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Exercise help set 5 Topological Vector Spaces

Part I Theory.

5.2. Assume (E, TE) and (F, TF ) are Fréchet spaces and in the space F there also
is another Hausdorff–topology τF , coarser than TF . Assume T : E → F linear.

Prove that if T is continuous TE → τF , then it is continuous TE → TF (Look at
the graph!).

Check that T satisfies the conditions of the closed graph theorem. At least T :
(E, TE)→ (F, TF ), where both are Fréchet spaces. Since T is continuous as a mapping
T : (E, TE)→ (F, τF ), its graph is closed (Hausdorff!) in teh product topology TE×τF ,
jwhich is by assumption coarser than TE × TF . So the graph is is closed in both. �

5.3. Assume (E, TE) and (F, TF ) Fréchet spaces and assume (X, TX) is a Hausdorff-
space . Assume T : E → F linear. Prove that T is continuous, if there exists a conti-
nuous injection f : F → G, such that f ◦ T is continuous. (Idea: proj topology)

Write τF = f−1(TX) for the projective topology defined by the mapping f : F →
X. Since T is injection and X is Hausdorff, also τF isHausdorff, (If x 6= y ∈ F , then
f(x) 6= f(y) ∈ X, so there exist disjoint U ∈ Uf(x) and y ∈ Uf(y) and we find disjoint
neighbourhoods f−1(U) ∈ Ux and f−1(V ) ∈ Uy.) By assumption f is continuous,
so τF is coarser than TF . By assumption also f ◦ T is continuous.Thereforei T is
continuous as T : (E, TE)→ (F, τF ): in projective topology a set is open, if and only
if its image is open. So: A ∈ τF =⇒ f(A) ∈ TX =⇒ T−1(A) = T−1(f−1(f(A)) =
(f ◦ T )−1(f(A)) ∈ TE. Notice, at A = f−1(f(A) we used the ingormation that A is
injective. �

Part II Function spaces and solution to an older problem.

5.4. Assume k ∈ N ∪ {∞}. In the space E = Ck = Ck(R) = {f : R → R
∣∣ f

is k times differentiable} the standard topology, also called the topology of compact
Ck–convergence is the lokaalikonveksi topology, given by the seminorms∣∣∣∣( ∂

∂x

)α
f(x)

∣∣∣∣ = sup
x∈K
|f (α)(x)|.

Prove that every Ck is metrisable and Hausdorff.
Since every compact set is included in some compact interval [−m,m], the semi-

norm family P can be replaced by a basis of continuous seminorms: PJ = {pα,m
∣∣

α ∈ {0, 1, . . . , k} and K = [−m,m] ⊂ R, giving the same topology and being coun-
table. So Ck is metrizable since it also is Hausdorff: for all f ∈ C(k) \ {0}there is some
point x ∈ R, where f(x) 6= 0, so p0,m(f) = sup−m≤y≤m |f (0)(y)| ≥ |f(x)| > 0, for
−m ≤ x ≤ m.
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5.5. Prove that every Ck (k ∈ N) is (seq)complete , so it is Fréchet. ( Banach?
Is there a continuousa norm ?)

Let fn be a Cauchy sequence in Ck. At each point x ∈ R f : n(x) is a Cauchy-
sequence in K so it converges. This defines f : R→ R. Let K = [−m,m]. On K the
functions fn converge uniformly, sillä the seminorm p0,m is in this set the sup-norm
giving uniform convergence .For the same reason, the derivatives converge uniformly.
By a theorem from analysis, (not immensely difficult to prove), the derivatives con-
verge to f ′. Similarly, the second derivatives converge to f ′′ uniformly in ] − m,m[
etc by induction all the way to the a kth derivative. Since this works for all m, then
pm,α(fn − f) → 0 for all m in question and α,same as fN → f ∈ Ck in the correct
topology.

5.6. Prove that C∞ is (seq)complete , so it is Fréchet. ( Banach? Is there a con-
tinuousa norm ?)

The same idea works again!!

5.7. Assume K ⊂ R compact and k ∈ N ∪ ∞. (One K fixed.) Prove that alis
paces Ck(K) = {f ∈ Ck

∣∣ supp f ⊂ K} are (jono)complete, so Fréchet. ( Banach? Is
there a continuousa norm ?)

The same idea works again since fn → f and fn(x) = 0 for all x 6∈ K.

5.8. Prove that the completion (same as closure!) of Ck(K) in Ck(K) is is C∞(K).
This means that C∞(K) is dense in Ck(K) (which is complete).

The well known proof from analysis courses is based on convolutions.

Remark. In analysis, often n-dimensional versions of the spaces Ck are used:
E = Ck = Ck(Rn) = {f : Rn → R

∣∣ f is k times diff} and topology byseminorms

pα(f) = sup
x∈K

∣∣∣∣( ∂

∂x

)α
f(x)

∣∣∣∣ ,
where K ⊂ Rn is compact and

(
∂
∂x

)α
f(x) =

(
∂
∂x1

)α1
(

∂
∂x2

)α2

. . .
(

∂
∂xn

)αn

f(x) is the

partial derivative correspinds to multi-indeksiä α = (αq, . . . , αn) ∈ Nn ( so (α1 + · · ·+
αn = α) . More generally, the set Rn can be replaced by any open set Ω ⊂ RN . All
this brings no essential change to what was done above. .

5.9. Prove that the standard topology of Ck is also defined by the seminorms Q,
of seminorms

qK(f) =

∫
K

|f (n)(x)| dx,

where K ⊂ R is compact and n ∈ N. Hint: f(x) =
∫ x+1

x
((t− x− 1)f ′(t) + f(t)) dt.

The hint is okay, since by partial integrtion∫ x+1

x

(t−x−1)f ′(t) dt+

∫ x+1

x

f dt =
/x+1

x
(t−x−1)f(t)−

∫ x+1

x

f dt+

∫ x+1

x

f dt = f(x).

The standard topology in C∞:comes from the seminorms P = {pn,K
∣∣ K ⊂ R

compakt, n ∈ N}, where pn,K(f) = sup{|f (n)(x)|
∣∣ x ∈ K}. Call the topologies τP

and τQ.
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a) τQ ⊂ τP :

qn,K(f) =

∫
K

|f (n)(x)| ≤ sup
K
|f (n)(x)|

∫
K

1 = |K|pn,K(f)

b) τP ⊂ τQ: Partial integration (or just use the hint) m < k

f (m)(x) =

∫ x+1

x

(t− x− 1)f (m+1)(t) + f (m)(t) dt,

joten for all m ∈ N

pm,K(f) = sup
K
|f (m)(x)|

= sup
K
{|
∫ x+1

x

(t− x− 1)f (m+1)(t) + f (m)(t) dt|

≤ sup
K

(
|
∫ x+1

x

(t− x− 1)f (m+1)(t) dt|+ |
∫ x+1

x

f (m)(t) dt|
)

≤ sup
K
{|
∫ x+1

x

(t− x− 1)f (m+1)(t) dt|+ sup
K
|
∫ x+1

x

f (m)(t) dt|

≤ sup
x,y∈K

|y − x|
∫
K′
|f (m+1)(t)| dt+ ‖

∫
K′
f (m)(t)| dt

≤ diamK ′
∫
K′
qm+1,K′(f) + qm,K′(f),

where K ′ =
⋃
x∈K B(x, 1).

Combination. .

5.10. Assume K ⊂ Rn compact set and F ⊂ RK Banach space , whose elements
called vectors, or points) are funstions K → R ie E£isavectorsubspaceofRK. Assu-
me , that the topology in F is finer than the topology of pointwise convergence, which
is the product topology in / from RKy. Assume that C∞(K) ⊂ F .

We prove , that there exists la number k ∈ N, such that Ck(K) ⊂ F .

a) Apply ex ä 5.1. choosing: for E: the space C∞ vwith its standard toplogy now
called TE. For F we choose the norm topology TF = T‖·‖ is inclusion x 7→ x.

Prove that the inclusion mapping T is continuous TE → TF same as a mapping
C∞(K)→ (F, T‖·‖.

b) find out, that there exists a number λ > 0 and a (semi)norm pn,K, such that
‖ · ‖F ≤ λpn,K = λ‖ · ‖n. Check (or rememeber) , that the continuous seminormi
f 7→ pn,K(f) = supx∈K |f (n)(x)| is in fact a norm in E = C∞(K). So in E = C∞(K)
we have TF ⊂ Tpn,K

and all in all

The subspace topology from F l ⊂ topology from CkK ⊂ original topology in C∞K
So. explain why
The completion of Ck(K) = (C∞(K): in Ck(K):ssa) ⊂ the completion of C∞(K)

in theoriginal norm of F . Are we done? �
tCecking the conditions: C∞(K) and the Banach-space F are Fréchet’n spaces

and in F there is also another Hausdorff–topology τF , coarser than TF . (Totea!) The
maping T : E → F : x→ x is linear.
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Let us prove that the inclusion mapping T is continuous C∞(K)→ (F, T‖·‖.
By exercise 5.1. we have only to check that T is continuous in TE → τF , which-

means that in the set C∞(K) the norm itopology is finer i than pointwise topology.
That is true!

So inkluusion mapping T is continuous C∞(K) → (F, T‖·‖ so the norm in F is
continuous in th etoplogy of C∞(K) . So there exists l λ > 0 and a (semi)norm
pn,K ,such that

‖ · ‖F ≤ λ‖ · ‖n.
So in E = C∞(K)

TF ⊂ Tpn,K

. All in all in E

the subspace topology by F ⊂ the subspace topology by CkK ⊂ C∞K :s original to-
pology. This implies Ck(K) completion (same as closure) of (C∞(K): in Ck(K) ⊂
completion/closure of C∞(K) in F norm topology . �


