination $\sum_{i=2}^k \lambda_i \omega^i$ (where $\lambda_1, \ldots, \lambda_k \in \mathbb{R}$). Then, by linearity of the wedge product and the result of Exercise 5, we obtain

$$\omega^1 \wedge \dots \wedge \omega^k = \sum_{i=2}^k \lambda_i (\omega^i \wedge \dots \wedge \omega^k) = \sum_{i=2}^k \lambda_i \, 0 = 0.$$