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Exercise help set 4 Topological Vector Spaces

4.2. Prove Mazur’s theorem assuming Hahn’s and -Banach’s theorem to be true.
Don’t use the axiom of choice again.

Assume that ∅ 6= A ⊂ E open and convex and M = x + F ⊂ E, missä F a
subspace. Assume that A ∩M = ∅.

Without loss of generality 0 ∈ A. Assume that p : E → R is the gauge of A. It is
not necessarioly a seminorm (A not always balanced), but it is subadditive positively
homogeneous function like in the full Hahn and Banach theorem. In the subspace
〈M〉 = {x} ⊕ F there is a linear form defined by f(λx ⊕ y) = λ and f(x) = 1 in M
and therefore |f(x)| ≤ p(x) everywhere in {x}⊕F because {x}⊕F does not intersect
A. By the Hahn and Banach theorem there exists a continuation of f toa lin form
f in E , for which |f | ≤ p. Because p < 1 in teh open set A, the set A does not
intersectthe hyperplane {x ∈ E

∣∣ f(x) = 1}. �

4.3. Let E be a topological vector space and S = {xα
∣∣ α ∈ I} ⊂ E. We call

the set S topologically free, or topologically linearly independent, if for all α ∈ I we
have xα /∈ 〈S \ {xα}〉. Prove that if E is locally convex, then S = {xα

∣∣ α ∈ I} ⊂ E

is topologically free if and only of there exists a family of linear forms S = {fα
∣∣ α ∈

I} ⊂ E∗, that for all α ∈ I
(1) fα is continuous
(2) fα(xα) = 1
(3) fα(xβ) = 0 for all β ∈ I \ {α}.

Assume first that the forms fα exist. If there exists α ∈ I such that xα ∈ 〈S \ {xα}〉
then fα(xβ) = 0 for all β 6= α, so by linearity fα(x) = 0 for all x ∈ 〈S \{xα}〉 = {finite
linear combinations of the vectors xβ (β 6= α)}. In particular 0 = f(xα) = 1. TYhis
contradiction proves the first statement.

Assume next that S is topologically free. This means that for all α ∈ I there exists

xα /∈ 〈S \ {xα}〉.

The subspace 〈S \ {xα}〉 is closed, so by a well known (easy) corollary of Hahn and
Banach there exists a continuous linear form fα : E → K, for which f(xα) = 1 and

fα = 0 in teh subspace 〈S \ {xα}〉. This is what we wanted.

4.4. Let E be a complex topological vector space, H = {x ∈ E
∣∣ f(x) = 0} a

hyperplane, so f is C–linear E → C. Let fR be the real part of f , which is defined
as fR(x) = Re f(x). Prove that the subset HR = {x ∈ E

∣∣ fR(x) = 0} is a hyperplane
in the real topological vector space E, which we may denote by ER. Prove also that
H = HR ∩ (iHR).

a) It is sufficient to prove that fR(x) = Re f(x) is real linear E → R:

fR(x+ y) = Re f(x+ y) = Re(f(x) + f(y)) = Re(f(x)) + Re f(y)) = fR(x) + fR(y)

fR(λx) = Re f(λx) = Re(λf(x))
∗
= λRe f(x) = λfR(x),
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(at * notice: λ is real (!)).
b) H = HR ∩ (iHR), sillä

x ∈ H =⇒ f(x) = 0 ⇐⇒ Re f(x) = 0 and Im f(x) = 0

⇐⇒ x ∈ HR and f(−ix) = 0

⇐⇒ x ∈ HR and (−ix) ∈ HR

⇐⇒ x ∈ HR and x ∈ iHR.

4.5. Prove that if E and F are Fréchet spaces and T : E → F is linear, then the
graph GrT is closed if and only if

(xn, f(xn))→ (0, y) =⇒ y = 0.

(How about more generall set-ups?)
In th eproduct topology (xn, T (xn))→ (0, y) ⇐⇒ xn → 0 and T (xn)→ y.
a) If the graph is closed, then, by the closed graph theorem, T on continuous, so

xn → 0 =⇒ T (xn) → T (0) = 0. If xn → 0 and T (xn) → y, then0 = y, since as a
Fréchet space F is Hausdorff, so limits are unique.

b) To get back, assume that (xn, T (xn)) → (0, y) =⇒ y = 0. Assume that
(x, y) ∈ GrT . Since E and F are metric, also the product space is metric so there
exists in GrT a sequence (xn, yn)→ (x, y) same as (xn, T (xn))→ (x, y). Let us apply
the assumption to (xn − x)N, for which we know at least that (xn − x) → 0. Since
T (xn − x) = T (xn)− Tx = yn − Tx→ y − Tx, the assumptiongives y − Tx = 0. So
T (x) = y, and (x, y) ∈ GrT , which is now proven closed.

4.6. The direct linear algebraic sum E = M ⊕N of two subspaces of a topological
vektor space is called a topological direct sum, if its subspace topology is the same as
its product topology, i.e. the mapping (x, y) 7→ x+ y is a homeomorphism between the
product space M ×N and the subspace M ⊕N ⊂ E. Sometimes this is expressed by
calling N a topological supplement of M . Let π be the projection from E = M ⊕N
to its subspace M in the diredction N , ie. π(x+ y) = x, for x ∈M and y ∈ N .

a) Prove that if M and N are topological, and linear subspaces of E, then E =
M ⊕N is a topological direct sum if and only if π is continuous.

b) Prove that if E is a Fréchet space, and if both M and N are closed subspaces,
then π is continuous and M ⊕N a topological direct sum. (Is it sufficient to assume
that one of the two subspaces is closed?)

a) Assume that the direct sum is topological, ie as topological spaces E = M⊕N =
M ×N . Then π is continuous by the definition of the product topology.

To get back, assume that π continuous. In this case also the projection to N ,
same as IdM⊕N − π is continuous. The space M ⊕ N has a topology in which the
projections are continuous, so the topology is finer than the product topology. On
the other hand, the sum mapping E × E → E : (a, b) 7→ a + b is continuous, so
also its restriction M ⊕ {0} × {0} ⊕ N → M ⊕ N which is the linear isomorphism
M ×N →M ⊕N is continuous, so the topology of the direct sum is coarser than the
product topology. They coincide!

b) If E is a Fréchet space, and if both M and N are closed subspaces then both
M and N are Fréchet spaces, so also their product space M ×N and, by assumption
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also E = M ⊕ N . We know already that the linear isomorphism M × N → M ⊕ N
is a continuous surjection, so by the open mapping theorem it is a homeomorphism.

4.7. (continuation) c) Let T : E → F be a continuous linear mapping, where
E and F are topological vector spaces. Prove that T has a continuous linear right
inverse, (same as a continuous, linear S : F → E, for which F ◦G = idF , if T is an
open surjection) and the kernel kerT ⊂ E has a topological supplement M .

By assumption E = M ⊕N where N = kerT . Define S(T (m⊕ n)) = m. This is
well defined, since T (m⊕ n) = T (m⊕ n) for all n, n′ ∈ N = KerT . Assume that the
kernel N = kerT ⊂ E has a topological supplement M . So E = M ⊕ N ∼ M × N.
Now linear mapping J = φ

∣∣
M

: M → E/N is a linear isomorphism, since it is injective
(If J(x) = 0E/N , then x ∈ M ∩ kerφ = M ∩ N = {0}.) and surjective (For every
v + N ∈ E/N same as v = (x, y) ∈ E = N ⊕N on v + N = φ(v + n) for all n ∈ N .
In particular v +N = φ(v − y) = φ(x), where x ∈M .

So the mapping T
∣∣
M

has a linear inverse S : F → M ⊂ E. But continuous?
Assume that A ⊂ E = M ⊕N open. Then A ∩M is open in a M and (A ∩M)×N
is open in the product space M ×N so (A∩M)⊕N is open in E = M ⊕N . Since T
is open by assumption, the set T ((A ∩M) ⊕ N) ⊂ F is open. But since N = kerT ,
we have T ((A ∩M) ⊕ N) = T (A ∩M) = S−1(A ∩M) = S−1(A), which was to be
proven open.

a) Let E be a vector space, and B = {A ⊂ E
∣∣ A absobing, balanced and convex}.

Prove that B defines a locally convex topology T , in fact the finest possible locally
convex topology on E.

b) Prove that if F is a locally convex space, then every linear mapping E → F is
continuous.

a) Every family of absorb., bal. and conv defines some semonorms and a locally
convexn top T in E. Assume that T ′ is a lokaali convex topologia in E. It has a
neighbourhood basis of the origin consisting of barrels. These are – by assumption –
neighbourhoods of the origin in the topology T , so T is finer than T ′.

b) Assume that T : E → F is a linear mapping and p : F → R a continuous
seminori. Then p◦T : E → R oia a seminorm in the space E, so its (0-)balls are abs.,
bal. and convex, hence neighbourhoods of 0. So p ◦ T is continuous, and that proves
continuity of the lin mapping T . (In fact p ◦ T is continuous,independent of whether
p is continuous or not.)

From last week:

4.8. An example of a subset of a locally convex space which is sequentially complete
but not complete: E = F([0, 1],R) = R[0,1] = {allo functions [0, 1] → R}. Topology
of pointwise convergence ie seminorms px = |f(x)|. M = {f ∈ E

∣∣ f(x) 6= 0 for at
most countably many x ∈ [0, 1]}.

M is obviously a E (top n and lin ) subspace.
a) Consider a Cauchy sequence (fn)N in M . In the topology of pointwise conver-

gence, Cauchy means that for all t ∈ [0, 1] and ε > 0 there exists n0 = nε,t ∈ N such
that |fn(t) − fm(t)| < ε, kun n,m ≥ n0. For each t the sequence of real numbers
(fn(t))N is Cauchy , soit converges: fn(t)→ f(t) ∈ R. This defines a function f ∈ E.
Evidently fn → f pointwise, Prove f ∈M : Let us write

Hn = {x ∈ R
∣∣ fn(x) 6= 0}.
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Every Hn is countable, so also

H =
⋃
n∈N

Hn = {x ∈ R
∣∣ ∃n : fn(x) 6= 0}

is countable. Of course f(t) = 0 for all t, for which every fn(t) = 0, so f ∈M .
b) Next find a non-convergent Cauchy-filter F in M .
Idea: M is not closed. The constant function g(t) = 1 is in the closure, so theree is

a filter basis consisting of subsets of Mand converging to F in E. This may be what we
want?.in tehe space E, it is a Cauchy-filter, jso its tracei F = {A∩M

∣∣ A ∈ F} in M is
a Cauchy-filter in M i or contains the empty set. Let us disprove the second alternative.
In the pointwiise topology U ∈ Ug,E ⇐⇒ U ⊃ {f : [0, 1] → R

∣∣ |f(ti) − 1| ≤ ε}
for some finitely many t1, . . . tk ∈ [0, 1] and an ε > 0. This set contains a function
in M , for example the function with value 1 at t1, . . . tk and 0 elsewhere. If F would
converge to some h ∈M , then it would be a filter basisin E converging both to h and
to f which is impossible since limits are unique in Hausdorff spaces and E is T2.

4.9. If You like to do more. Let K ⊂ Rn be compact. In the space

E = C∞c (K) = {f : Rn → R
∣∣ f ∈ C∞, supp f ⊂ K}

use the semonorms

qα(f) = sup
x∈K

∣∣∣∣( ∂

∂x

)α
f(x)

∣∣∣∣ ,
where

(
∂
∂x

)α
f(x) is the (higher) partial derivative corresponding to the multi-index

α ∈ Nn (You can take R1 and usual higher derivatives - it makes no difference) .
Write Q = {qα

∣∣ α ∈ Nn}. Prove that a (E,Q) is Fréchet space. (loc-con, metr,
compl)

For simplicity, consider the one dimensional case, where
(
∂
∂x

)α
f is simply the α:th

derivative f (α).
Of course, the seminorms pα,K(f) = supK |f (α)| define a lc topology, evidently

metrizable. Completeness? Take a Cauchy sequence (fi)i∈N in E. For each ε > 0 and
n ∈ N there exists an Nn,ε ∈ N such that pn(fi−fj) ≤ ε for i, j ≥ Nn,ε. In particular,
the sequence fn is Cauchy in the sup-norm p0, so it converges uniformly in K to some
f . Similarly, the derivatives f ′ converge uniformly in K to some function g. By basic
analysis, g = f ′. Similarly for higher derivatives. Clearly fn → f in E.


