MATEMATIIKAN JA
 JYVÄSKYLÄN YLIOPISTO
 Exercise help set 4
 Topological Vector Spaces

4.2. Prove Mazur's theorem assuming Hahn's and -Banach's theorem to be true. Don't use the axiom of choice again.

Assume that $\emptyset \neq A \subset E$ open and convex and $M=x+F \subset E$, missä F a subspace. Assume that $A \cap M=\emptyset$.

Without loss of generality $0 \in A$. Assume that $p: E \rightarrow \mathbf{R}$ is the gauge of A. It is not necessarioly a seminorm (A not always balanced), but it is subadditive positively homogeneous function like in the full Hahn and Banach theorem. In the subspace $\langle M\rangle=\{x\} \oplus F$ there is a linear form defined by $f(\lambda x \oplus y)=\lambda$ and $f(x)=1$ in M and therefore $|f(x)| \leq p(x)$ everywhere in $\{x\} \oplus F$ because $\{x\} \oplus F$ does not intersect A. By the Hahn and Banach theorem there exists a continuation of f toa lin form f in E, for which $|f| \leq p$. Because $p<1$ in teh open set A, the set A does not intersectthe hyperplane $\{x \in E \mid f(x)=1\}$.
4.3. Let E be a topological vector space and $S=\left\{x_{\alpha} \mid \alpha \in I\right\} \subset E$. We call the set S topologically free, or topologically linearly independent, if for all $\alpha \in I$ we have $x_{\alpha} \notin \overline{\left\langle S \backslash\left\{x_{\alpha}\right\}\right\rangle}$. Prove that if E is locally convex, then $S=\left\{x_{\alpha} \mid \alpha \in I\right\} \subset E$ is topologically free if and only of there exists a family of linear forms $S=\left\{f_{\alpha} \mid \alpha \in\right.$ $I\} \subset E^{*}$, that for all $\alpha \in I$
(1) f_{α} is continuous
(2) $f_{\alpha}\left(x_{\alpha}\right)=1$
(3) $f_{\alpha}\left(x_{\beta}\right)=0$ for all $\beta \in I \backslash\{\alpha\}$.

Assume first that the forms f_{α} exist. If there exists $\alpha \in I$ such that $x_{\alpha} \in \overline{\left\langle S \backslash\left\{x_{\alpha}\right\}\right\rangle}$ then $f_{\alpha}\left(x_{\beta}\right)=0$ for all $\beta \neq \alpha$, so by linearity $f_{\alpha}(x)=0$ for all $x \in\left\langle S \backslash\left\{x_{\alpha}\right\}\right\rangle=\{$ finite linear combinations of the vectors $\left.x_{\beta}(\beta \neq \alpha)\right\}$. In particular $0=f\left(x_{\alpha}\right)=1$. TYhis contradiction proves the first statement.

Assume next that S is topologically free. This means that for all $\alpha \in I$ there exists

$$
x_{\alpha} \notin \overline{\left\langle S \backslash\left\{x_{\alpha}\right\}\right\rangle} .
$$

The subspace $\overline{\left\langle S \backslash\left\{x_{\alpha}\right\}\right\rangle}$ is closed, so by a well known (easy) corollary of Hahn and Banach there exists a continuous linear form $f_{\alpha}: E \rightarrow \mathbf{K}$, for which $f\left(x_{\alpha}\right)=1$ and $f_{\alpha}=0$ in teh subspace $\overline{\left\langle S \backslash\left\{x_{\alpha}\right\}\right\rangle}$. This is what we wanted.
4.4. Let E be a complex topological vector space, $H=\{x \in E \mid f(x)=0\} a$ hyperplane, so f is \mathbf{C}-linear $E \rightarrow \mathbf{C}$. Let $f_{\mathbf{R}}$ be the real part of f, which is defined as $f_{\mathbf{R}}(x)=\operatorname{Re} f(x)$. Prove that the subset $H_{\mathbf{R}}=\left\{x \in E \mid f_{\mathbf{R}}(x)=0\right\}$ is a hyperplane in the real topological vector space E, which we may denote by $E_{\mathbf{R}}$. Prove also that $H=H_{\mathbf{R}} \cap\left(i H_{\mathbf{R}}\right)$.
a) It is sufficient to prove that $f_{\mathbf{R}}(x)=\operatorname{Re} f(x)$ is real linear $E \rightarrow \mathbf{R}$:

$$
\begin{gathered}
\left.f_{\mathbf{R}}(x+y)=\operatorname{Re} f(x+y)=\operatorname{Re}(f(x)+f(y))=\operatorname{Re}(f(x))+\operatorname{Re} f(y)\right)=f_{\mathbf{R}}(x)+f_{\mathbf{R}}(y) \\
f_{\mathbf{R}}(\lambda x)=\operatorname{Re} f(\lambda x)=\operatorname{Re}(\lambda f(x)) \stackrel{*}{=} \lambda \operatorname{Re} f(x)=\lambda f_{\mathbf{R}}(x),
\end{gathered}
$$

(at * notice: λ is real (!)).
b) $H=H_{\mathbf{R}} \cap\left(i H_{\mathbf{R}}\right)$, sillä

$$
\begin{aligned}
x \in H & \Longleftrightarrow f(x)=0 \Longleftrightarrow \operatorname{Re} f(x)=0 \text { and } \operatorname{Im} f(x)=0 \\
& \Longleftrightarrow x \in H_{\mathbf{R}} \text { and } \mathrm{f}(-i x)=0 \\
& \Longleftrightarrow x \in H_{\mathbf{R}} \text { and }(-i x) \in H_{\mathbf{R}} \\
& \Longleftrightarrow x \in H_{\mathbf{R}} \text { and } x \in i H_{\mathbf{R}} .
\end{aligned}
$$

4.5. Prove that if E and F are Fréchet spaces and $T: E \rightarrow F$ is linear, then the graph $\operatorname{Gr} T$ is closed if and only if

$$
\left(x_{n}, f\left(x_{n}\right)\right) \rightarrow(0, y) \Longrightarrow y=0
$$

(How about more generall set-ups?)
In th eproduct topology $\left(x_{n}, T\left(x_{n}\right)\right) \rightarrow(0, y) \Longleftrightarrow x_{n} \rightarrow 0$ and $T\left(x_{n}\right) \rightarrow y$.
a) If the graph is closed, then, by the closed graph theorem, T on continuous, so $x_{n} \rightarrow 0 \Longrightarrow T\left(x_{n}\right) \rightarrow T(0)=0$. If $x_{n} \rightarrow 0$ and $T\left(x_{n}\right) \rightarrow y$, then $0=y$, since as a Fréchet space F is Hausdorff, so limits are unique.
b) To get back, assume that $\left(x_{n}, T\left(x_{n}\right)\right) \rightarrow(0, y) \Longrightarrow y=0$. Assume that $(x, y) \in \overline{\mathrm{Gr} T}$. Since E and F are metric, also the product space is metric so there exists in $\mathrm{Gr} T$ a sequence $\left(x_{n}, y_{n}\right) \rightarrow(x, y)$ same as $\left(x_{n}, T\left(x_{n}\right)\right) \rightarrow(x, y)$. Let us apply the assumption to $\left(x_{n}-x\right)_{\mathbf{N}}$, for which we know at least that $\left(x_{n}-x\right) \rightarrow 0$. Since $T\left(x_{n}-x\right)=T\left(x_{n}\right)-T x=y_{n}-T x \rightarrow y-T x$, the assumptiongives $y-T x=0$. So $T(x)=y$, and $(x, y) \in \operatorname{Gr} T$, which is now proven closed.
4.6. The direct linear algebraic sum $E=M \oplus N$ of two subspaces of a topological vektor space is called a topological direct sum, if its subspace topology is the same as its product topology, i.e. the mapping $(x, y) \mapsto x+y$ is a homeomorphism between the product space $M \times N$ and the subspace $M \oplus N \subset E$. Sometimes this is expressed by calling N a topological supplement of M. Let π be the projection from $E=M \oplus N$ to its subspace M in the diredction N, ie. $\pi(x+y)=x$, for $x \in M$ and $y \in N$.
a) Prove that if M and N are topological, and linear subspaces of E, then $E=$ $M \oplus N$ is a topological direct sum if and only if π is continuous.
b) Prove that if E is a Fréchet space, and if both M and N are closed subspaces, then π is continuous and $M \oplus N$ a topological direct sum. (Is it sufficient to assume that one of the two subspaces is closed?)
a) Assume that the direct sum is topological, ie as topological spaces $E=M \oplus N=$ $M \times N$. Then π is continuous by the definition of the product topology.

To get back, assume that π continuous. In this case also the projection to N, same as $I d_{M \oplus N}-\pi$ is continuous. The space $M \oplus N$ has a topology in which the projections are continuous, so the topology is finer than the product topology. On the other hand, the sum mapping $E \times E \rightarrow E:(a, b) \mapsto a+b$ is continuous, so also its restriction $M \oplus\{0\} \times\{0\} \oplus N \rightarrow M \oplus N$ which is the linear isomorphism $M \times N \rightarrow M \oplus N$ is continuous, so the topology of the direct sum is coarser than the product topology. They coincide!
b) If E is a Fréchet space, and if both M and N are closed subspaces then both M and N are Fréchet spaces, so also their product space $M \times N$ and, by assumption
also $E=M \oplus N$. We know already that the linear isomorphism $M \times N \rightarrow M \oplus N$ is a continuous surjection, so by the open mapping theorem it is a homeomorphism.
4.7. (continuation) c) Let $T: E \rightarrow F$ be a continuous linear mapping, where E and F are topological vector spaces. Prove that T has a continuous linear right inverse, (same as a continuous, linear $S: F \rightarrow E$, for which $F \circ G=i d_{F}$, if T is an open surjection) and the kernel $\operatorname{ker} T \subset E$ has a topological supplement M.

By assumption $E=M \oplus N$ where $N=\operatorname{ker} T$. Define $S(T(m \oplus n))=m$. This is well defined, since $T(m \oplus n)=T(m \oplus n)$ for all $n, n^{\prime} \in N=\operatorname{Ker} T$. Assume that the kernel $N=\operatorname{ker} T \subset E$ has a topological supplement M. So $E=M \oplus N \sim M \times N$. Now linear mapping $J=\left.\phi\right|_{M}: M \rightarrow E / N$ is a linear isomorphism, since it is injective (If $J(x)=0_{E / N}$, then $x \in M \cap \operatorname{ker} \phi=M \cap N=\{0\}$.) and surjective (For every $v+N \in E / N$ same as $v=(x, y) \in E=N \oplus N$ on $v+N=\phi(v+n)$ for all $n \in N$. In particular $v+N=\phi(v-y)=\phi(x)$, where $x \in M$.

So the mapping $\left.T\right|_{M}$ has a linear inverse $S: F \rightarrow M \subset E$. But continuous? Assume that $A \subset E=M \oplus N$ open. Then $A \cap M$ is open in a M and $(A \cap M) \times N$ is open in the product space $M \times N$ so $(A \cap M) \oplus N$ is open in $E=M \oplus N$. Since T is open by assumption, the set $T((A \cap M) \oplus N) \subset F$ is open. But since $N=\operatorname{ker} T$, we have $T((A \cap M) \oplus N)=T(A \cap M)=S^{-1}(A \cap M)=S^{-1}(A)$, which was to be proven open.
a) Let E be a vector space, and $\mathcal{B}=\{A \subset E \mid A$ absobing, balanced and convex $\}$. Prove that \mathcal{B} defines a locally convex topology \mathcal{T}, in fact the finest possible locally convex topology on E.
b) Prove that if F is a locally convex space, then every linear mapping $E \rightarrow F$ is continuous.
a) Every family of absorb., bal. and conv defines some semonorms and a locally convexn top \mathcal{T} in E. Assume that \mathcal{T}^{\prime} is a lokaali convex topologia in E. It has a neighbourhood basis of the origin consisting of barrels. These are - by assumption neighbourhoods of the origin in the topology \mathcal{T}, so \mathcal{T} is finer than \mathcal{T}^{\prime}.
b) Assume that $T: E \rightarrow F$ is a linear mapping and $p: F \rightarrow \mathbf{R}$ a continuous seminori. Then $p \circ T: E \rightarrow \mathbf{R}$ oia a seminorm in the space E, so its ($0-$)balls are abs., bal. and convex, hence neighbourhoods of 0 . So $p \circ T$ is continuous, and that proves continuity of the lin mapping T. (In fact $p \circ T$ is continuous, independent of whether p is continuous or not.)

From last week:
4.8. An example of a subset of a locally convex space which is sequentially complete but not complete: $E=\mathcal{F}([0,1], \mathbf{R})=\mathbf{R}^{[0,1]}=\{$ allo functions $[0,1] \rightarrow \mathbf{R}\}$. Topology of pointwise convergence ie seminorms $p_{x}=|f(x)| . \quad M=\{f \in E \mid f(x) \neq 0$ for at most countably many $x \in[0,1]\}$.
M is obviously a E (top n and lin) subspace.
a) Consider a Cauchy sequence $\left(f_{n}\right)_{\mathrm{N}}$ in M. In the topology of pointwise convergence, Cauchy means that for all $t \in[0,1]$ and $\epsilon>0$ there exists $n_{0}=n_{\epsilon, t} \in \mathbf{N}$ such that $\left|f_{n}(t)-f_{m}(t)\right|<\epsilon$, kun $n, m \geq n_{0}$. For each t the sequence of real numbers $\left(f_{n}(t)\right)_{\mathbf{N}}$ is Cauchy , soit converges: $f_{n}(t) \rightarrow f(t) \in \mathbf{R}$. This defines a function $f \in E$. Evidently $f_{n} \rightarrow f$ pointwise, Prove $f \in M$: Let us write

$$
H_{n}=\left\{x \in \mathbf{R} \mid f_{n}(x) \neq 0\right\} .
$$

Every H_{n} is countable, so also

$$
H=\bigcup_{n \in \mathbf{N}} H_{n}=\left\{x \in \mathbf{R} \mid \exists n: f_{n}(x) \neq 0\right\}
$$

is countable. Of course $f(t)=0$ for all t, for which every $f_{n}(t)=0$, so $f \in M$.
b) Next find a non-convergent Cauchy-filter \mathcal{F} in M.

Idea: M is not closed. The constant function $g(t)=1$ is in the closure, so theree is a filter basis consisting of subsets of M and converging to F in E. This may be what we want?.in tehe space E, it is a Cauchy-filter, jso its tracei $\mathcal{F}=\{A \cap M \mid A \in \mathcal{F}\}$ in M is a Cauchy-filter in M i or contains the empty set. Let us disprove the second alternative. In the pointwiise topology $U \in \mathcal{U}_{g, E} \Longleftrightarrow U \supset\left\{f:[0,1] \rightarrow \mathbf{R}| | f\left(t_{i}\right)-1 \mid \leq \epsilon\right\}$ for some finitely many $t_{1}, \ldots t_{k} \in[0,1]$ and an $\epsilon>0$. This set contains a function in M, for example the function with value 1 at $t_{1}, \ldots t_{k}$ and 0 elsewhere. If \mathcal{F} would converge to some $h \in M$, then it would be a filter basisin E converging both to h and to f which is impossible since limits are unique in Hausdorff spaces and E is T_{2}.
4.9. If You like to do more. Let $K \subset \mathbf{R}^{n}$ be compact. In the space

$$
E=\mathcal{C}_{c}^{\infty}(K)=\left\{f: \mathbf{R}^{n} \rightarrow \mathbf{R} \mid f \in \mathcal{C}^{\infty}, \operatorname{supp} f \subset K\right\}
$$

use the semonorms

$$
q_{\alpha}(f)=\sup _{x \in K}\left|\left(\frac{\partial}{\partial x}\right)^{\alpha} f(x)\right|
$$

where $\left(\frac{\partial}{\partial x}\right)^{\alpha} f(x)$ is the (higher) partial derivative corresponding to the multi-index $\alpha \in \mathbf{N}^{n}$ (You can take \mathbf{R}^{1} and usual higher derivatives - it makes no difference). Write $\mathcal{Q}=\left\{q_{\alpha} \mid \alpha \in \mathbf{N}^{n}\right\}$. Prove that $a(E, \mathcal{Q})$ is Fréchet space. (loc-con, metr, compl)

For simplicity, consider the one dimensional case, where $\left(\frac{\partial}{\partial x}\right)^{\alpha} f$ is simply the α :th derivative $f^{(\alpha)}$.

Of course, the seminorms $p_{\alpha, K}(f)=\sup _{K}\left|f^{(\alpha)}\right|$ define a lc topology, evidently metrizable. Completeness? Take a Cauchy sequence $\left(f_{i}\right)_{i \in \mathbf{N}}$ in E. For each $\epsilon>0$ and $n \in \mathbf{N}$ there exists an $N_{n, \epsilon} \in \mathbf{N}$ such that $p_{n}\left(f_{i}-f_{j}\right) \leq \epsilon$ for $i, j \geq N_{n, \epsilon}$. In particular, the sequence f_{n} is Cauchy in the sup-norm p_{0}, so it converges uniformly in K to some f. Similarly, the derivatives f^{\prime} converge uniformly in K to some function g. By basic analysis, $g=f^{\prime}$. Similarly for higher derivatives. Clearly $f_{n} \rightarrow f$ in E.

