MATEMATIIKAN JA TILASTOTIETEEN LAITOS

f(n)

Exercise help set 6

Topological Vector Spaces

6.2. E:n weak topology $\sigma(E, F)$ is Hausdorff exactly if the duality separeates E "Why?

Solution: In a locally convex space Hausdorff is equivalent to, that at each point $x \in E \setminus \{0\}$ at lest one seminorm $p_k \in \mathcal{P}$ is $\neq 0$.

Let $\sigma(E, F)$ be Hausdorff and $x \in E \setminus \{0\}$. Now exists distinct $\sigma(E, F)$ - neighbourhoods $U \in \mathcal{U}_0$ and $V \in \mathcal{U}_x$. In particular there are $y_1, \ldots, y_n \in F$ for which $U \supset \{x \in E \mid |\langle \xi, y_m \rangle| \le 1 \forall m \in \{1, \ldots, n\}\}$. Since $x \notin U$, then some $|\langle x, y_m \rangle| > 1 > 0$, so the duality separates E. In a locally convex space Hausdorff is equivalent to , that at each $x \in E \setminus \{0\}$ at lest one seminorm $p_k \in \mathcal{P}$ is $\neq 0$ —evidently.

In revrse, assume that the duality separates . Let $x \in E \setminus \{0\}$. by (!) 7.6. the duality $\langle \cdot, \cdot \rangle$ separates the space E, if $\operatorname{Ker}(F \to E' : x \mapsto \langle \cdot, y \rangle) = \{0\}$, so $x \notin \operatorname{Ker}(F \to E' : x \mapsto \langle \cdot, y \rangle)$, so there exists $y \in F$, s. th. $\langle x, y \rangle \neq 0$. So $\sigma(E, F)$ is Hausdorff.

6.3. Prove, that if E is locally convex Hausdorff-space, then $\sigma(E, E^*)$ is Hausdorff-topology.

Solution: This follows from ex 1 and theorem 7.8., jby which the topological dual of a Hausdorff-space separates it (by Hahn-Banach).

6.4. Call a locally convex topology τ on E compatible with the duality (engl: is compatible with) (E, F), if

 $E_{\tau}^* = F.$

Ex, if E is locally convex Hausdorff-space, then weak topology $\sigma(E, E^*)$ is compatible with the duality (E, E^*) , Also evidently E:n original topology. Is $\sigma(E, E^*)$ the finest –or maybe the coarsest (E, E^*) -compatible topology?

Coarsest. $\sigma = \sigma(E, F)$ is locally convex and $E_{\sigma}^* = F$. No compatible lc top is coarser, since a locally convex topology τ sis compatible exactly when every $|\langle \cdot, y \rangle|$ $(y \in F)$ is τ -continuous.

6.5. Let (E, F) be a separable duality.

a) Prove, that a convexlla set A has the same closure in every (E, F)-compatible topology.

Solution: .

By Mazurin/Banach: if A is convex subset, then A is closed, if and only if A is the intersection of some (necessarily closed) hyperplanes in E: (and these are the same in all compatible toppologies!) j

6.6. Let *E* and *F* be vector spaces dim $E < \infty$. find a necessary and sufficient condition for *F*, which guaantees the existence of a separable duality (E, F).

If separable duality (E, F), then both $x \mapsto \langle x, \cdot \rangle : E \to F'$ and $y \mapsto \langle \cdot, y \rangle : F \to E'$ are injective, so dim $E \leq \dim F' = \dim F$ and dim $E = \dim E' \geq \dim F$, siis dim $E = \dim F$. This was necessary -a nd is also sufficient – do it!.

6.7. Let E have the topology $\sigma(E, E')$. Prove, that if $A \subset E$ is bounded, then

a) exists finite dimensional subspace $G \subset E$ such, that $A \subset G$

b) In E every vector subspace is closed

c) In E every vector subspace has a topological supplement

Solution: $E = E_{\sigma}$. The topology $\sigma = \sigma(E, E')$ is defined by the seminlorms p(s) = |f(x)|, where $f \in E'$.

a) " $A \subset E$ is bounded" means, that every linear form $f \in E'$ is bounded in the set A. Antiteesi exists lin independent vektorit $x_1, x_2 \cdots \in A$. Let us define a lin form in the lin subspace $H = \text{span}(x_1, x_2 \ldots) = \{\sum_{\mathbf{N}} \lambda_i x_i \mid \text{only finitely manyi } \lambda_i \neq 0\}$ by $f(\sum_{\mathbf{N}} \lambda_i x_i) = \sum_{\mathbf{N}} i\lambda_i$, so in particular $f(x_i) = i$ for all $i \in \mathbf{N}$, and A is not σ -bounded.

b) Let $H \subset E$ be a linearinen subspace. Let $K_H \subset H$ be a Hameli basis for Hand continue it to become a Hamel-basis i K of the whole space. Let us define for each $x \in K \setminus K_H$ a linear form f_x by defining for the basis vectors $f_x(x) = 1$ and $f_x(y) = 0$ for all $x \in K \setminus \{x\}$. Now f is continuous (every linear form is continuous in this topology!), so Ker f_x is closed and $H = \bigcap_{x \in K \setminus K_H} \text{Ker } f_x$ is closed.

c) Every subspace ahas an algebraic supplement. Since in this topology every subspace is closed, every subplement is topologinen.

6.8. Let E ääretönulotteinen locally convex Hausdorff-space. Prove, that E_{σ}^* ei ole normiutuva.

In the weak topology, every neighbourhood of the origin contains a non-zeo vektorisubspace , a finit e intersection f hyperplanes!. !

6.9. Let E ääretönulotteinen normispace. Prove, that duaalin nollavektori $0 \in E^*$ kuuluu duaalin yksikköpall is kuoren $\{x^* \mid ||x^*|| = 1\}$ sulkeumaan topologyssa $\sigma(E^*, E)$.

Let $U \in \mathcal{U}$ be a basis neighbourhood, $U = \{x \mid |\langle x, y_n \rangle| \leq 1, n = 1, ..., n\}$ Now $U \supset \bigcup_{j=1}^n \operatorname{Ker} y_j$. the kernels have codimension 1, so in infinite dim space their intersection is infinite codimensional subspace, which evidently intrsects the sphere.