JYVÄSKYLÄN YLIOPISTO

MATEMATIIKAN JA <u>TILASTOTIETEEN LAITOS</u>

 $\uparrow f(n)$

Exercise set7 Tue Nov 9.2010 14.30-16.00 MaD-355

Topological vector spaces

7.1. Let E locally convex Hausdorff-space and $A \subset E$. Find a necessary and sufficient condition for that the polar of A:n in E^* (or E') is $\{0\}$. (Some help:: bipolaari?)

Solution: Let $A^{\circ} = A$ be the polar in E^* . Claim: $A^{\circ} = \{0\} \iff A^{\circ\circ} = E$. PROOF $A^{\circ} = \{0\} \implies A^{\circ\circ} = \{x \in E \mid |\langle x, y \rangle| \le 1 \forall x \in \{0\}\} = E$. $A^{\circ\circ} = E \implies A^{\circ\circ\circ} = E^{\circ} = \{0\}.$

Notice: (E, E^*) separates E. (So doesn E'). The result can be generalized!

7.2. Let *E* be a locally convex Hausdorff-space and $B \subset E$ balansoitu, konveksi and bounded – and complete. Define Therefore is a seminormi, since *B* is balansoitu, konveksi and in E_B s absorboiva. In fact the gauge *p* is a norm, since *B* is bounded in tehe original Hausdorff-topology τ of *E*, so we write $p = \|\cdot\|$. Is the unit ball of E_B same as the closure \overline{B} ?

Solution: Of course $p_B = \inf_{x \in \lambda B} \lambda$ is seminormi. If $x \in E_B$ and $p_B(x) = 0$, then $x \in \lambda B$, for all $\lambda > 0$. But B is bounded, so for all neighbourhoods of the origin U exists $\lambda > 0$ such that $\lambda B \subset U$, so $x \in U$. Now x sits inside every neighbourhood of the origin and is therefore 0, since the space is Hausdorff. So p_M is a norm in E_B , so call it $\|\cdot\|$. B is complete, so closed in E. Canoninen injektio $E_B \to E$ is continuous, since for all neighbourhoods of the origin U exists $\lambda > 0$ such that $\lambda B \subset U$. So B is preimage of closed, so closed in norm topology. Finlly generally every balansoitu konveksi is inside the closed ballof its gauge, and contains the open ball. This implies the claim.

7.3. Let E be a locally convex Hausdorff-space. Then (E, E^*) is separoiva. Therefore the completion of $E_{\sigma(E,E^*)}$: is the algebrallinen duali $(E^*)'$. Can E_{σ} be complete?

Solution:

Take $E = F'_{\sigma(F',F)}$.

- Take any vector space F.
- Let E be its algebrallinen duaali F'.
- Topologize E with locally convex topology $\sigma(E, F) = \sigma(F', F)$, which is locally convex, Hausdorff and compatible,
- $E^* = (E_{\sigma(E,F)})^* = F.$
- $(E^*)' = F' = E$.

Is this OK?

7.4. Let (E, F) separoituva dualiteetti and $M \subset E$ vector subpace. Prove that $M^{\perp \perp} = M$ if and only if M is closed in some compatible topology wrt duality (E, F).

Solution: Let i $M^{\perp \perp} = M$. Now M is closed in topology $\sigma(E, F)$, since the orthogonal complement of any set $B \subset F$

$$B^{\perp} = \{ x \in E \mid \langle x, x^* \rangle = 0 \,\forall x^* \in B \} = \bigcap_{x^* \in B} \operatorname{Ker} \langle \cdot, x^* \rangle$$

is $\sigma(E, F)$ is an intersection of closed sets in $\sigma(E, F)$.

Let next M be closed in some compatible topology. M is weakly closed, since a subspace is convex and convex closed sets are the same in any compatible topology. For a subspace, $M^{\perp} = M^{\circ}$ (!) is a subspace, so $M^{\perp \perp} = M^{\circ \circ} = \overline{M} = M$, where the closure is in the weak topology,

7.5. Prove that

a) \mathfrak{S} -topology is locally convex and is given by the gauges of the polars of the $A \in \mathfrak{S}, p_A(y) = \sup_{x \in A} |\langle x, y \rangle|.$

Polara A° are always balansoituja and konvekseja, and since \mathfrak{S} -j-sets are weakly biunded, the polars also are absorbing. So their gauges are seminorms and define the topology.

b) if \mathfrak{S} satisfies the conditions

- (1) $A, B \in \mathfrak{S} \implies \exists C \in \mathfrak{S} \text{ such that } A \cup B \subset C \text{ and}$
- (2) $A \in \mathfrak{S}, \lambda \in \mathbb{K} \implies \exists B \in \mathfrak{S} \text{ such that } \lambda A \subset B$,

then $\{A^{\circ} \mid A \in \mathfrak{S}\}$ is a basis of neighbourhoods of the origin in the \mathfrak{S} -topologiy.

Solution: Let $\epsilon \bigcap_I A_i^{\circ}$ belong to a basis of neighbourhoods of the origin in the \mathfrak{S} -topologiy

$$\mathcal{U}_{\mathfrak{S}} = \{ \epsilon \bigcap_{I} A_{i}^{\circ} \mid A_{i} \in \mathfrak{S}, \ \epsilon > 0 \ I \text{ finite} \}.$$

If for all $A, B \in \mathfrak{S}$ there exists a $C \in \mathfrak{S}$ such that $A \cup B \subset C$, then (induktio!) for a finite family $\{A_i \mid i \in I\} \subset \mathfrak{S}$ exists $C \in \mathfrak{S}$ such that $\bigcup_{i \in I} A_i \subset C$. If also for all $C \in \mathfrak{S}$ and $\lambda \in \mathbb{K}$ exists $B \in \mathfrak{S}$ such that $\lambda C \subset B$, then choose $B \in \mathfrak{S}$ such that $\frac{1}{\epsilon}C \subset B$. Now

$$B^{\circ} \subset \epsilon C^{\circ} \subset \epsilon \bigcap_{i \in I} A_i^{\circ}.$$

c) If \mathfrak{S} satisfies

$$\bigcup_{\mathfrak{S}} A = E,$$

then \mathfrak{S} -topologia is finer than weak topology $\sigma(F, E)$.

Solution: Prove that for every point $x \in E$ the polar polaari $\{x\}^\circ = \{y \in F \mid |\langle x, y \rangle| \leq 1\}$ is \mathfrak{S} -open, since in the weak topology a basis of the neighbourhoods of the origin are finite intersections of these polars. Let $x \in E$. By assumption there exists $A \in \mathfrak{S}$, s th. $x \in A$. Now $A^\circ \subset \{x\}^\circ$.

7.6. Prove directly (No Alaoglun and Bourbakin), that an equicontinuous set $A \subset E^*$ is weakly bounded.

Solution: Let $A \subset E^*$ be equicontinuous. $A \subset E^*$ is equicontinuous exactly when $A \subset U^\circ$ for some $U \in \mathcal{U}_{\sigma(E,E^*)}$.

Let V be aweak environment. There exists a finite set $S \subset E$ such that $S^{\circ} \subset V$. since finite sets are bounded, exists $\lambda > 0$ such that $S \subset \lambda U$, and therefore

 $A \subset U^{\circ} \subset \lambda S^{\circ} \subset \lambda V.$

qed

7.7. Let E non-complete locally convex Hausdorff-space and \hat{E} its completion. Prove that the topology $\sigma(E', \hat{E})$ is strictly finer than $\sigma(E', E)$ and similarly for E^* .

Solution: The weak topologia is compatible, so the dual of E': is E in one topology and \hat{E} in the other. The topologies must be different!

7.8. Let E be a Banach space. Prove that $b(E, E') = \tau(E, E')$.

Mackeyn and Arensin corollary "Lause 7.46" space is barreled if and only if $b(E, E') = \tau(E, E')$. Every Banach-space is barreled.

Solution:

7.9. *Is Schwartzin testifunktiospace $D(\mathbb{R})$ normable? How about the spaces D(K)?

Solution: Done before. D(K) was called $\mathcal{C}^{\infty}(K)$. No normed space! $(\mathcal{C}n(K)$ is normispace, for $n < \infty$). $D(\mathbb{R})$ is not even metr.