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Exercise help set 4 Topological Vector Spaces

4.2. Prove Mazur’s theorem assuming Hahn’s and -Banach’s theorem to be true.
Don’t use the axiom of choice again.

Assume that ) # A C E open and convex and M = x + F C E, missi F a
subspace. Assume that AN M = 0.

Without loss of generality 0 € A. Assume that p: E — R is the gauge of A. It is
not necessarioly a seminorm (A not always balanced), but it is subadditive positively
homogeneous function like in the full Hahn and Banach theorem. In the subspace
(M) = {z} & F there is a linear form defined by f(Az @ y) = A and f(z) =1in M
and therefore | f(z)| < p(z) everywhere in {2} @& F because {z} @& F does not intersect
A. By the Hahn and Banach theorem there exists a continuation of f toa lin form
f in E | for which |f| < p. Because p < 1 in teh open set A, the set A does not
intersectthe hyperplane {z € E | f(z) = 1}. O

4.3. Let E be a topological vector space and S = {x, ’ a € l} C E. We call
the set S topologically free, or topologically linearly independent, if for all « € I we
have zo ¢ (S\ {za}). Prove that if E is locally convex, then S = {z, |0 € I} C E
is topologically free if and only of there exists a family of linear forms S = {f, ‘ a €
I} C E*, that for all v € 1

(1) fo is continuous
(2) fa(za) =1
(3) falzg) =0 forall B €I\ {a}.

Assume first that the forms f,, exist. If there exists « € I such that z, € (S'\ {z.})
then f,(zg) = 0 for all § # «, so by linearity f,(x) =0 for all x € (S\ {z,}) = {finite
linear combinations of the vectors zz (8 # «)}. In particular 0 = f(z,) = 1. TYhis
contradiction proves the first statement.

Assume next that S is topologically free. This means that for all o € I there exists

to ¢ (S\ {za})-
The subspace (S \ {z.}) is closed, so by a well known (easy) corollary of Hahn and
Banach there exists a continuous linear form f, : £ — K, for which f(z,) = 1 and
fa = 0 in teh subspace (S \ {z,}). This is what we wanted.

4.4. Let E be a complex topological vector space, H = {x € E | f(z) =0} a
hyperplane, so f is C—linear E — C. Let fr be the real part of f , which is defined
as fr(z) = Re f(z). Prove that the subset Hr = {x € E | fr(x) = 0} is a hyperplane
i the real topological vector space E, which we may denote by Er. Prove also that
H = Hr N (iHR).

a) It is sufficient to prove that fr(z) = Re f(x) is real linear £ — R:

fr(z +y) =Re f(x +y) =Re(f(z) + f(y)) = Re(f(x)) + Re f(y)) = fr(r) + fr(y)
fr(Az) = Re f(Az) = Re(Mf(z)) = ARe f(z) = Mfr(z),
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(at * notice: \ is real (1)).

re€H = f(r)=0 <= Ref(x)=0and Im f(z) =0
<= x € Hg and f(—iz) =0
<= z € Hgr and (—ix) € Hr
<= x € Hgr and x € iHR.

4.5. Prove that if E and F' are Fréchet spaces and T : E — F' is linear, then the
graph Gr'T" is closed if and only if

(xna f(xn)) - (O,y) = y=0.

(How about more generall set-ups?)

In th eproduct topology (z,,T(z,)) — (0,y) <= =z, — 0 and T'(z,) — v.

a) If the graph is closed, then, by the closed graph theorem, 7" on continuous, so
z, - 0 = T(z,) — T(0)=0.If x, —» 0 and T(z,) — vy, then0 = y, since as a
Fréchet space F' is Hausdorff, so limits are unique.

b) To get back, assume that (z,,T(z,)) — (0,y) == y = 0. Assume that
(z,y) € GrT. Since E and F are metric, also the product space is metric so there
exists in GrT" a sequence (z,,y,) — (z,y) same as (z,, T (x,)) — (z,y). Let us apply
the assumption to (z,, — z)N, for which we know at least that (z, — x) — 0. Since
T(x, —z) =T(x,) —Tx =y, — Tex — y — Tx, the assumptiongives y — Tz = 0. So
T(z) =y, and (x,y) € GrT, which is now proven closed.

4.6. The direct linear algebraic sum E = M & N of two subspaces of a topological
vektor space is called a topological direct sum, if its subspace topology is the same as
its product topology, i.e. the mapping (x,y) — x +y is a homeomorphism between the
product space M x N and the subspace M & N C E. Sometimes this is expressed by
calling N a topological supplement of M. Let m be the projection from £ = M & N
to its subspace M in the diredction N, ie. m(xz +y) =z, forx € M and y € N.

a) Prove that if M and N are topological, and linear subspaces of E, then E =
M @& N s a topological direct sum if and only if © is continuous.

b) Prove that if E is a Fréchet space, and if both M and N are closed subspaces,
then m is continuous and M @ N a topological direct sum. (Is it sufficient to assume
that one of the two subspaces is closed?)

a) Assume that the direct sum is topological, ie as topological spaces E = M@®N =
M x N. Then 7 is continuous by the definition of the product topology.

To get back, assume that 7 continuous. In this case also the projection to N |
same as Idy;en — 7 is continuous. The space M @& N has a topology in which the
projections are continuous, so the topology is finer than the product topology. On
the other hand, the sum mapping £ x E — E : (a,b) — a + b is continuous, so
also its restriction M @ {0} x {0} ® N — M @ N which is the linear isomorphism
M x N — M & N is continuous, so the topology of the direct sum is coarser than the
product topology. They coincide!

b) If E is a Fréchet space, and if both M and N are closed subspaces then both
M and N are Fréchet spaces, so also their product space M x N and, by assumption
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also £ = M & N. We know already that the linear isomorphism M x N — M & N
is a continuous surjection, so by the open mapping theorem it is a homeomorphism.

4.7. (continuation) c¢) Let T : E — F be a continuous linear mapping, where
E and F are topological vector spaces. Prove that T has a continuous linear right
inverse, (same as a continuous, linear S : F' — E, for which F o G = idp, if T is an
open surjection) and the kernel ker T C E has a topological supplement M.

By assumption £ = M & N where N = ker T'. Define S(T(m & n)) = m. This is
well defined, since T'(m @ n) = T(m & n) for all n,n’ € N = KerT. Assume that the
kernel N = kerT' C E has a topological supplement M. So E = M & N ~ M x N.
Now linear mapping J = ¢ | yM—FE /N is a linear isomorphism, since it is injective
(If J(z) = Og/n, then x € M Nker¢p = M NN = {0}.) and surjective (For every
v+ N € E/N same asv = (z,y) e E=N®Nonv+ N =¢(v+n) forall n € N.
In particular v + N = ¢(v — y) = ¢(x), where x € M.

So the mapping T }M has a linear inverse S : F' — M C FE. But continuous?
Assume that A C E = M @ N open. Then AN M is open in a M and (AN M) x N
is open in the product space M x N so (ANM)@ N is openin E = M @& N. Since T’
is open by assumption, the set T((AN M) @& N) C F is open. But since N = kerT,
we have T(ANM)® N)=T(ANM) =S {AN M) = S"'(A), which was to be
proven open.

a) Let E be a vector space, and B={A C F | A absobing, balanced and convex}.
Prove that B defines a locally convex topology 7, in fact the finest possible locally
convex topology on E.

b) Prove that if F is a locally convex space, then every linear mapping E — F' is
continuous.

a) Every family of absorb., bal. and conv defines some semonorms and a locally
convexn top 7 in E. Assume that 77 is a lokaali convex topologia in F. It has a
neighbourhood basis of the origin consisting of barrels. These are — by assumption —
neighbourhoods of the origin in the topology 7', so 7 is finer than 7".

b) Assume that 7' : E — F is a linear mapping and p : F — R a continuous
seminori. Then poT : E' — R oia a seminorm in the space E, so its (0-)balls are abs.,
bal. and convex, hence neighbourhoods of 0. So p o T" is continuous, and that proves
continuity of the lin mapping 7. (In fact p o T is continuous,independent of whether
p is continuous or not.)

From last week:

4.8. An example of a subset of a locally convex space which is sequentially complete
but not complete: E = F([0,1],R) = RI%YU = {allo functions [0,1] — R}. Topology
of pointwise convergence ie seminorms p, = |f(z)|. M ={f € E | f(z) #0 for at
most countably many x € [0,1]}.

M is obviously a E (top n and lin ) subspace.

a) Consider a Cauchy sequence (f,)n in M. In the topology of pointwise conver-
gence, Cauchy means that for all ¢t € [0,1] and € > 0 there exists ng = n., € N such
that |f.(t) — fin(t)| < €, kun n,m > ng. For each ¢ the sequence of real numbers
(fn(t))n is Cauchy , soit converges: f,(t) — f(t) € R. This defines a function f € E.
Evidently f, — f pointwise, Prove f € M: Let us write

H,={z € R| fu(z) #0}.



Every H,, is countable, so also

H = UHn:{xER‘EIn:fn(x)#O}
neN

is countable. Of course f(t) = 0 for all ¢, for which every f,(t) =0, so f € M.

b) Next find a non-convergent Cauchy-filter F in M.

Idea: M is not closed. The constant function g(¢) = 1 is in the closure, so theree is
a filter basis consisting of subsets of Mand converging to F'in E. This may be what we
want?.in tehe space F, it is a Cauchy-filter, jso its tracei F = {ANM | AeF}tinMis
a Cauchy-filter in Mi or contains the empty set. Let us disprove the second alternative.
In the pointwiise topology U € Uy p < U D {f : [0,1] = R | |f(t:) — 1] < €}
for some finitely many ¢q,...¢ € [0,1] and an ¢ > 0. This set contains a function
in M, for example the function with value 1 at tq,...t; and 0 elsewhere. If F would
converge to some h € M, then it would be a filter basisin £ converging both to h and
to f which is impossible since limits are unique in Hausdorff spaces and E' is T5.

4.9. If You like to do more. Let K C R" be compact. In the space
E=C*K)={f:R"—>R| feC>® suppfC K}

use th@ Semonorms a o
(@) f(z)
d

where (%)a f(z) is the (higher) partial derivative corresponding to the multi-index
a € N (You can take R' and usual higher derivatives - it makes no difference) .
Write @ = {qa | @ € N"}. Prove that a (E, Q) is Fréchet space. (loc-con, metr,
compl)

For simplicity, consider the one dimensional case, where (%)a f is simply the a:th
derivative f(®),

Of course, the seminorms p, x(f) = supg |f@| define a lc topology, evidently
metrizable. Completeness? Take a Cauchy sequence (f;);en in E. For each € > 0 and
n € N there exists an N, € N such that p,(f; — f;) < efori,j > N, . In particular,
the sequence f,, is Cauchy in the sup-norm py, so it converges uniformly in K to some
f. Similarly, the derivatives f’ converge uniformly in K to some function g. By basic
analysis, g = f’. Similarly for higher derivatives. Clearly f, — f in E.

qo(f) = sup
reK

’




